Chemical risks associated with ready‐to‐eat vegetables: quantitative analysis to estimate formation and/or accumulation of disinfection byproducts during washing

First published in the EFSA Journal
17. September 2019
Approved
31. Juli 2019
Type
Special Issue

Abstract

Fresh produce can become contaminated with disease‐causing microorganisms and chemical contaminants at every step of the production and processing chain and in a variety of ways, including through contact with contaminated process water. Water quality is critical to prevent microbial and chemical risks in any of the postharvest and processing operations related to fresh and fresh‐cut fruits and vegetables. The wash process requires high volumes of water, which are usually reduced by water reuse. To maintain the microbiological quality of the process water, intervention strategies are needed. Chemical disinfection is the most common method to maintain the microbial quality of process water. However, the use of chemicals leads to the formation/accumulation of disinfection byproducts (DBPs), which can be absorbed by the washed vegetables. This is the case of trihalomethanes (THMs) and chlorates. The presence of high concentrations of DBPs in vegetables has led to an intensive debate on current disinfection practices and how DBPs may enter the food supply chain, becoming a potential health risk for consumers. To assess the risk associated with the formation/accumulation of DBPs in process water, a quantitative analysis was done. Available data have been used to develop mathematical models to predict the formation/accumulation of DBPs (chlorates and THMs) in process water due to the use of chlorine‐derived compounds. Preliminary models have been developed, but adjustments are still needed to refine them. The present study contributes more information related to the development of a mathematical model for the accumulation of chlorates and THMs in process water.

Contact
EU-FORA [at] efsa.europa.eu
doi
10.2903/j.efsa.2019.e170913
EFSA Journal 2019;17(S2):e170913