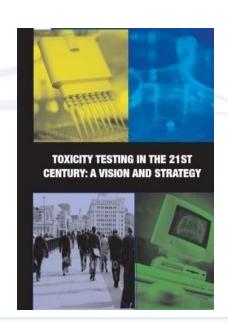


Frontiers in Predictive Toxicology

Thomas Hartung



You only bother about frontiers, if you need to travel


"Away-from-here that is my destination"

Franz Kafka

1st frontier

Agreement that animal tests are not good enough

(AAT Jo

Natural pesticides 10,000x more, 35 of 63 carcinogenic

Protected against minute amounts of pesticides

Protected against TCDD in eggs

Same calculation for alcohol:
One glass per
345 years

Genotoxic: sugar

Genotoxic: salt

We are not 70kg rats !!!

2-200 kg

20-500 g

Age 0 -100 years

Different ethnics, both gender

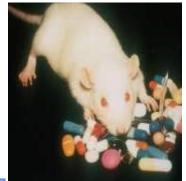
Mostly 3 months, max 2 years

Mostly twins, one gender

Standardized

Diverse food, environment

Disease history, Comorbidities, Multiple treatments Chow and cage Healthy,
Artificial diseases,
Mono-treatments

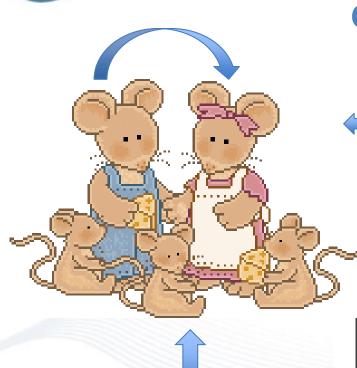


Interspecies prediction of cancer

Concordance 57%

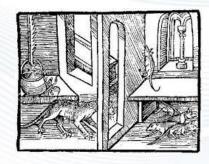
Risk Analysis, Vol. 00, No. 0, 2014

DOI: 10.1111/risa.12314


Concordance of Noncarcinogenic Endpoints in lodent Chemical Bioassay

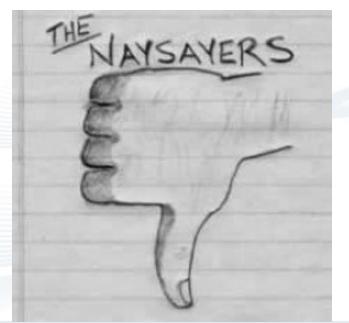
Bing Wang¹ and George Gray^{2,*}

Prediction of research toxicologic outcomes in rodent bioassays of 37 chemicals of methods the National Toxicology and a evaluated. ... Overall, there is considerable uncertainty in predicting the site of toxic lesions in different species exposed to the same chemical and from short-term to long-term tests of the same chemical.


Cancer studies in mice and rats of both gender

No Correlation

The test solution:
The uterotrophic assay
on ovarectomized rats



The uterotrophic assays

OECD-"validated" test

Part of peerreview

Screening (Computatio

Patience Browne, and Russell S. Th

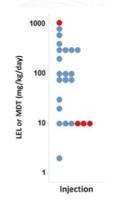
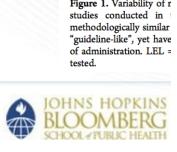



Figure 1. Variability of r

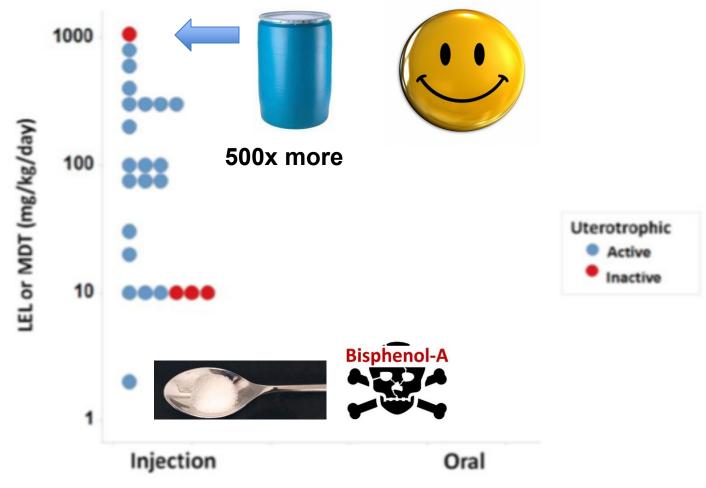


Figure 1. Variability of results for bisphenol A (BPA) in uterotrophic studies conducted in the immature rat model. All studies are methodologically similar to the EDSP Tier 1 guideline and considered "guideline-like", yet have discordant results even with the same route of administration. LEL = lowest effect level; MDT = maximum dose

"Basic research is like shooting an arrow in the air and, where it lands, painting a target."

> Homer Adkins, 1984 Nature 312, 212.

Food for Thought Look Back in Anger – What Clinical Studies Tell Us About Preclinical Work

Thomas Hartung

Johns Hopkins University, Bloomberg School of Public Health, CAAT, Baltimore, USA and University of Konstanz, CAAT-Europe, Germany

Bayer, 2011: 20-25% in-house studies reproduce publications

Amgen, 2012: 6% of cancer hallmark papers reproducible

Tab. 2: Examples of more systematic evaluations of the quality of animal studies of drug efficacy

irst author	Year published	(Number of) indications	Number of studies considered (of total)	Reproducible in humans
Horn	2001	stroke	20 (225)	50%
			e included studies, 50% were in ally significant effects in favor of	
Corpet	200		_	55%
"We found that the effect Table 3 (Corpet et al., 2 data or inclusion/exclus in rat and mice showed analysis published (Cor	003) wi ion criti a signif	3.	d.	Data extracted from No quality assurance of The two animal models Updated very similar
Perel	200			50% (of indications)
"Discordance between a adequately." Poor qualit			nir	nic clinical disease
Bebarta	200			n.a.
*Animal studies that do than studies that emplo			no	e between study groups
Pound	200			n.a.
Analysis of 25 systemat al., 2002; Mapstone et a potential treatments for	al., 200		.м.	is et al., 2002; Roberts et luch animal research into lic reviews."
Sena	201		_	n.a.
	ic reviews of interventions ghly prevalent (Sena et al.		acute ischemic stroke involving	525 unique publications.
Hackam	2006	diverse	76	37%

"Only about a third of highly cited animal research translated at the level of human randomized trials." (Hackam and Redelmeier, 2006)

Systematic reviews

- Stroke
- Colon cancer
- head injury,
 antifibrinolytics,
 stroke, neonatal
 resp. distress,
 osteoporosis
 Emergency med.
- 25 other SR
- stroke
- diverse

.2

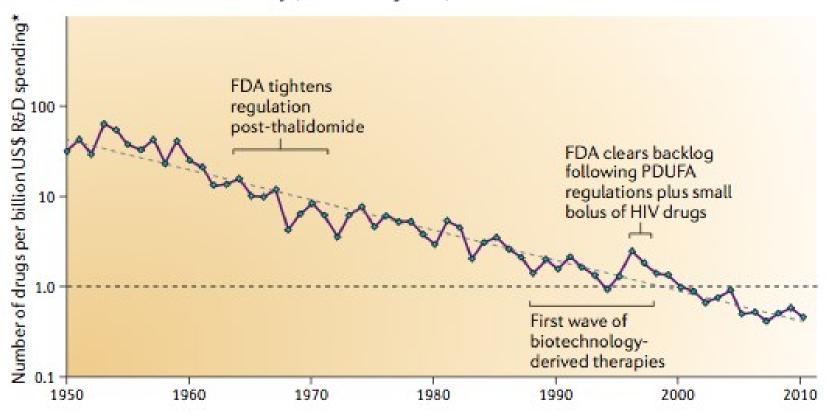
Evident data gaps (PEW report 2013), but traditional approaches not suitable

Consumer are little aware of animal testing for food

Strong discrepancies for e.g. food additives vs. pesticides

2nd frontier

Understanding that misleading animal tests make a problem



FDA-approved drugs per billion \$ R&D (inflation corrected) "Eroom's Law"

a Overall trend in R&D efficiency (inflation-adjusted)

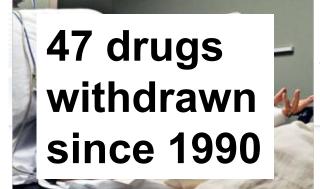
Scannel et al., Nature Rev. Drug Disc. 2012

Av rage cost on \$

on \$4-11 billion Forbes 2012 95% fail (Arrowsmith 2012)

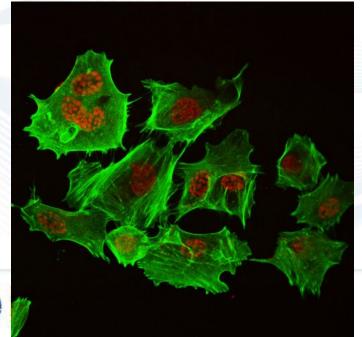
tox not predicted 40% no efficacy

Drug development



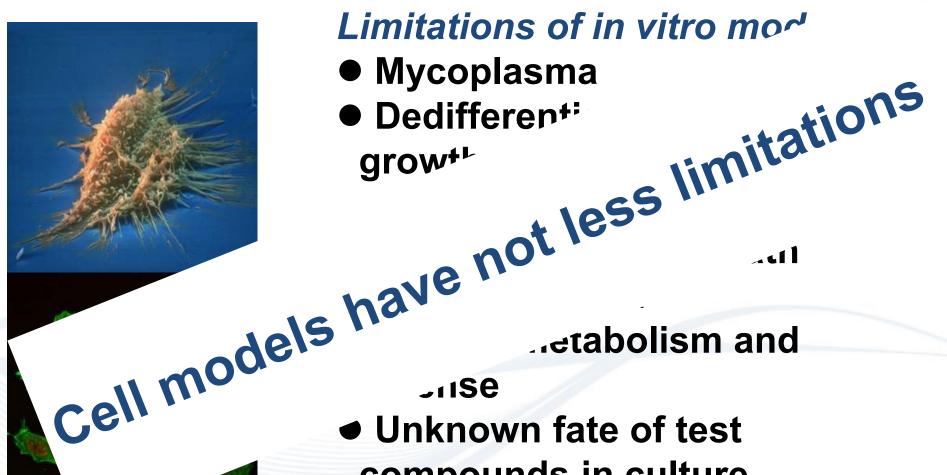
Clinical trials

1 in 100 patients in hospitals dies from adverse drug reactions



3rd frontier

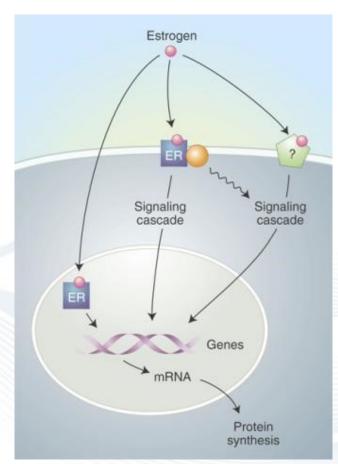
Understanding and overcoming shortcomings of current *in vitro* tests



Limitations of in vitro mor

- Mycoplasma

- compounds in culture
- Tumor origin of many cells
 - Cell identity



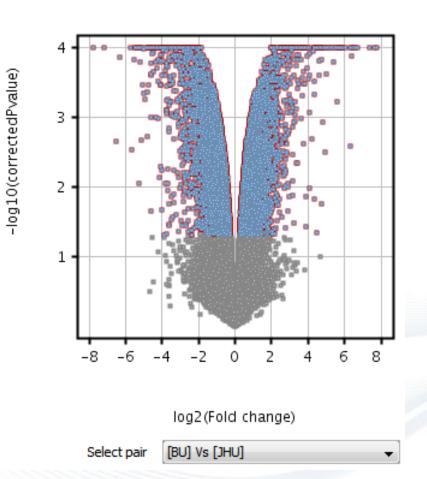
Mapping the Human Toxome by Systems Toxicology

Endocrine disruption

Hewitt et al., 2005. Science, 307:1572-1573

- Use "omics" to map PoT for endocrine disruption
- Develop software tools
- Identify PoT
- Develop a process for PoT annotation, validation
- Establish public database on PoT.

www.humantoxome.com



Comparison of MCF-7 in two laboratories

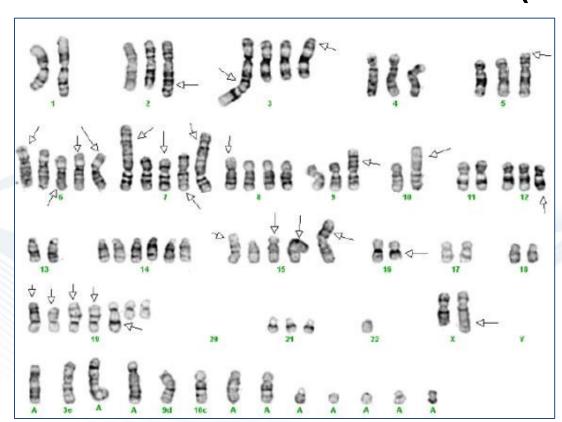
Same batch from ATCC

Method transfer

Transcriptomics

negative controls, 4h, gene level, n = 3 / group

Universität Konstanz



QA of cell system is of critical importance

Good Cell Culture Practice (Coecke et al. 2005)

Karyotyping

Extent of deviations from normal genome

Classification	Kilobases	Percentage of genome
Losses	4587603	51.2%
Deletions	667374	7.5%
Amplifications	26904	0.3%
Gains	2587093	28.9%
Normal	871166	9.7%
Centromeres	217339	2.4%
Total Abberations	7868974	87.8%
All Entries	8957479	

SurePrint G3 ISCA CGH+SNP Microarray Kit, 4x180K 115234 CGH features.2440 CGH replicate probes, 59647 SNP features reference mapping: caucasian female human reference DNA

Good Cell Culture Practice Collaboration Coecke et al. (2005), secretariat: David Pamies

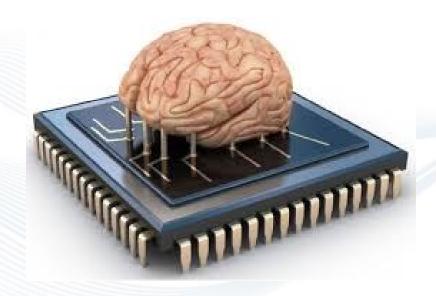
Workshops

Jun, Baltimore

Dec, Konstanz

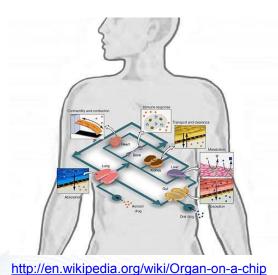
FOR ALTERNATIVES TO ANIMAL TESTING Advancing Public Health and Animal Welfare

CONSTRUCTION



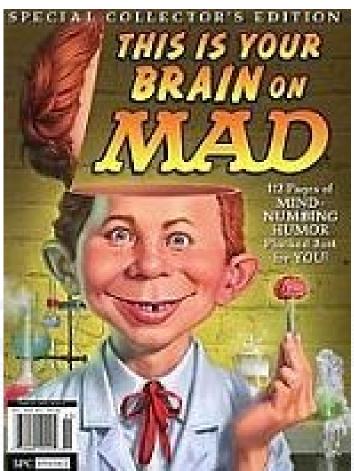
4th frontier

Creating organo-typic cell cultures & organs on chip

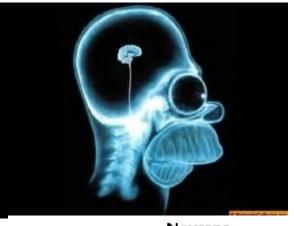


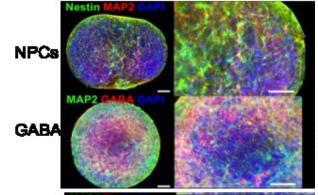
21st century toxicology starts with 21st century cell culture

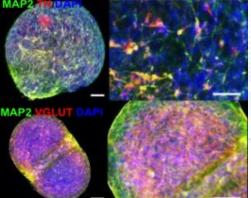
Stem cells & Organo-typic culture & High-content



Our mini-brain project

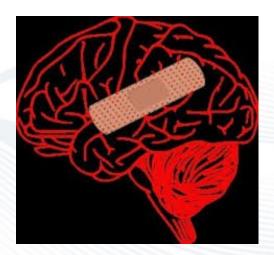






Dopamin

Glutamin


Summary Human "mini-brain" developing from iPSC

- All cell types but micro-glia
- 350um diameter
- 800 per batch
- Reproducible
- Electrophysiological active
- From patient cells: gene/environment interactions

Opportunities for human minibrain research

- Map the neurotoxic chemical universe
- Characterization of medical countermeasures
- Neurotoxic and DNToxic side effects
- Brain trauma, infectious disease and neurodegenerative disease research
- Individual susceptibility using patient iPSC – genetic risk factors
- Long-term culture and co-culture with other organs

5th frontier

Embracing other new technologies and approaches

Today

Future

Cell Culture

(one cell type, few parameters)

Organo-typic Cell Culture

(Coculture, Organ function, often Perfusion)

Human-on-chip

(Multi-Organ Models With Microfluidics)

Cell Culture

+ Omics or Image Analysis (high-content)

Automated Cell

Culture (highthroughput Screening)

Toxicity Mechanisms

("Adverse Outcome Pathways", "Human Toxome")

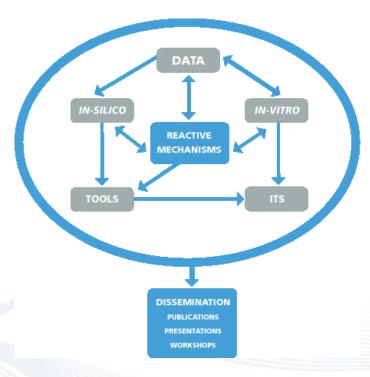
Structure / Activity-Relationships

(Correlations)

Universität Konstanz

Integrated Test Strategies (combined tests)

Modeling


(Receptor binding, Virtual Organs, Kinetics)

Integrated Testing Strategies

- Many PoT = many tests
- Need for data integration
- Use of multiple information, not stand-alone replacement
- > OECD: Integrated Approaches to Testing and Assessment (IATA)
 - = ITS + kinetics + exposure + RA

Toxicology will make more use of The Future **Integrated Testing Strategies**

Food for Thought ... Integrated Testing Strategies for Safety Assessments

Thomas Hartung ^{1,2}, Tom Luechtefeld ¹, Alexandra Maertens ¹, and Andre Kleensang ¹

¹Johns Hopkins University, Bloomberg School of Public Health, CAAT, Baltimore, USA; ²University of Konstanz, CAAT-Europe, Germany

t⁴ Workshop Report*

Integrated Testing Strategies (ITS) for Safety Assessment

Costanza Rovida¹, Nathalie Alépée², Anne M. Api³, David A. Basketter⁴, Frédéric Y. Bois⁵, Francesca Caloni⁶, Emanuela Corsini⁷, Mardas Daneshian¹, Chantra Eskes⁸, Janine Ezendam⁹, Horst Fuchs¹⁰, Patrick Hayden¹¹, Christa Hegele-Hartung¹², Sebastian Hoffmann¹³, Bruno Hubesch¹⁴, Miriam N. Jacobs¹⁵, Joanna Jaworska¹⁶, André Kleensang²⁰, Nicole Kleinstreuer¹⁷, Jon Lalko³, Robert Landsiedel¹⁸, Frédéric Lebreux¹⁹, Thomas Luechtefeld²⁰, Monica Locatelli²¹, Annette Mehling¹⁸, Andreas Natsch²², Jonathan W. Pitchford²³, Donald Prater²⁴, Pilar Prieto²⁵, Andreas Schepky²⁶, Gerrit Schüürmann^{27,28}, Lena Smirnova²⁰, Colleen Toole²⁹, Erwin van Vliet³⁰, Dirk Weisensee¹⁰ and Thomas Hartung^{1,20}

Applied **Toxicology**

Research Article

Received: 9 February 2015,

Revised: 6 April 2015,

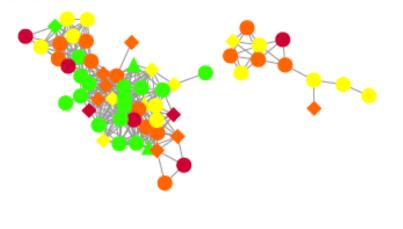
Accepted: 13 April 2015

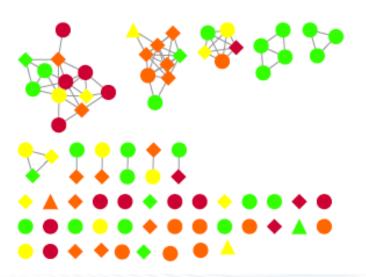
Published online in Wiley Online Library

(wileyonlinelibrary.com) DOI 10.1002/jat.3172

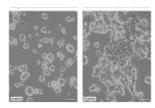
Probabilistic hazard assessment for skin sensitization potency by dose-response modeling using feature elimination instead of quantitative structure-activity relationships

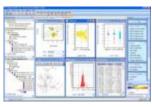
Thomas Luechtefeld^{a†}, Alexandra Maertens^{a†}, James M. McKim^b, Thomas Hartung^{a,c}*, Andre Kleensang^a and Vanessa Sá-Rocha^{a,d}

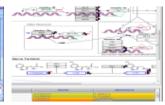




Chemical similarity map (Tanimoto index)


- Structure alone does not suffice
- Feature elimination as good or better than QSAR
- Supervised machine learning optimizes ITS for skin sensitization potency
- **Hidden Markov Chain reduces** extreme misclassification
- Accuracy 60-70%, off-by-one-class >90% standing cross-validation





In vitro model

omics data generation

Software tools

Pathways of Toxicity

Validation tools

Human Toxome Database

Mapping the Human Toxome by Systems Toxicology

Review Article

Received: 5 November 2012.

Revised: 10 February 2013,

Accepted: 11 February 2013

Published online in Wiley Online Library

(wileyonlinelibrary.com) DOI 10.1002/jat.2874

Review: Toxicometabolomics

Mounir Bouhifd[†], Thomas Hartung*[†], Helena T. Hogberg[†], Andre Kleensang[†] and Liang Zhao[†]

METABOLOMICS 3 WORKSHOPS 2 INFODAYS

Quality Assurance of Metabolomics

Mounir Bouhifd, Richard Beger, Thomas Flynn, Lin Guo, Georgina Harris, Helena Hogberg, Rima Kaddurah-Daouk, Hennicke Kamp, Andre Kleensang, Alexandra Maertens, Shelly Odwin-DaCosta, David Pamies, Donald Robertson, Lena Smirnova, Jinchun Sun, Liang Zhao, and Thomas Hartung

International expansion?

Home

News

Briefing

Events

Service Providers

Jobs

EUToxRisk21 to start this autumn

Project aims to put mechanistic-based alternative toxicity testing in a regulatory context

17 June 2015 / Europe, Risk assessment, Test/non test methods

30.05.2012 - What is the Human Toxome Project? It's a wide-reaching programme aimed at helping us to reconsider how hazard/risk assessment has been performed over the last 50 years on marketed substances like chemicals, cosmetic products, pharmaceuticals, pesticides, biocides and feedstuffs.

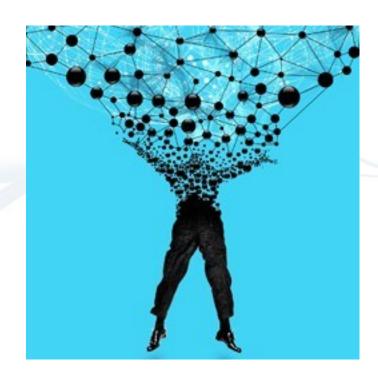
It's necessary because most of the scientific community now accepts that animal models for testing the safety of these products have more limitations than advantages. In basic terms, the loose genetic homology to humans is no match for modern cell-culture technology, which promises to be much more apt to correctly predict toxic effects in humans. These cell cultures can

ANTISOMA (UK)	1.32 GBP	-14.84
XENETIC BIOSCIENCES (UK)	6.00 GBP	-14.29
PAION (D)	3.18 EUR	-7.29
	IO LIABILITY ASSUMED, DA	TE: 22.06.20
European MedTech F		

2.80 EUR

5.25%

CO.DON (D)



Big data & bioinformatics

Image analysis

Robotised / automated testing

The Human Toxome Project

High thro

ToxCast™

ig Data

Big Sense?

Big Problem!

Systems Toxicology

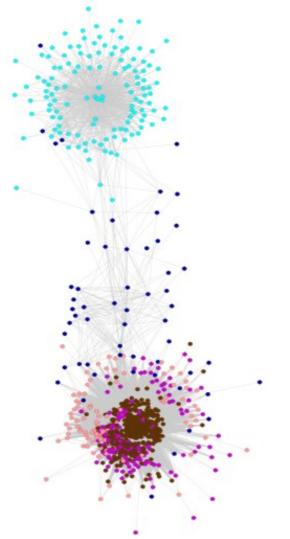


Fig. 1 Network generated by WGCNA, colored by module, using spring-embedded bio-layout based on edge strength

Arch Toxicol DOI 10.1007/s00204-015-1509-6

IN VITRO SYSTEMS

MPTP's Pathway of Toxicity Indicates Central Role of Transcription Factor SP1

Alexandra Maertens1 · Thomas Luechtefeld1 · Andre Kleensang1 · Thomas Hartung^{1,2,3}

Arch Toxicol (2015) 89:809-812 DOI 10.1007/s00204-015-1512-y

GUEST EDITORIAL

Developing tools for defining and establishing pathways of toxicity

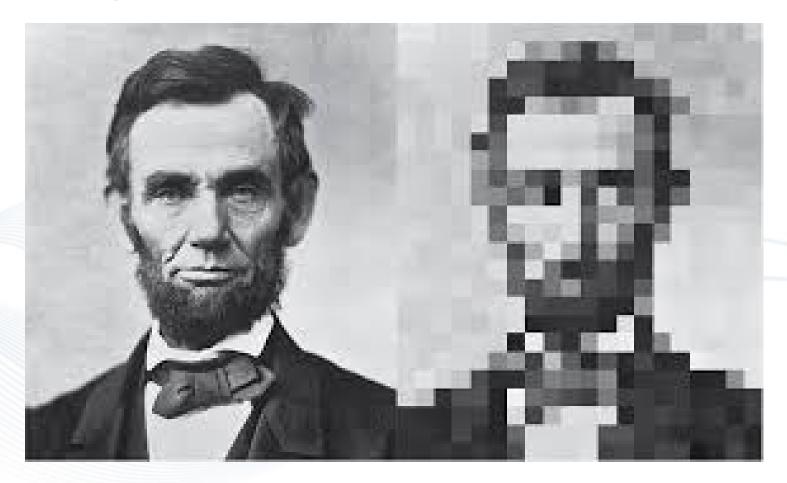
Melvin E. Andersen¹ · Patrick D. McMullen¹ · Daniel Krewski^{2,3}

Arch Toxicol DOI 10.1007/s00204-015-1497-6

GUEST EDITORIAL

From smoking guns to footprints: mining for critical events of toxicity pathways in transcriptome data

Jörg Rahnenführer · Marcel Leist



You don't need perfect resolution to recognize something important

Handling evidence differently

2006-7: Publication / 1st conference

Mar 2011: US EBTC

Oct 2011: Secretariat at CAAT

www.ebtox.com

Jan 2012: First conference hosted by EPA

Jun 2012: EU EBTC

Diverse working groups

Jul 2013: IUTOX, Seoul, Korea

Sep 2013: EuroTox, Interlaken, Switzerland

Systematic reviews increasingly embraced

by EPA/IRIS, NTP and EFSA

Nov 2014: Forum Systematic Reviews

Feb 2015: FDA Training

1st International Forum towards Evidence-Based Toxicology (EBT) October 15-18, 2007, Como, Italy

New organization in progress:

- Board of directors
- Scientific Advisory Council
- Secretariat / administration

New BoD Members

- Jack Fowle, retired, EPA (Pres)
- Jim Freeman, ExxonMobil
- Ian Kimber, U. of Manchester
- Rob de Vries, SYRCLE (VP)

- Nancy Beck, ACC
- Thomas Hartung, Hopkins
- Thomas Singer, Hoffmann-LaR.
- Andrew Rooney, NTP/OHAT

Ex officio, non-voting:

Katya Tsaouin (director), Sebastian Hoffmann & Martin Stephens

Systematic review & related approaches: Gaining acceptance in toxicology

Feb. '15 Workshop

Pragmatism - Getting the rubber on the ground

GREEN TOXICOLOGY

Giving screening the green light

By working with toxicologists while they're designing new compounds, chemists can avoid problems further down the chain, as Emma Davies reports

Green Toxicology Collaboration

- Connecticut, Dec 2012
- Baltimore, Nov 2013
- Zurich, Switzerland23 Oct 2014
- Frankfurt, Mar 2014
- SoT 2015, San Diego
- EUROTOX Sep 2016, Istanbul
- TRAINING !!!

Read-across Collaboration

ALTEX 2014, 31:387-396

Food for Thought ... Read-Across Approaches – Misconceptions, Promises and Challenges Ahead

Grace Patlewicz¹, Nicholas Ball², Richard A. Becker³, Ewan D. Booth⁴, Mark T. D. Cronin⁵, Dinant Kroese⁶, David Steup⁷, Ben van Ravenzwaay⁸ and Thomas Hartung^{9*}

International Steering Group & Whitepaper Workshop in Baltimore Oct 8-9, 2015 "Good Read-across Practice" Stakeholder Fora Brussels & Washington early 2016

Managing the trans-Atlantic divide

Top-down development of new toxicological tools

Tox-21c

3Rs

Bottom-up support to alternative methods and legislative pressure

Scientific American 2005

CONIGLI

Ridurre la sperimentazione sugli animali si può. Con il vantaggio di far diventare PIÙ RIGOROSI I TEST SULLA SICUREZZA DEI PRODOTTI

- Less animals
- Human relevance
- Faster and cheaper results
- Refinement
- Information, Grants
- Think tank
- New tools, quality control
- EU branch, policy program
- Stakeholder consensus

Universität Konstanz

Funding from industry, philanthropy and research funding agencies

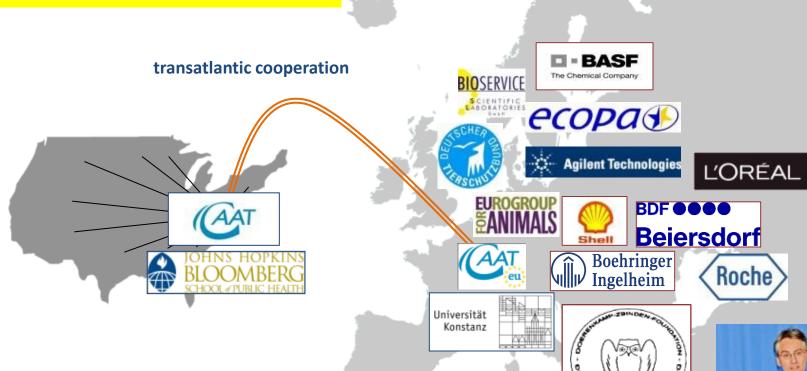
Agilent Technologies

U NOVARTIS

The Bernice Barbour **Foundation**

...and individuals

ins University. All Rights Reserved.



CAAT-Europe 2010

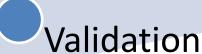
EU Policy program 2012



Challenge and opportunity of TTIP for harmonization of regulation

10th frontier

In a global market, no new method will be used until the last important region accepts it.



Toward humane science

CAAT

In vitro testing

Russell and

ECVAM

Burch

Tox-21c

Yes, we can! Let's do it!

"There is a destination

but no way:

what we call 'The Way',

is our hesitation."

Franz Kafka

