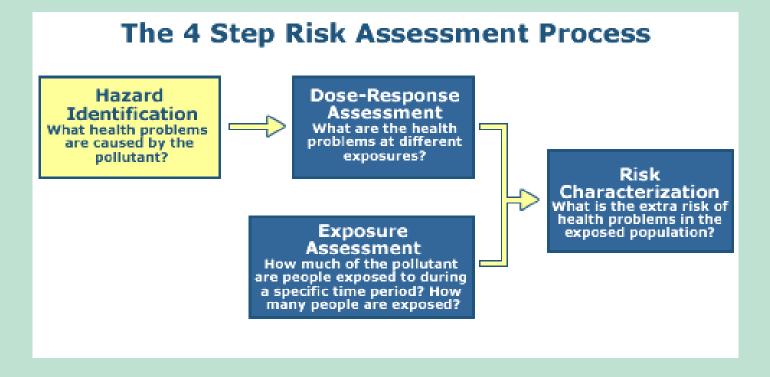


Disclaimer

The opinions expressed in this presentation are the author's own and do not reflect the view of the Danish EPA


Holistic Approach Current Approach Fit for Purpose? Is it good enough at what it is meant to do? Do regulations support a holistic approach?

?

Compartmentalised?

Compartments

Single Substance Evaluation

Cmpd 1Cmpd 2Cmpd 3Cmpd 4Cmpd ∞

REACH Pesticide Biocides Medicines

Geographical
Countries Unions Continents

Holistic Approach?

Do we need it?

Transparency Trust - Informed Skeptiscism In Safety Assessment

Data requirement - active substance

Toxicokinetics – absorption, distribution, excretion, metabolism –single and repeated dose rat

Acute exposure - oral, dermal, inhalation rat

Irritation – eye, skin rabbit

Sensitisation mouse

Subchronic toxicity (28-90 days) rat

Subchronic toxicity (28 days – 1 year) **dog**

Genotoxicity – in vitro (mutagenicity, chromosome aberrations, aneugenicity)

Genotoxicity – in vivo (chromosome aberrations – possibly others) mice

Chronic toxicity (2 year) rats

Carcinogencity (2 year) rats

Carcinogenicty mice

Teratogenicity rat

Teratogenicity rabbit

Reproduction – 1 or 2 generations rat

Neurotoxicity (acute and/or chronic exposure) rat, Developmental neurotoxicity rat

All relevant data from open litteratur (systematic review)

Others – special studies on endocrine end points

Confidence in the risk assessment?

Active Substance

- Wide range test
- Regulate on the basis of no observed adverse effect levels
- Reference values should cover vulnerable groups

Exposure

 Reasonable upper limits are estimated for the levels of human exposure to the active substance

Risk Assessment

- Consumers
- Operator
- Worker
- Bystander
- Resident

Confidence in the risk assessment? Yes But how Safe

Tough?

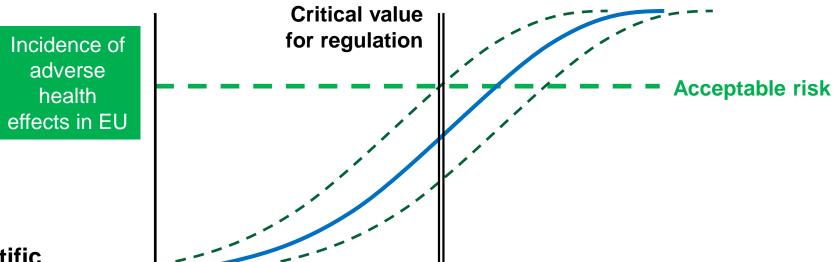
- Relies heavily on non-human data
- Relies on in vivo data not designed to provide mechanistic understanding
- Multi-factorial diease etiologies not covered
- Co-exposures not considered
- Reference doses based on NOAELs does not allow quantification of the uncertainty
- Deterministic reference doses coverage and uncertainty is not determined
- Protection Goal is not well-defined

Protection Goal

Risk Metric

DEFINE

"ENSURE NOT ANY HARMFUL EFFECT"


NO ADVERSE EFFECT LEVEL IN RODENTS / 100

CONSERVATIVE ESTIMATE OF EXPOSURE

ASSESS

Pesticide Reg. 107/2009

CALIBRATE

EFSA Guidance on Uncertainty in Scientific Assessment

Ratio of Protective Exposure Estimate to Rodent NOAEL / 100

Data requirement - active substance

Toxicokinetics – absorption, distribution, excretion, metabolism –single and repeated dose rat

Acute exposure - oral, dermal, inhalation rat

Irritation – eye, skin rabbit

Sensitisation mouse

Subchronic toxicity (28-90 days) rat

Subchronic toxicity (28 days – 1 year) dog

Carcinogenicty mice

Teratogenicity rat

Teratogenicity rabbit

Reproduction – 1 or 2 generations rat

Neurotoxicity (acute and/or chronic exposure) rat, Developmental neurotoxicity rat

All relevant data from open litteratur (systematic review)

Others – special studies on endocrine end points

Data requirement - active substance

Toxicokinetics – absorption, distribution, excretion, metabolism –single and repeated dose rat

Irrita to Vernal dermal, inhalation rate of the particle of th

Subchronic toxicity (28-90 days) rat

Subchronic toxicity (28 days - 1 year) dog

Genotoxicity – in vitro (mutagenicity, chromosome aberrations, aneugenicity)

Genotoxicity – in vivo

Carcinogencity (2 year)

Carcinogenicty mice

Teratogenicity rat

Teratogenicity rabbit

Reproduction – 1 or 2

Neurotoxicity (acute a

All relevant data from

Others – special studie

Chronic toxicity (2 year Bad prescriptions – possibly others) mice promosome aberrations – possibly others (a promosome aberrations) mice promosome aberrations – possibly others (a promosome aberrations) mice promosome aberrations – possibly others (a promosome aberrations) mice promosome aberrations – possibly others (a promosome aberrations) mice promosome aberrations – possibly others (a promosome aberrations) mice promosome aberrations (a promosome aberrations) mice promosome aberration (a promosome aberration aberration (a promosome aberration aberration (a promosome aberration aberration aberration (a promosome aberration aberration aberration aberration (a promosome aberration aberration aberration aberration (a promosome aberration aberration aberration (a promosome aberration aberration aberration (a promosome abe Poor reproducibility Difficult to interpretate Inefficient

Expensive

oxicity rat Insensitive

endocrin Relevance

Ntzani EE, Chondrogiorgi M, Ntritsos G, Evangelou E, Tzoulaki I

EFSA supporting publication 2013:EN-497

EXTERNAL SCIENTIFIC REPORT

Literature review on epidemiological studies linking exposure to pesticides and health effects¹

Evangelia E Ntzani, Chondrogiorgi M, Ntritsos G, Evangelou E, Tzoulaki I

Department of Hygiene and Epidemiology, University of Ioannina Medical School, Ioannina, Grecce

602 epidemiological studies - >6000 data analysis

In meta-analysis consistent increased risk

- Parkinson's Disease
- Childhood Leukemia
- Type II diabetes
- Asthma
- Amyotrophic lateral sclerosis
- Some cancer types liver, breast, stomach

Do not allow conclusions but still concern What is the biological plausibility?

SCIENTIFIC OPINION

ADOPTED: 14 December 2016

doi: 10.2903/j.efsa.2017.4691

Investigation into experimental toxicological properties of plant protection products having a potential link to Parkinson's disease and childhood leukaemia¹

EFSA Panel on Plant Protection Products and their residues (PPR),
Colin Ockleford, Paulien Adriaanse, Philippe Berny, Theodorus Brock, Sabine Duquesne,
Sandro Grilli, Antonio F Hernandez-Jerez, Susanne Hougaard Bennekou, Michael Klein,
Thomas Kuhl, Ryszard Laskowski, Kyriaki Machera, Olavi Pelkonen, Silvia Pieper, Rob Smith,
Michael Stemmer, Ingvar Sundh, Ivana Teodorovic, Aaldrik Tiktak, Chris J Topping,
Gerrit Wolterink, Karine Angeli, Ellen Fritsche, Antonio F Hernandez-Jerez, Marcel Leist,
Alberto Mantovani, Pablo Menendez, Olavi Pelkonen, Anna Price, Barbara Viviani,
Arianna Chiusolo, Federica Ruffo, Andrea Terron and Susanne Hougaard Bennekou

PRESCRIPTIVE?

Strengths: We get a lot of data - FOMO

Weakness: Not always (or even necessary) relevant data

Opportunity: FODU - Fully Optimise Data Use

Challenge: Utilize new developments in science

Data requirement - active substance

Toxicokinetics – absorption, distribution, excretion, metabolism –single and repeated dose rat

Acute exposure - oral, dermal, inhalation rat

Irritation – eye, skin rabbit

Sensitisation

Subchronic

290 Fays CRIPTIVE

Subchronic toxicity (28 days - 1 year) dog

Genotoxicity – in vitro (mutagenicity, chromosome aberrations, aneugenicity)

Genotoxicity – in vivo (chromosome aberrations – possibly others) mice

Chronic toxidity (2 year) rats

Carcinogeno ty (2 year) ra

Carcinogenicty mice

Teratogenicity rat

Teratogenicity rabbit

Reproduction – 1 or 2 generations rat

Neurotoxicity (acute and/or chronic exposure) rat, Developmental neurotoxicity rat

All relevant data from open litteratur (systematic review)

Others – special studies on endocrine end points

FODU

Endpoint
Similar toxophore
Kinetics
Genotoxicity
Repeat-dose toxicity
Carcinogenicity
Teratogenicity
Reproductive toxicity
ED activity
Neurotoxicity
DNT

C	Cmpd '	1
	+	
	+	
	+	
	+	
	+	
	+	
	+	
	+	
	+	

Cmpd 2
+
+
+
+
+
+
+
(+)
+
+

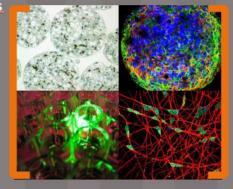

Cmpd 3
+
+
+
+
+
+
(+)
(+)
+
-

Cmpd 4
+
+
+
+
+
+
+
+
+
_

Metb. 2	Me
+	
-	
+	
+	
-	
-	
-	
-	
-	
-	

2018	2008	2005	2011	2013	2013	2005
+	+	+	+	+	+	+
+	+	+	+	-	-	-
+	+	+	+	+	+	+
+	+	+	+	+	+	-
+	+	+	+	-	-	-
+	+	+	+	+	-	-
+	+	(+)	-	+	-	-
+	(+)	(+)	+	+	-	-
+	+	+	+	-	-	-
	+	-	-	-	-	-

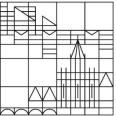
FODU Read-Across


An Integrated **EU**ropean 'Flagship' Program
Driving Mechanism-based **Tox**icity Testing and **Risk** Assessment for the 21st Century

Mechanism-based test methods in testing batteries for:

- Pragmatic, solid "read across" procedures
- Ab initio hazard and risk assessment strategies

Based on


- 1. Combination of in silico and in vitro assays
- 2. Systems toxicology/biology, AOPs
- 3. Test system evaluations
- 4. Risk assessment and uncertainties

http://www.eu-toxrisk.eu/

Universität Konstanz

"Internationalisation of read across as validated new approach method (NAM) for regulatory toxicology "

ALTEX. 2016; 33(2): 149-166. doi:10.14573/altex.1601251.

t⁴ report*: Toward Good Read-Across Practice (GRAP) Guidance

Nicholas Ball^{1,§}, Mark T. D. Cronin^{2,§}, Jie Shen^{3,§}, Karen Blackburn⁴, Ewan D. Booth⁵, Mounir Bouhifd⁶, Elizabeth Donley⁷, Laura Egnash⁷, Charles Hastings⁸, Daland R. Juberg¹, Andre Kleensang⁶, Nicole Kleinstreuer⁹, E. Dinant Kroese¹⁰, Adam C. Lee¹¹, Thomas Luechtefeld⁶, Alexandra Maertens⁶, Sue Marty¹, Jorge M. Naciff⁴, Jessica Palmer⁷, David Pamies⁶, Mike Penman¹², Andrea-Nicole Richarz², Daniel P. Russo¹³, Sharon B. Stuard⁴, Grace Patlewicz¹⁴, Bennard van Ravenzwaay¹⁰, Shengde Wu⁴, Hao Zhu¹³, and Thomas Hartung^{6,15}

TOXICOLOGICAL SCIENCES, 165(1), 2018, 198-212

doi: 10.1093/toxsci/kfy152 Advance Access Publication Date: July 11, 2018 Research Article

Machine Learning of Toxicological Big Data Enables Read-Across Structure Activity Relationships (RASAR) Outperforming Animal Test Reproducibility

Thomas Luechtefeld,*,† Dan Marsh,† Craig Rowlands,‡ and Thomas Hartung*,§,1

*Johns Hopkins University, Bloomberg School of Public Health, Center for Alternatives to Animal Testing (CAAT), Baltimore, Maryland 21205; [†]ToxTrack, Baltimore, Maryland 21209; [†]UL Product Supply Chain Intelligence, Underwriters Laboratories (UL), Northbrook, Illinois 60062; and [§]University of Konstanz, CAAT-Europe, Konstanz 78464, Germany

Read Across

Regulation	Read Across
Food Contact Materials	
Feed	
Flavourings	
Biocides	
REACH	
Pesticide Regulation	
Pesticide: Data Requirements	
Pesticides: Identification of Endocrine Disruptors	
2 24	

Amendment to 1107/2009 on placing of Plant Protection Products on the market - on the identification of ED's

- 1. it shows an adverse effect in an intact organism or its progeny, which is a change in the morphology, physiology, growth, development, reproduction or life span of an organism, system or (sub)population that results in an impairment of functional capacity, an impairment of the capacity to compensate for additional stress or an increase in the susceptibility to other influence;
- 2. it has an endocrine **mode of action**, i.e. alters the function(s) of the endocrine system;
- 3. the adverse effect is a **consequence** of the endocrine mode of action

Guidance for the identification of endocrine disruptors in the context of Regulations (EU) No 528/2012 and (EC) No 1107/2009

Draft

For consultation of the ECHA and EFSA Scientific Bodies (ECHA Biocidal Products Committee, EFSA Scientific Committee and PPR Panel, and the EFSA Pesticides Steering Network)

Drafted by EFSA and ECHA staff, with support from JRC 16 April 2018

Conceptual Framework for testing and assess endocrine disrupters

Mammalian and non-mammalian Toxicology

Level 1

Existing Data and Non-Test Information

Level 2

In vitro assays providing data about selected endocrine mechanism(s) / pathway(s)

Mammalian Toxicology

Non-mammalian Toxicology

Level 3

In vivo assays providing data about selected endocrine mechanism(s) / pathway(s)

Level 4

In vivo assays providing data on adverse effects on endocrine relevant endpoints

Level 5

In vivo assays providing more comprehensive data on adverse effects on endocrine relevant endpoints over more extensive parts of the life cycle of the organism

14 · OECD WORK ON ENDOCRINE DISRUPTING CHEMICALS

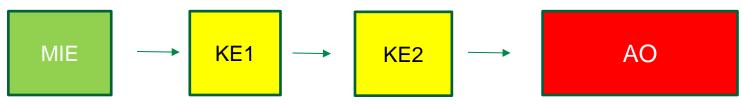
Endpoint	
Acute toxicity	
Kinetics	
Genotoxicity	
Repeat-dose toxicity	
Carcinogenicity	
Teratogenicity	
Reproductive toxicity	
ED activity Androgen Estrogen Thyroid Steroidgenesis	
Neurotoxicity	
DNT	

Cmpd 1
+
+
+
+
+
+
+
+
+
+
+
+

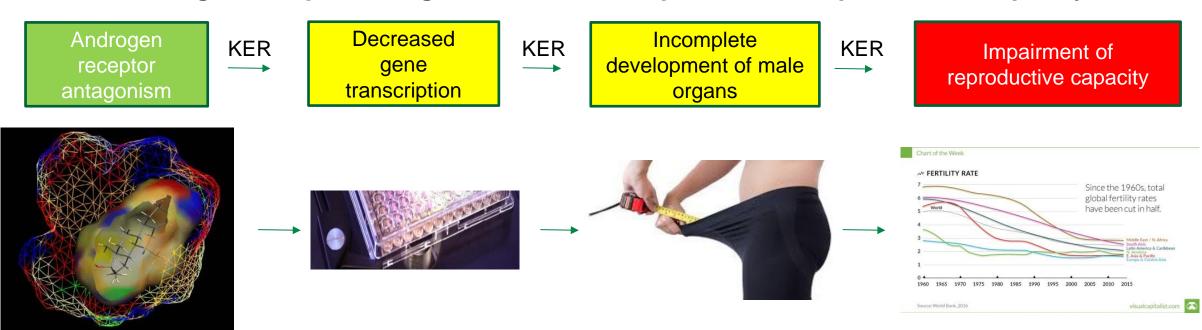
Cmpd 2
+
+
+
+
+
+
+
+ + +
+
+

Cmpd 3
+
+
+
+
+
+
+
+ + + +
+
_

Endpoint
Acute toxicity
Kinetics
Genotoxicity
Repeat-dose toxicity
Carcinogenicity
Teratogenicity
Reproductive toxicity Anogenital distance
ED activity Androgen Estrogen Thyroid Steroidgenesis
Neurotoxicity
DNT


Cmpd 1
+
+
+
+
+
+
↓
↓ n.a. n.a. n.a.
+

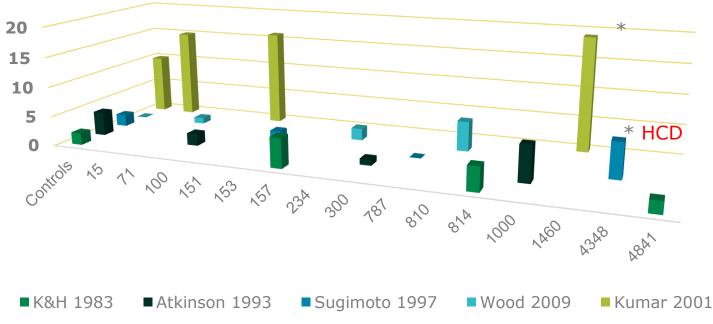
Cmpd 2
+
+
+
+
+
+
↓
↓ n.a n.a. n.a.
+
+


Cmpd 3
+
+
+
+
+
+
↓
↓ n.a. n.a. n.a.
+
-

Cmpd 4
+
+
+
+
+
+
?
•
↓
n.a.
n.a.
n.a.
+
-

Adverse Outcome Pathway

Androgen receptor antagonism leads to impairment of reproductive capacity



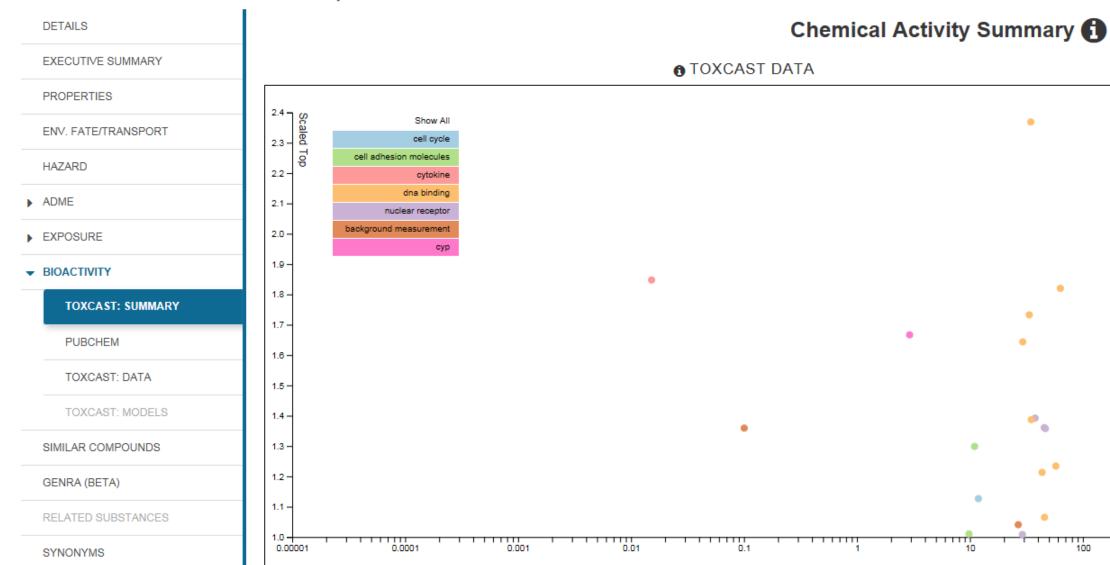
OECD AOP Status 18th September 2018

AOP	Modality	Status
Aromatase Inhibition leading to reproductive dysfunction	S	Endorsed
Androgen receptor agonism leading to reproductive dysfunction	Α	Approved
Aromatase (Cyp19a1) reduction leading to impaired fertility in adult female	S	Under review
Estrogen receptor antagonism leading to reproductive dysfunction	E	Under review
Inhibition of Thyroperoxidase and Subsequent Adverse Neurodevelopmental Outcomes in Mammals	Т	Under review
PPARα activation in utero leading to impaired fertility in males	other	Under review
Inhibition of Na+/I- symporter (NIS) leads to learning and memory impairment	Т	Under development Open for comments
A lot under development Very different level of matureness		Not OECD workplan

C&LClassification & Labelling

Malignant lymphomas in male mice

Courtesy of Danielle Cours Marques

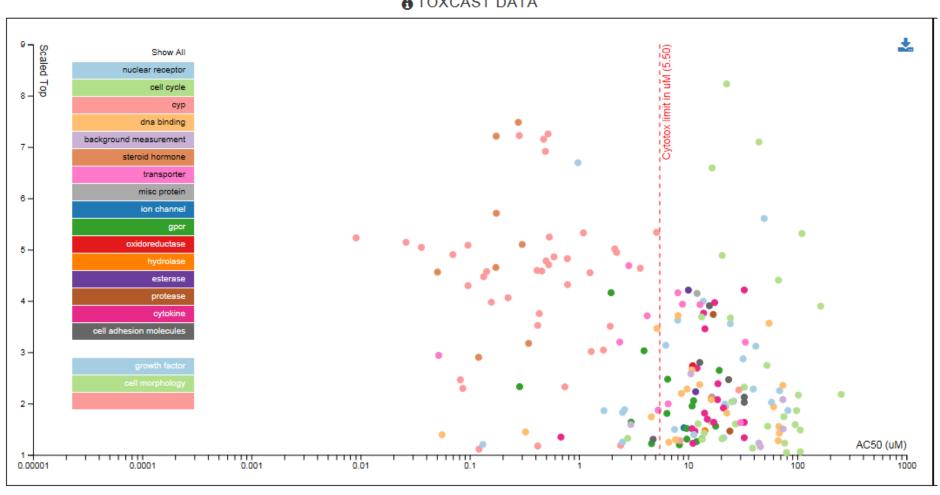

Should we care?

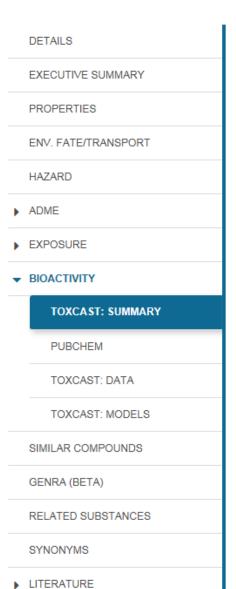
AC50 (uM)

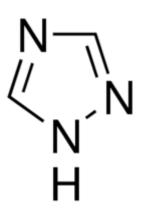
Metsulfuron-methyl

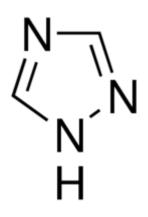
74223-64-6 | DTXSID6023864

Searched by DSSTox Substance Id.


Prochloraz


67747-09-5 | DTXSID4024270


Searched by DSSTox Substance Id.



1,2,4 Triazole

Toxic to reproduction Endocrine disruptive activity? Devlopmental neurotoxity? Carcinogenicity?

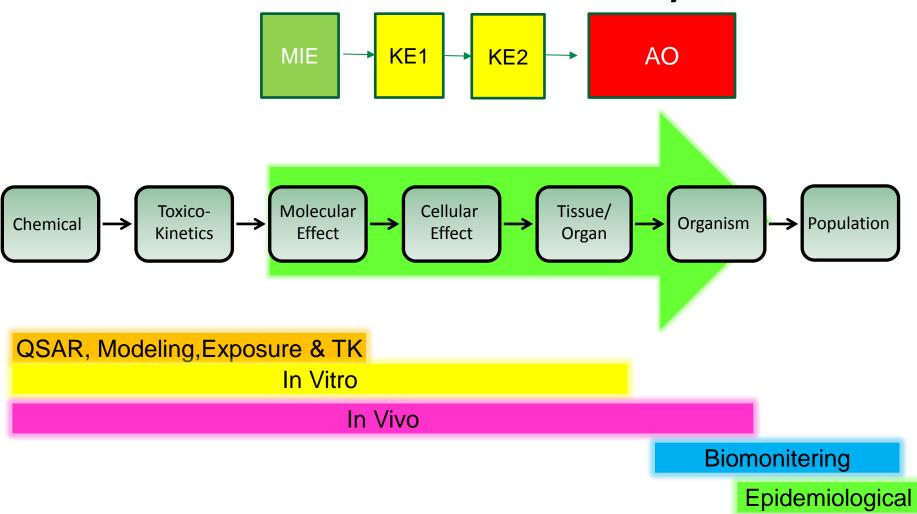
Sources:

Cyproconazole, Difenoconazole, Metconazole, Myclobutanil, Propiconazole, Prothioconazole, Triadimenol, Triticonazole, Epoxiconazole, Fenbuconazole, Paclobutrazol, Penconazole, Tebuconazole Tetraconazole

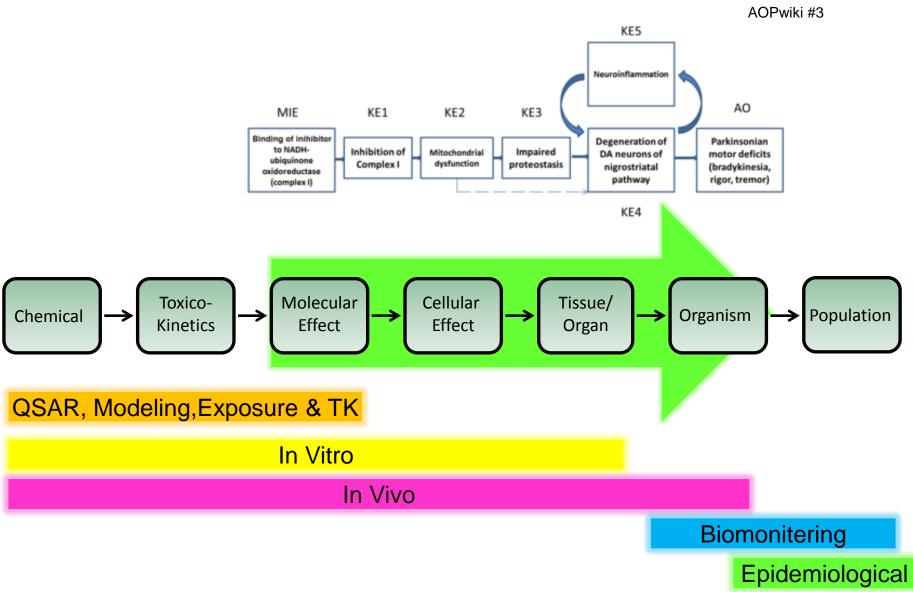
1,2,4 Triazole

Toxic to reproduction Endocrine disruptive activity? Devlopmental neurotoxity? Carcinogenicity?

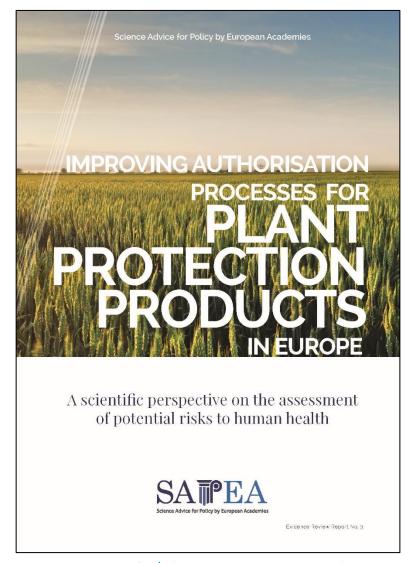
Sources:

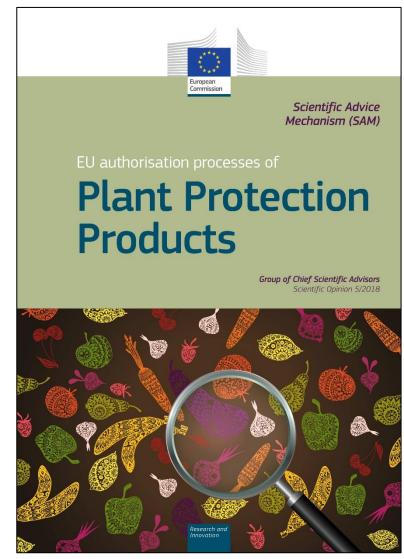

Cyproconazole, Difenoconazole, Metconazole, Myclobutanil, Propiconazole, Prothioconazole, Triadimenol, Triticonazole, Epoxiconazole, Fenbuconazole, Paclobutrazol, Penconazole, Tebuconazole Tetraconazole

Other sources? De-nitrification

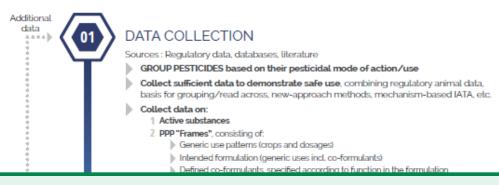


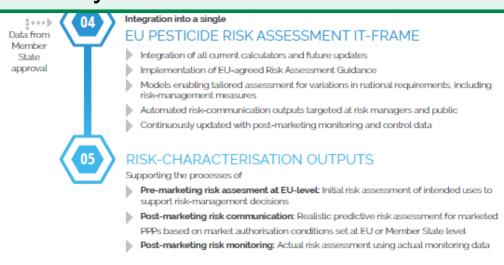
Adverse Outcome Pathway


Inhibition of the mitochondrial complex I of nigrostriatal neurons leads to parkinsonian motor deficits



Holistic Wish List


- Screening
- AOPs
- Data availability
- Define Protection Goals
- Rigorous analysis of uncertainties
- Flexible data requirements
- Harmonised Approaches


www.sapea.info/plantprotectionproducts

https://ec.europa.eu/research/sam/index.cfm?pg
=pesticides

- Efficient use of expert knowledge resources and data
- Agile in regard to incorporating new science and data into risk assessment
- Support risk management decisions and provide transparency to the public
- Address co-formulants in PPPs
- Address risk assessment for mixtures and candidates for substitution
- Integrate post-marketing data (monitoring) into risk assessment
- Support a harmonised system

