Scientific opinion addressing the safety assessment of plants developed using Zinc Finger Nuclease 3 and other Site-Directed Nucleases with similar function


Panel on Genetically Modified Organisms
EFSA Journal
EFSA Journal 2012;10(10):2943 [31 pp.].
Panel members at the time of adoption
Salvatore Arpaia, Andrew Nicholas Edmund Birch, Andrew Chesson, Patrick du Jardin, Achim Gathmann, Jürgen Gropp, Lieve Herman, Hilde-Gunn Hoen-Sorteberg, Huw Jones, Jozsef Kiss, Gijs Kleter, Pagona Lagiou, Martinus Lovik, Antoine Messéan, Hanspeter Naegeli, Kaare Magne Nielsen, Jaroslava Ovesna, Joe Perry, Nils Rostoks, Christoph Tebbe

The Panel wishes to thank the members of the Working Group on risk assessment of plants developed through new techniques: John Bradshaw, Josep Casacuberta, Andrew Chesson, Howard Davies, Frank Hartung, Sirpa Kärenlampi, Gijs Kleter, Harry Kuiper, Michele Morgante, Kaare Nielsen, Fabien Nogué, Annette Pöting, Pere Puigdomenech and Jeremy Sweet for the preparatory work on this scientific opinion; and EFSA staff: Andrea Gennaro, Yi Liu and Nancy Podevin for the scientific support provided to this scientific opinion and Nancy Podevin also for the preparation of the figures and coordination of the work.

Opinion of the Scientific Committee/Scientific Panel
On request from
European Commission
Question Number
18 October 2012
Published in the EFSA Journal
25 October 2012
European Food Safety Authority (EFSA), Parma, Italy

The European Commission requested that the EFSA Panel on Genetically Modified Organisms deliver a scientific opinion related to risk assessment of plants developed using the zinc finger nuclease 3 technique (ZFN-3) which allows the integration of gene(s) in a predefined insertion site in the genome of the recipient species. Since other nucleases with a similar function to ZFN are considered in this opinion the term site-directed nuclease 3 (SDN-3) is used to describe the technique rather than ZFN-3 specifically. The EFSA GMO Panel considers that its guidance documents are applicable for the evaluation of food and feed products derived from plants developed using the SDN-3 technique and for performing an environmental risk assessment. However, on a case-by-case basis lesser amounts of event specific data may be needed for the risk assessment of plants developed using the SDN-3 technique. The EFSA GMO Panel compared the hazards associated with plants produced by the SDN-3 technique with those obtained by conventional plant breeding techniques and by currently used transgenesis. With respect to the genes introduced, the SDN-3 technique does not differ from transgenesis or from the other genetic modification techniques currently used, and can be used to introduce transgenes, intragenes or cisgenes. The main difference between the SDN-3 technique and transgenesis is that the insertion of DNA is targeted to a predefined region of the genome. Therefore, the SDN-3 technique can minimise hazards associated with the disruption of genes and/or regulatory elements in the recipient genome. Whilst the SDN-3 technique can induce off-target changes in the genome of the recipient plant these would be fewer than those occurring with most mutagenesis techniques. Furthermore, where such changes occur they would be of the same types as those produced by conventional breeding techniques.

TALEN, meganuclease, ZFN, genome editing, gene targeting, transgenic, site-directed nucleases
Print on demand
Number of Pages