

Regulatory impact assessment using socio- economic analysis

EFSA second scientific conference,
Milan, 14-16 October, 2015.

Tomas Öberg
Chairman of the Committee
for Socio-Economic Analysis
European Chemicals Agency

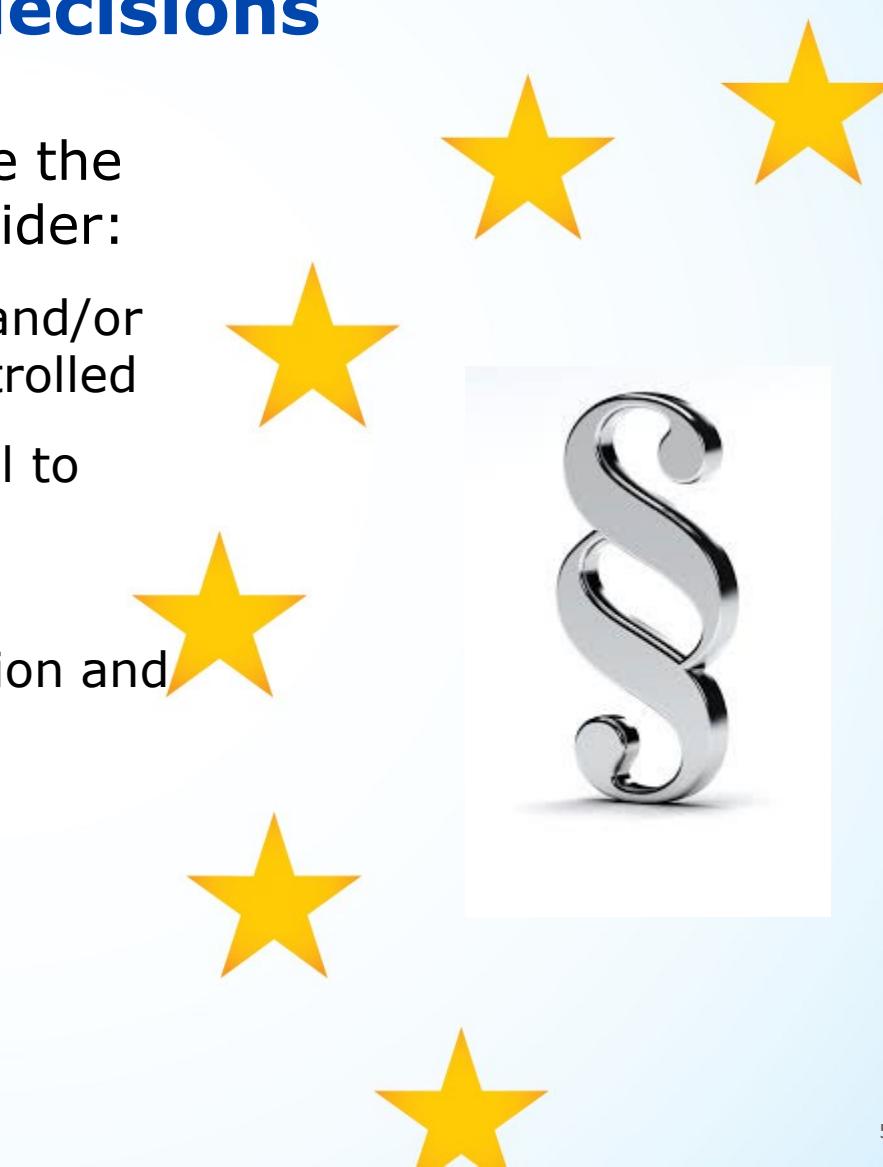
Impact assessment

- ❑ Regulatory impact analysis since 1980s (EC impact assessment system 2003)
- ❑ Socio-economic analysis (SEA) is a tool to assess impacts:
 - ✓ What are the benefits of a regulatory action?
 - ✓ What are the corresponding costs?
 - ✓ How do benefits and costs compare?

REACH*

- ❑ REACH = Regulatory framework for the safe management of chemicals
- ❑ Objectives of REACH:
 - ✓ Protect human health and the environment
 - ✓ Promote alternatives to animal testing
 - ✓ Ensure functioning of the internal market
 - ✓ Enhance competitiveness and innovation

* Regulation (EC) No 1907/2006 of the European Parliament and of the Council of 18 December 2006 concerning the Registration, Evaluation, Authorisation and Restriction of Chemicals (REACH)


Two REACH processes where socio-economic analysis is instrumental

- Authorisation
 - ✓ after a given date uses of a substance are banned unless specifically authorised
- Restriction
 - ✓ full ban of a substance or
 - ✓ ban of specified uses and/or
 - ✓ condition on the specified uses

Basis for regulatory decisions

- Decision to restrict/authorise the use of substances shall consider:
 - ✓ Whether risk to human health and/or environment is adequately controlled
 - ✓ Appropriateness of the proposal to reduce/control the risk
 - ✓ Socio-economic impact of the proposed restriction/authorisation and availability of alternatives
 - ✓ In authorisations: a driver for substitution of SVHC

Socio-economic analysis (SEA) – I.

Principles of SEA:

- ✓ input for regulatory decision making
- ✓ always case-specific
- ✓ relates to the risk assessment

Actors (in REACH):

- ✓ Dossier submitters and applicants prepare the SEA
- ✓ The Committee for Socio-economic Analysis (SEAC) reviews the SEA

Where does SEA feed in?

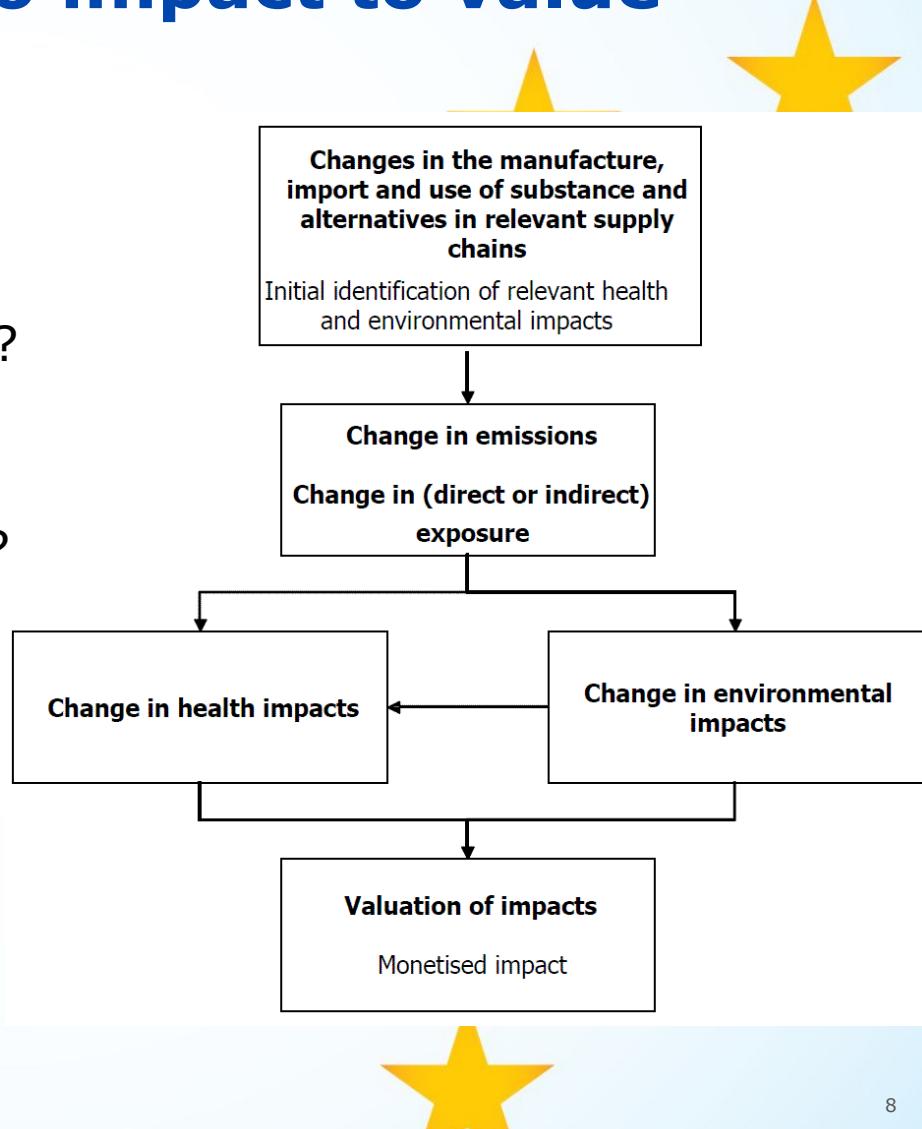
- ✓ Restriction proposals
- ✓ Applications for authorisation

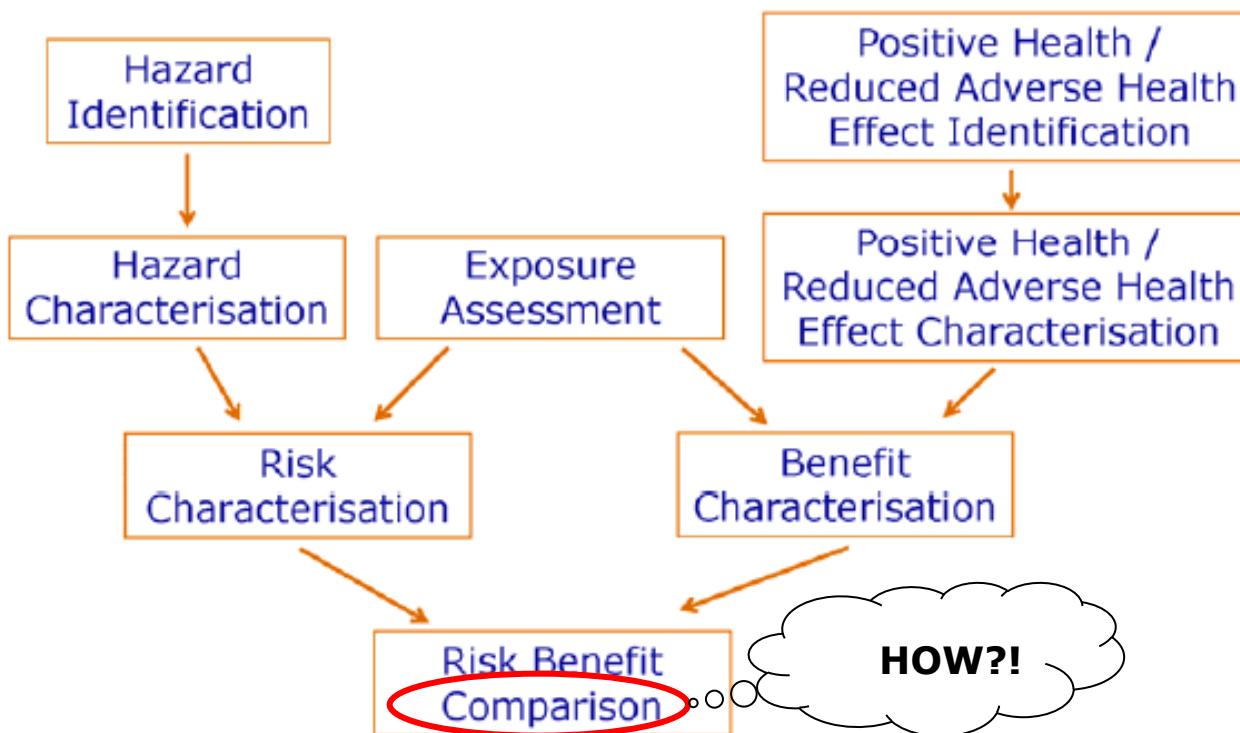
Socio-economic analysis (SEA) – II.

❑ Aims and scope:

- ✓ Compare different impacts qualitatively or quantitatively (in money terms)
- ✓ Compare distribution of impacts
- ✓ Conduct uncertainty analysis

❑ Types of impact:


- ✓ Human health and environmental impacts
- ✓ Economic impacts
- ✓ Social impacts
- ✓ Trade, competition and economic development impacts


From hazard to risk to impact to value

❑ Four basic steps:

1. Hazard assessment: is there a potential for an adverse health and or environmental outcome?
2. Risk assessment: who/what would be negatively affected from the use of this substance?
3. Impact assessment: what are the expected impacts on health, environment & society?
4. Valuation: what values does society attach to the different impacts?

Comparison with EFSA's risk-benefit assessment paradigm

Figure 1: The risk-benefit assessment paradigm, as recommended by the EFSA Scientific Committee and based on the discussions of the EFSA scientific colloquium on risk-benefit analysis of foods⁴.

Key difference: valuing impacts

- SEA under REACH seeks to value impacts whenever possible
- Tangible impacts monetised based on market prices
- Intangible impacts monetised based on the concept of WTP: how much is society willing to spend on reducing/avoiding a specific impact?
- Impacts that occur in the future are discounted to reflect preferences of both current and future generations

Using money as common denominator

❑ Pro's:

- ✓ yields common denominator for balancing different impacts
- ✓ facilitates transparency: figures can be challenged
- ✓ helps spotting inequity in the distribution of risk

❑ Con's:

- ✓ adds another layer of uncertainty
- ✓ might trigger resistance based on moral grounds
- ✓ reduces “flexibility” for the policymaker

Example: chromium in leather articles

Health impact:

- ✓ chromium allergy cases reduced by ~10,000/y (now 1.58m cases/y in EU)

Benefits (as assessed by SEAC) from:

- ✓ alleviate existing cases: ~€66m/y
- ✓ avoiding new cases: ~€38m/y

Costs to industry:

- ✓ €83-100m/y (DS) composed of higher import prices, production costs, monitoring costs.

Voluntary shift by producers signals moderate industry costs

Example: lead and its compounds – I.

- ❑ Targeting at lead-containing consumer products that children could place in their mouth
- ❑ Restriction considered most appropriate EU-wide measure conditional on:
 - ✓ Concentration of lead > 0.05% of weight
 - ✓ Derogation on crystal glass, (semi-) precious stones, enamels, keys & locks,...
 - ✓ Transition period.

Example: lead and its compounds – II.

- ❑ Total costs: €25M/y
- ✓ Substitution cost (~€12M/y),
- ✓ Product redesign & related costs (€4.5M/y)
- ✓ Testing costs (€8.5M/y)

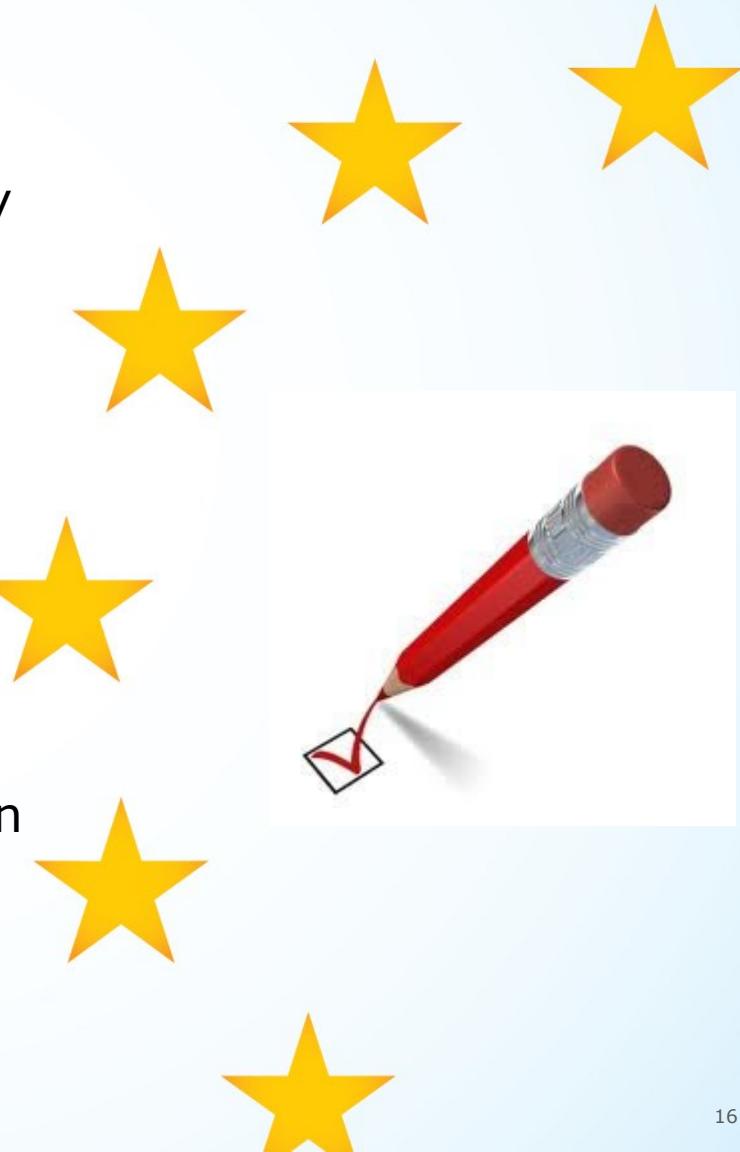
❑ Benefits

- ✓ Cognitive abilities tested with IQ tests
- ✓ SEAC proposed 'break even' approach (accounts only for IQ losses)
- ✓ Costs & benefits balanced if each child in Europe mouthed lead-containing articles (1%) for 4.2 seconds per day

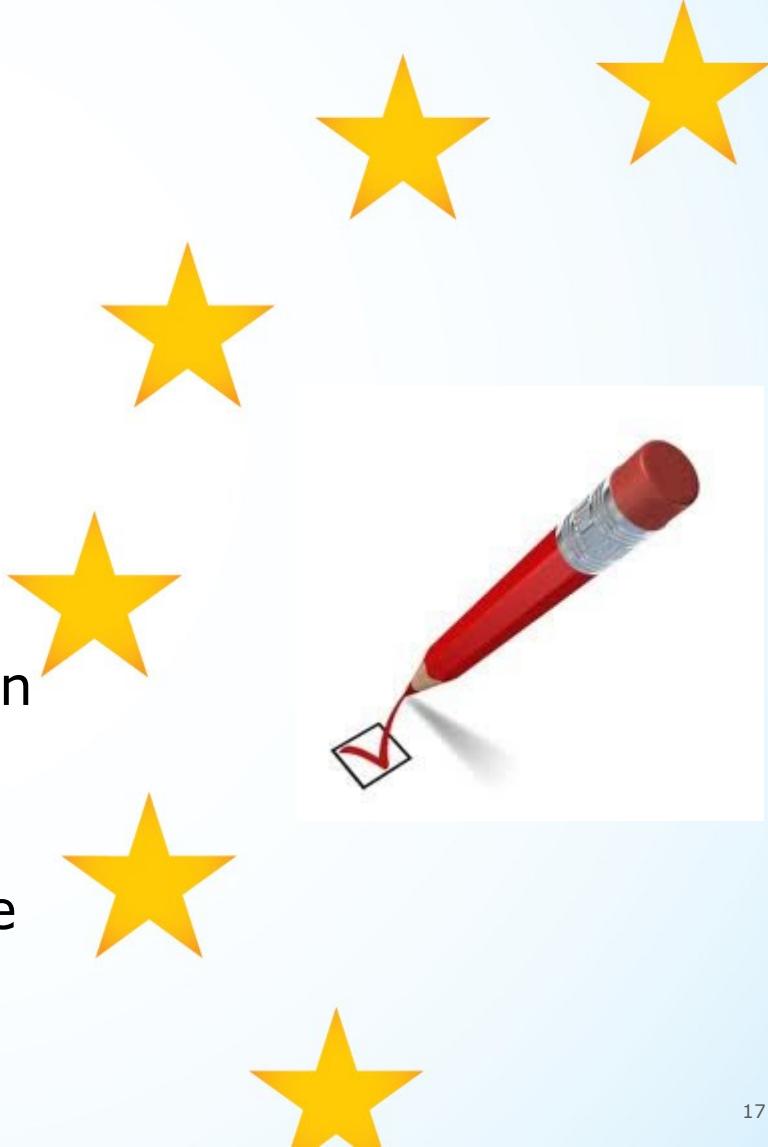
→ Proportional

Example: authorisation cases

- Industry has burden of proof
 - ✓ Direct costs of non-use generally known
 - ✓ Indirect costs to society (unemployment, price increases,...) much less known
 - ✓ Costs of alternative(s) sometimes known
- Difficult cases:
 - ✓ benefits of authorisation outweigh the monetised health impacts,
 - ✓ but also involve large health risks
- Might lead to:
 - ✓ additional risk management measures and monitoring requirements
 - ✓ authorisation with a short review period


Substance EC No	Substance name
215-481-4	Dibarsinic trioxide
204-118-5	Tris(2-chloroethyl) phosphate (TCEP)
202-974-4	4,4'-diaminodiphenylmethane
204-211-0	Bis(2-ethylhexyl) phthalate
201-557-4	Diethyl phthalate (DEP)
201-553-2	Diisobutyl phthalate (DIBP)
204-450-0	2,4-Dinitrotoluene (2,4-DNT)
201-329-4	5-tert-butyl-2,4,6-trinitro-m-xylene (Mysk xylene)
201-622-7	Benzyl butyl phthalate (BBN)
215-116-9	Dibarsinic pentoxide
231-846-0	Lead chromate
235-759-9	Lead chromate molybdate sulfate red
215-693-7	Lead sulfochromate yellow
247-148-4, 221-695-9	Heptabromocyclododecane (HBCDD) and major diastereoisomers
215-607-8	Chromium trioxide
231-906-6	Potassium dichromate
232-143-1	Ammonium dichromate
231-801-5, 236-881-5	Acids generated from chromium trioxide and their oligomers
231-589-4	Cobalt dichloride
208-169-4	Cobalt(II) carbonate
200-755-8	Cobalt(II) dicarbonate
233-402-1	Cobalt(II) dinitrate
233-334-2	Cobalt(II) sulphate
232-140-5	Potassium chromate
231-889-5	Sodium chromate
234-190-3	Sodium dichromate
201-167-4	Trichloroethylene
204-826-4	N,N-Dimethylacetamide (DCAM)
203-924-4	Bis(2-methoxyethyl) ether (Diglyme)
203-458-1	1,2-dichloroethane (EDL)
500-036-1	Formaldehyde, oligomeric reaction products with aniline (technical MDA)
232-142-6	Strontium chromate
202-918-9	2,2,1-dichloro-4,4'-methylenedianiline (MOCA)
231-901-9	Arsenic acid
234-329-8	Potassium hydroxytaurodizincatedichromate
246-356-2	Dichromium tri(chromate)
256-418-0	Pentazinc chromate octahydrate

	Included in Annex XIV
	Recommended for Annex XIV Inclusion 3rd round, Dec 20th 2011
	Recommended for Annex XIV Inclusion 4th round, Jun 20th 2012


Specific considerations

- ❑ Industry usually have relevant information about costs and feasibility of alternatives
- ❑ Asymmetric information: when preparing (assessing) restriction dossiers MS/ECHA rely on industry information
- ❑ Benefits generally difficult to quantify due to externalities and public good characteristics
- ❑ Acceptability of discounting is often an issue
- ❑ Risks of alternatives are less well-known

General conclusions

- ❑ Knowing the risk is not enough
- ❑ Potential harms need to be quantified AND
- ❑ ...compared to all the benefits society gets from using the substance
- ❑ Balancing regulatory impacts requires that they be measured in one common unit
- ❑ Money lends itself as that unit, but other metrics are conceivable as well...

Outlook

- ❑ Socio-economic analysis is challenging.
- ❑ There is room for improvement: SEA methodology to be refined in close collaboration with the scientific community.
- ❑ But overall, SEA under REACH works and gives a balanced view on the various impacts of regulatory actions.
- ❑ Would other regulatory areas in the EU also benefit from a scientific view on the impacts?

Thank you

Tomas Öberg
Tomas.ÖBERG@echa.europa.eu

The author is Chairman of the Committee for Socio-economic Analysis at the European Chemicals Agency. The views expressed are solely his own and do not represent a position of the Agency.

Acknowledgement

I like to thank my colleagues Christoph Rheinberger and Jukka Peltola for help in preparing the slides, and Matti Vainio for borrowing some of his .