Relations between pathogens, hosts and environment: joining up the dots

Prof. Matthew Baylis Liverpool University Climate and Infectious Diseases of Animals Department of Epidemiology and Population Health Institute of Infection and Global Health, University of Liverpool matthew.baylis@liv.ac.uk

SOURCES OF NOVEL PATHOGENS

Bottom-up approach

ERANET ENVHEALTH PROJECT - ENHANCE

Data mining from NCBI

LOCUS	GU591166 6979 bp cRNA linear VRL 03-MAY-2010
DEFINITION	La Crosse virus isolate Dallas/TX/2009 segment L, complete
	sequence.
ACCESSION	GU591166
VERSION	GU591166 1 31.295387991
KEYWORDS	
SOURCE	La Crosse virus
ORGANISM	La Crosse virus
	Viruses; ssRNA negative-strand viruses; Bunyaviridar;
	Orthobunyavirus.
REFERENCE	1 (bases 1 to 6979)
AUTHORS	Lambert, A.J., Blair, C.D., D'Anton, M., Ewing, W., Harborth, M.,
	Seiferth, R., Xiang, J. and Lanciotti, R.S.
TITLE	La Crosse virus in Aedes albopictus mosquitoes, Texas, USA, 2009
JOURNAL	Emerging Infect. Dis. 16 (5), 856-858 (2010)
PUBMED	20409384
REFERENCE	2 (bases 1 to 6979)
AUTHORS	Lambert, A.J., Blair, C.D., D'Anton, M., Ewing, W., Harborth, M.,
	Seiferth, R., Xiang, J. and Lanciotti, R.S.
TITLE	Direct Submission
JOURNAL	Submitted (01-FEB-2010) DVBID, CDC, Rampart Road, Fort Collins, CO
	80522, USA
COMMENT	GenBank Accession Numbers GU561164-GU591166 represent the complete
	genome of La Crosse virus isolate Dallas/TX/2009.
FEATURES	Location/Qualifiers
source	16979
	/organism="La Crosse virus"
	/mol_type="viral cRNA"
	/isolate="Dallas/TX/2009"
	/host="Aedes albopictus"
	/db_xref="taxon: <u>11577</u> "
	/segment="L"
	/country="USA: Dallas, TX"
	/collection_date="13-Aug-2009"
	<pre>/PCR_primers="fwd_seq: agtagtgtactccta, rev_seq:</pre>
	gtggagcacactact"
CDS	626853
	/codon_start=1
	/product="polymerase"
	/protein_id="ADG01815.1"
	/db_xref="GI:295387992"
	/translation="MDYQEYQQFLARINTARDACVAKDIDVDLLMARHDYFGRELCKS
	LNIEYRNDVPFVDIILDIRPEIDPLTIDAPHITPDNYLYINNVLYIIDYKVSVSNESS
	LITYDKYYELTRDISDRLGIPIEIVIIRIDPVSKDLHINSDRFKELYPAIVVDINFNQ
	FFDLKQLLYEKFGDDEEFLLKVAHGDFTLTAPWCKTGCPDFWKHPIYKEFKMSMPVPE

VERSITY OF

la crosse virus - united states

aedes albopictus united states

la crosse virus - aedes albopictus

Big Data!

- 224,751 species in NCBI taxonomy database
- 39,238,061 sequences in NCBI nucleotide sequence database
- 19,717,726 sequences linked to 171,967 <u>species</u>
- 2,706,620 had <u>Host</u> tag
- 6,714,520 had <u>Country tag</u>
- 6,473,167 publications in PubMed database
- 6,028,487 linked to 7,463 species

Pathogen network

SCIENTIFIC DATA

Home | Archive | About v | For Authors v | For Referees | Data Policies v | Collections v

Home ► Data Descriptors ► Data Descriptor

SCIENTIFIC DATA | DATA DESCRIPTOR OPEN

< 🖨

Database of host-pathogen and related species interactions, and their global distribution

Maya Wardeh, Claire Risley, Marie Kirsty McIntyre, Christian Setzkorn & Matthew Baylis

Affiliations | Contributions | Corresponding authors

Scientific Data 2, Article number: 150049 (2015) | doi:10.1038/sdata.2015.49 Received 29 May 2015 | Accepted 05 August 2015 | Published online 15 September 2015

Abstract

Abstract • Background & Summary • Methods • Data Records • Technical Validation • Additional Information • References • Data Citations • Acknowledgements • Author information

Interactions between species, particularly where one is likely to be a pathogen of the other, as well as the geographical distribution of species, have been systematically extracted from various webbased, free-access sources, and assembled with the accompanying evidence into a single database. The database attempts to answer questions such as what are all the pathogens of a host, and what are all the hosts of a pathogen, what are all the countries where a pathogen was found, and what are all the pathogens found in a country. Two datasets were extracted from the database, focussing on species interactions and species distribution, based on evidence published between 1950–2012. The quality of their evidence was checked and verified against well-known, alternative, datasets of pathogens infecting humans, domestic animals and wild mammals. The presented datasets provide a valuable resource for researchers of infectious diseases of humans and animals, including zoonoses.

Online attention

This Altmetric score means that the article is:

 in the 99th percentile (ranked 637th) of the 122,315 tracked articles of a similar age in all journals

 in the 93rd percentile (ranked 1st) of the 15 tracked articles of a similar age in Scientific Data

Scientific Data 2, Article number: 150049 (2015) doi:10.1038/sdata.2015.4

Why are pathogens shared?

Transmission routes environment

Transmission routes ingestion

Transmission routes sexual

It's a funny old world

BESTIALITY

Edited by Andrea M. Beetz and Anthony L. Podberscek SEXUAL RELATIONS WITH ANIMALS

A publication of the International Society for Anthrozoology

Zoonotic pathogens

- [1] 1,415 human pathogens, of which 868 (61%) HUMAN PATHOGENS ARE ZOONOTIC
- [2] 706 pathogens of livestock and 456 of domestic carnivores LIVESTOCK PATHOGENS: 46% INFECT HUMANS [EID2, 40%] DOMESTIC CARNIVORE PATHOGENS: 70% INFECT HUMANS [EID2, 65%]

EID2 finds 43% of livestock/carnivore pathogens to infect humans

[1] Taylor et al (2001). Phil Trans Roy Soc B, **356**, 983-989[2] Cleaveland et al (2001). Phil Trans Roy Soc B, **356**, 991-999

DRIVERS OF DISEASE EMERGENCE

Global richness

Map of geographic origins of EID events, 1940-2004 (Jones et al, 2008, Nature)

Drivers of [human viral] disease emergence

(Based on Jones et al., 2008. Nature)

Number of viral diseases

Some drivers of animal virus re-emergence

Example	Drivers
Foot-and- mouth, 2001	Feeding food waste to pigs; delayed detection of index farm; Extensive animal movements; lack of standstills; no vaccination
Avian influenza, H5N1	Viral spread from wildlife to domestic animals; extensive mixing of poultry species; extensive movements of poultry; reassortment of viruses; bird migration
Chikungunya	Spread of insect vector; viral evolution; tourism & travel
Tick-borne encephalitis	Political change leading to Socioeconomic decline leading to Behavioural change; climate change?
Ebola	Viral dispersal in bats; bushmeat consumption; spread by health workers; slow response time
African swine fever	Global trade and travel; Feeding food waste to pigs; extensive animal movements
Bluetongue-8	Climate change, global transport of livestock/midges/viruses
Schmallenberg	Reassortment of viruses; global transport of livestock/midges/viruses

there is rarely a simple story with only one driver

MODELLING SPREAD OF EMERGING PATHOGENS

Culicoides biting midges

Past trends in R₀ - bluetongue

Spread of infection - networks

Infection spreads from farm-to-farm by three routes:

- Movement of cattle
 - Cattle Tracing Scheme, 2006
- Movement of sheep
 - Animal Movement Licensing Scheme, 2006
- Dispersal of vectors
 - Non-directional (and follows a kernel!)

Blue = exposed

Spread modelling

Red = infectious

Green = detected

Bluetongue

Farm infection status

Farm infection status

Climate change and BT dynamics

- Model is climate sensitive
 - Temperature affects
 - vectorial capacity
 - vector seasonality

Simulating effect of temperature change

Conclusions

- Animals are a major source of human pathogens but we have poor knowledge of the pathogens they harbour
- Big Data approaches can help identify new patterns
- Pathogen networks indicate that pathogens are shared with close relatives, co-habitants and predator/prey
- Many factors drive the emergence of new pathogens; climate change is one
- Climate change has driven the emergence of some vectorborne diseases, such as bluetongue
- Transmission models indicate that bluetongue outbreaks will be larger under warmer climates

Big thanks to

- Jo Turner
- Roger Bowers
- Anne Jones
- Andy Morse
- Georgette Kluiters
- Helene Guis
- Cyril Caminade

