

Methodology and uncertainty impact on risk ranking of microbiological hazards: present and future

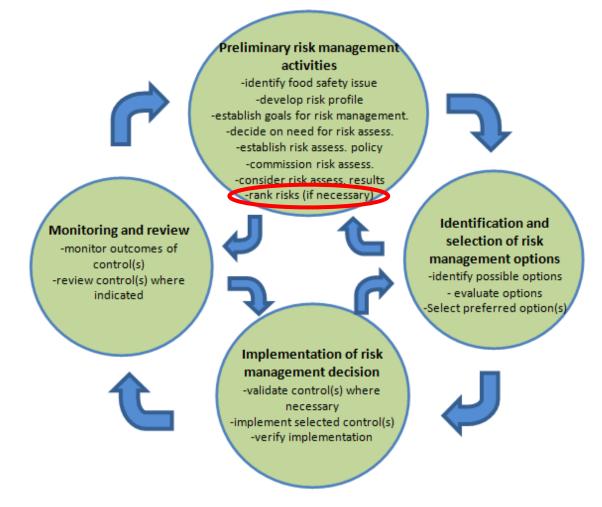
Kostas Koutsoumanis

Aristotle University of Thessaloniki

EFSA Biological Hazards Panel

Outline

- Risk Ranking Background
- EFSA BioHaz Panel work on Risk Ranking
- Risk Ranking Methodology
- Uncertainty in Risk Ranking
- Risk Ranking tools
- Concluding remarks



WHO Generic framework for Risk Management (WHO, 2006)

- In a science-based system, resources for food safety should be deployed in a manner that maximizes the public health benefit achieved through risk reduction.
- ➤ Risk ranking has been recognized as the proper starting point for risk-based priority setting and resource allocation
- Risk Ranking helps policymakers to focus attention on the most significant public health problems and develop strategies for addressing them

Risk Ranking can be considered as a type of Risk Assessment

But.....

In Risk Ranking the objective is to evaluate the "comparative risk"

Example: Risk Ranking of Foods A, B, C

Risk Ranking can be considered as a type of Risk Assessment

But.....

In Risk Ranking the objective is to evaluate the "comparative risk"

The above difference allows for application of alternative approaches that those used in Risk Assessment

Consistency

Transparency

Risk Ranking by EFSA

EFSA Journal 2012;10(6):2724

SCIENTIFIC OPINION

Scientific Opinion on the development of a risk ranking framework on biological hazards¹

EFSA Panel on Biological Hazards (BIOHAZ)²³

EFSA Journal 2015;13(1):3939

SCIENTIFIC OPINION

Scientific Opinion on the development of a risk ranking toolbox for the EFSA BIOHAZ Panel¹

EFSA Panel on Biological Hazards^{2,3}

Risk Ranking Framework

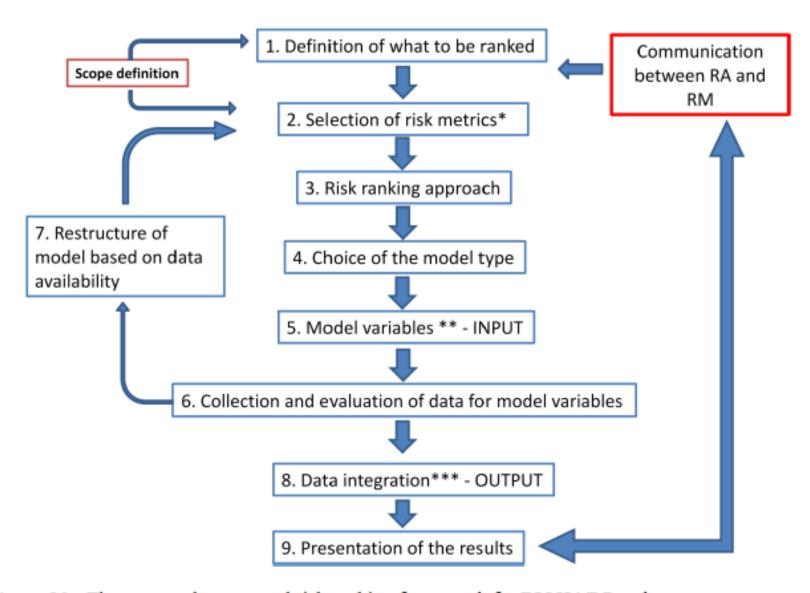


Figure 10: The proposed conceptual risk ranking framework for BIOHAZ Panel

Definition of what to be ranked

Three general levels on hazard-food combinations:

- Level 1: Single hazard in multiple food products (ranking of foods)
- Level 2: Multiple hazards in a single food product (ranking of hazards)
- ➤ Level 3: Multiple hazards in multiple food products (combined ranking of hazards and foods)
- Other (geographical, mitigation strategies, etc)

Selection of Risk Metrics

Different ways of expressing risk in a risk ranking process

Simplest metric is number of adverse outcomes (e.g. illnesses, hospitalizations, and deaths)

Adverse outcome (illness) likelihood "per serving" the risk that individual consumers face when they eat a serving of a food

Adverse outcome (illness) "per annum" measure of the risk faced by a certain population (e.g. a country)

Do not take into account severity and should be used only in the level of single pathogen in multiple foods

Selection of Risk Metrics

In case of ranking multiple hazards

Challenge: to find metrics to characterize the severity of the health outcomes and compare their overall *health* and/or economic impact.

Summary measures of public health

Disability adjusted life years (DALYs) **Quality-adjusted life years** (QALYs) **Health-adjusted life years** (HALYs)

Monetary risk metrics (cost of illness)

Selection of Risk Metrics

Can significantly affect risk ranking output

Product	Mean probability of illness	Ranking	
	per day per consumer of interest		
Smoked seafood	9.6E-08	2	
Soft ripened cheese	2.1E-11	4	
Pasteurised milk	2.7E-08	3	
Frankfurters (reheated)	8.8E-12	5	
Deli meats	1.1E-07	1	
Product	Total predicted illnesses/annum	Ranking	
	in population of interest		
Smoked seafood	4	3	
Soft ripened cheese	0.004	5	
Pasteurised milk	500	1	
Frankfurters (reheated)	0.005	4	
Deli meats	307	2	
Product	DALYs	Ranking	
Smoked seafood	2.4	3	
Soft ripened cheese	0.002	5	
Pasteurised milk	300	1	
Frankfurters (reheated)	0.003	4	
Deli meats	184	2	

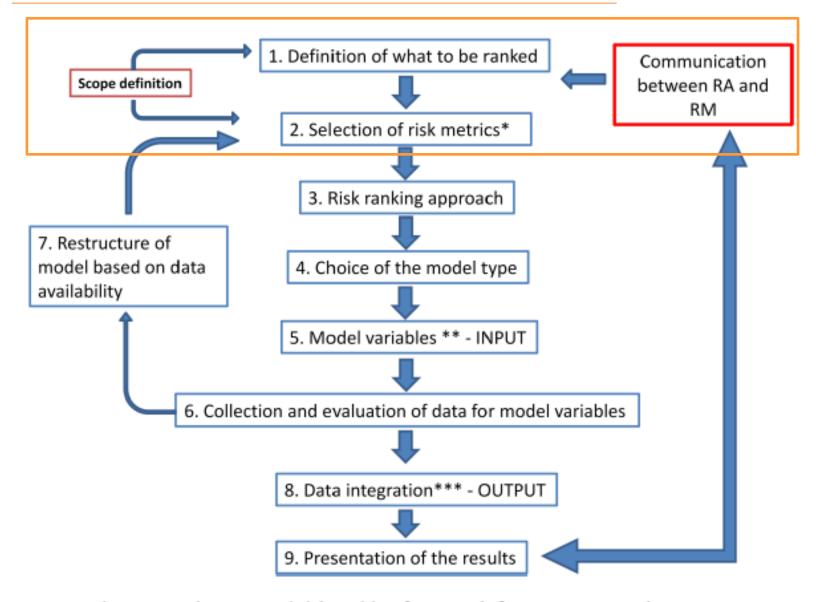


Figure 10: The proposed conceptual risk ranking framework for BIOHAZ Panel

Risk Ranking Approach

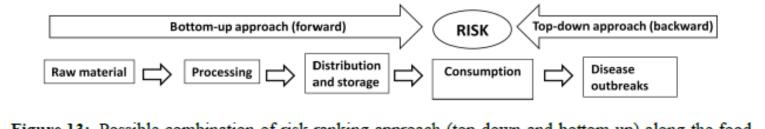


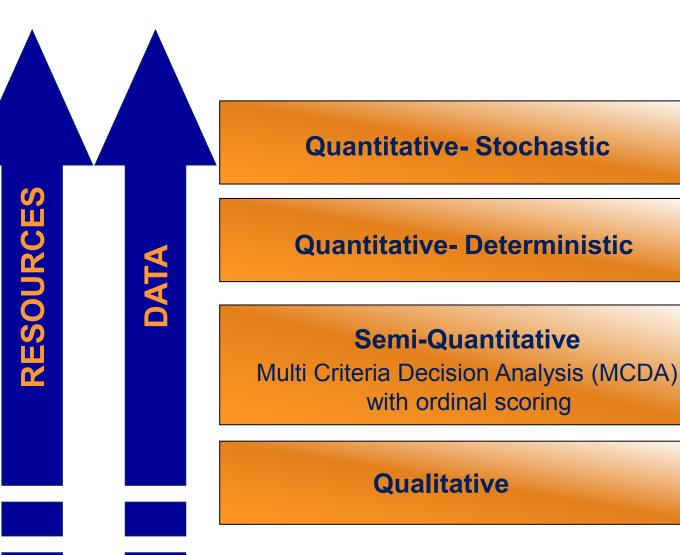
Figure 13: Possible combination of risk ranking approach (top-down and bottom-up) along the food chain.

Trends in Food Science & Technology 33 (2013) 124-138

Viewpoint

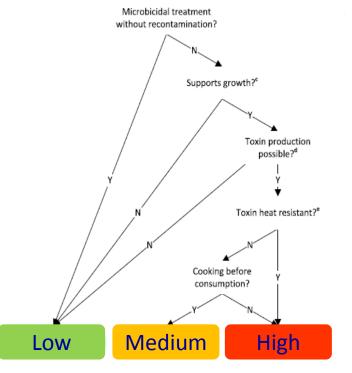
Ranking the microbiological safety of foods: A new tool and its application to composite products

^fColorado State University, Department of Animal Sciences, Fort Collins, CO 80523-1171, USA (e-mail: john.sofos@colostate.edu)

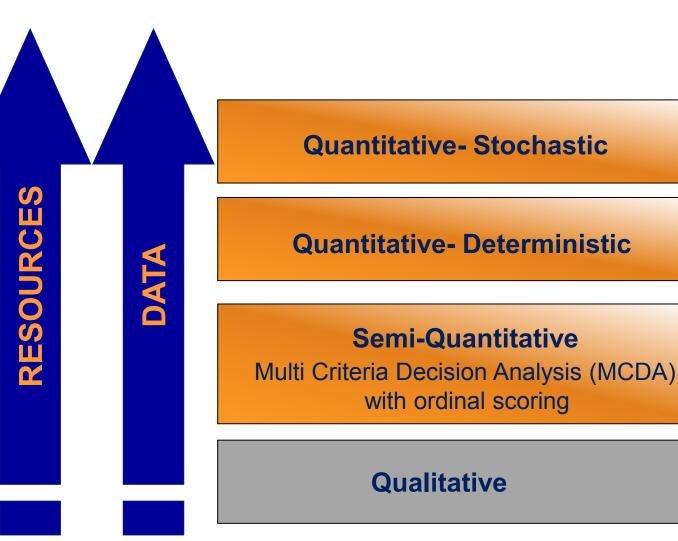

gUniversity of Cordoba, International Campus of Excellence in the AgriFood Sector (ceiA3), Campus de Rabanales s/n Edif. Darwin-C1, 14014 Córdoba, Spain (e-mail: bt2vadia@uco.es)

^hWageningen University, Laboratory of Food Microbiology, PO Box 17, 6700 AA Wageningen, The Netherlands (e-mail: marcel.zwietering@wur.nl)

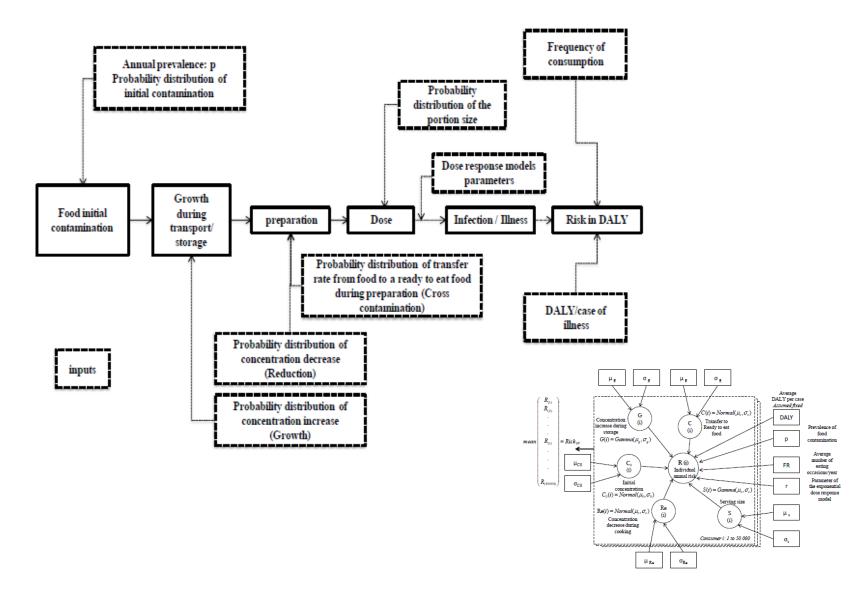
A methodology based on the combination of two comple-


Risk Ranking Model Type/Data integration

Risk Ranking Model Type/Data integration


Qualitative Model/Decision tree

- fewer data and time requirements
- very limited discrimination power for risk ranking
- arbitrary outcome is problematic



Risk Ranking Model Type/Data integration

Generic Risk Assessement model

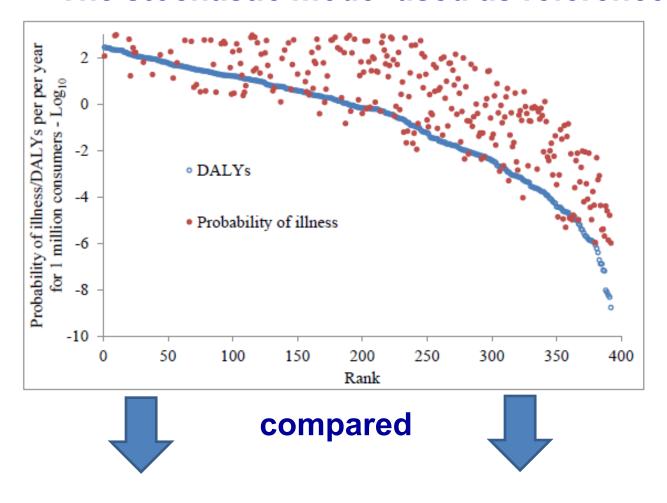
We assumed all information about all parameters affecting risk <u>are perfectly known using virtual data</u>

Variables	Unit	Distribution/formula	Input parameters
Initial concentration (H ₀)	Log ₁₀ CFU/g	Normal	μ ₀ and σ ₀
Portion size	g	Gamma (α,β)	$\mu_s = \alpha \beta$
			$\sigma_s = \beta \sqrt{\alpha}$
Expected CFU per portion (E_0)	CFU/portion	$E_0 = S \times 10^{H_O}$	
Increase during storage $(G)^{(a)}$	Log ₁₀	Gamma (a,b)	$\mu_G = \alpha \beta$
			$\sigma_G = \beta \sqrt{\alpha}$
Expected CFU per portion end of storage (E_S)	CFU/portion	$E_S = E_0 \times 10^G$	
CFU per portion end of storage (X_S)	CFU/portion	Poisson (E _s)	
Log ₁₀ probability of transfer to RTE (C)	Log ₁₀	Normal	μ_c and σ_c
CFU transferred per portion (D ₁)	CFU/portion	Binomial (X ₅ , 10 ^C)	
CFU remaining per portion (Xnc)	CFU/portion	$X_{nc} = X_s - D_1$	
Log ₁₀ probability of survival during cooking	Log ₁₀	Normal	μ_R and σ_R
CFU surviving cooking (D2)	CFU/portion	Binomial (X ₅ , 10 ^R)	
Probability of infection (PInf)		$PInf = 1 - (1 - r)^{(D1 + D2)}$	ſ
Probability of illness (PIII)		$PI11 = PInf \times P(I11 infection)$	P(III infection)
Average probability of illness		Arithmetic mean of probability	
(APIII) per contaminated serving		Carlo simulation, 50 000 iterati	
Annual probability of illness (API)		$API = P \times APII1 \times FR$	FR: average number of eating occasion per year per person P: prevalence
Annual DALYs per 1E6 consumers		ADALY=API × DALY × 1E6 consumers	DALY per case

DALY: disability-adjusted life years.

(a): Based on relevant predictive modelling.

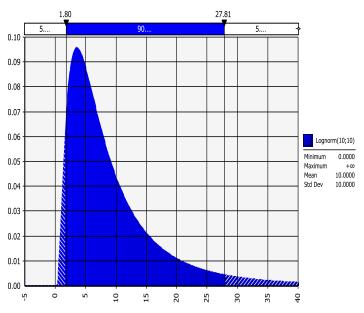
Data Generator for food/hazard combinations


Variables	Unit	Parameters	Ranges of the parameters values	
Initial concentration (H_0)	Log ₁₀ CFU/g	μ_0	-3 to 3	
		σ_0	0.1 to 1.5	
Prevalence		P	. 10 ⁻⁴ to 1	
Portion size	g	μ_{s}	10 to 500	
		σ_{s}	0.1 to 1	
Increase during storage (G)	Log ₁₀	μ _g	0.3 to 3	
		σ_{g}	0.1 to 1.5	
Log ₁₀ probability of transfer to RTE	Log ₁₀	μ _c	−5 to −2	
(C)		σ_{c}	0.1 to 1.5	
Log ₁₀ probability of survival during	Log ₁₀	μ_R	-6 to −3	
cooking		σ_{R}	0.1 to 1.5	
			If RTE product (50 %	
			of the simulated	
			scenario $R = 0$)	
Probability of infection (PInf per CFU)		ſ	- 10 to - 2	
Probability of illness (PIII)		$PI11 = PInf \times P(I11 $	1	
		infection)		
Average number of eating occasions		FR	1 to 365	
per year per person				
DALY per case	Year (log ₁₀)	DALY	-3 to 1	

400 selected food/hazard combinations

DALY: disability-adjusted life years.

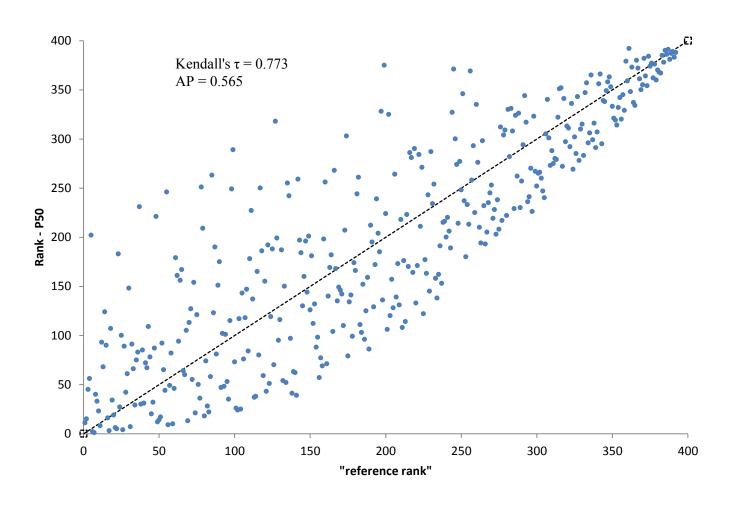
The stochastic model used as reference


deterministic

(MCDA) Ordinal Scoring

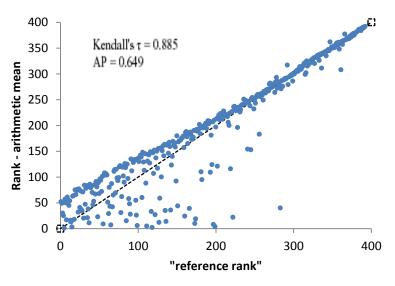
stochastic vs deterministic

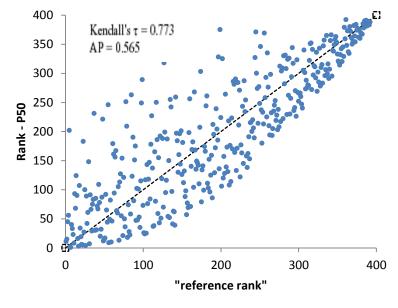
Input Parameter dataset (e.g concentration)

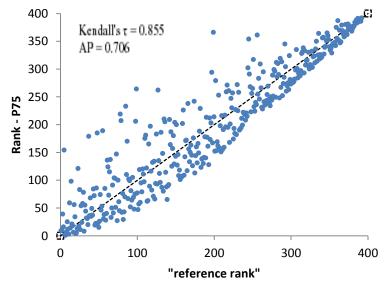


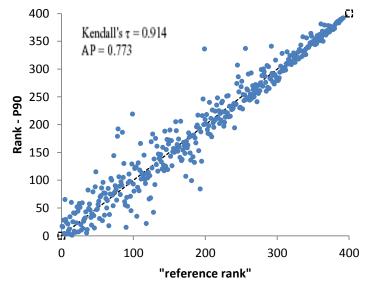
single value options

- arithmetic mean
- median,
 - > 75th percentile,
 - > 90th percentiles

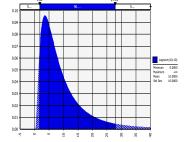



stochastic vs deterministic





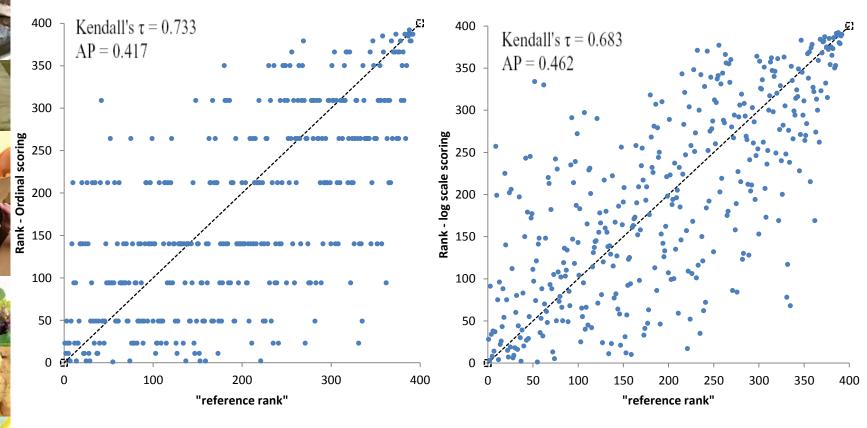
stochastic vs deterministic



stochastic vs MCDA ordinal scoring

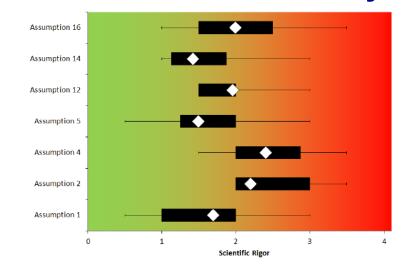
 Table 43:
 Categories and scores defined in the ordinal scoring approach

Innuts	Ding(v)	Ordinal score		I	D:()	Ordinal score	
Inputs	Bins(x)	Linear	Log-scaled	Inputs	Bins(x)	Linear	Log-scaled
Initial	1.0E-03	1	0.000	Prevalence	1.0E-04	1	0.000
concentration	1.0E-02	2	0.200		1.0E-03	2	0.250
(H_0) in CFU/g	1.0E-01	3	0.400		1.0E-02	3	0.500
	1.0E+00	4	0.600		1.0E-01	4	0.750
	1.0E+01	5	0.800		3.0E-01	5	0.869
Portion size in	1.0E+01	1	0.000	Average number of	1.0E+00	1	0.000
grams	3.0E+01	2	0.239	eating occasions per	1.2E+01	2	0.421
	9.0E+01	3	0.477	year per person	5.2E+01	3	0.670
	2.7E+02	4	0.716		1.0E+02	4	0.787
	8.1E+02	5	0.954		2.1E+02	5	0.905
Increase	1.0E+00	1	0.000	Probability of transfer	1.0E-05	1	0.000
during storage				to RTE (C)			
(G)	1.0E+01	2	0.200		1.0E-04	2	0.200
	1.0E+02	3	0.400		1.0E-03	3	0.400
	1.0E+03	4	0.600		1.0E-02	4	0.600
27.81	1.0E+04	5	0.800		1.0E-01	5	0.800



score

stochastic vs MCDA ordinal scoring

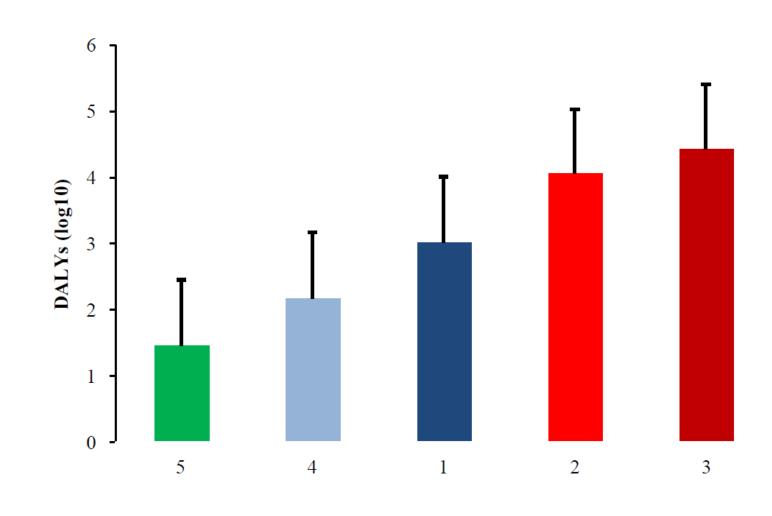


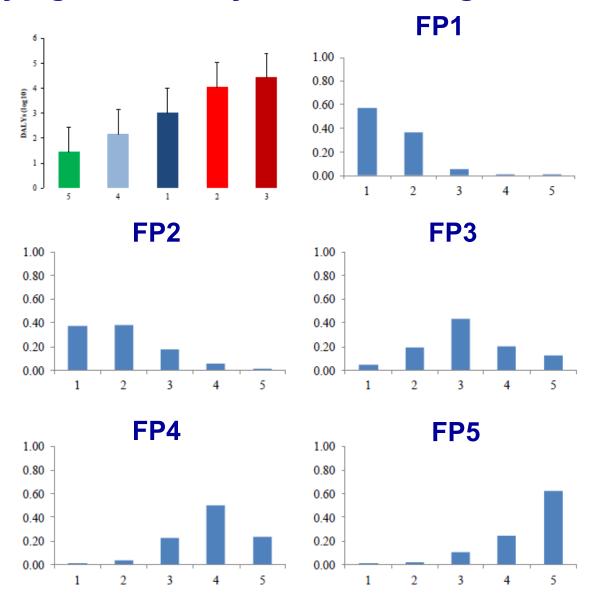
Methodology

1. Identification/characterization of uncertainty sources

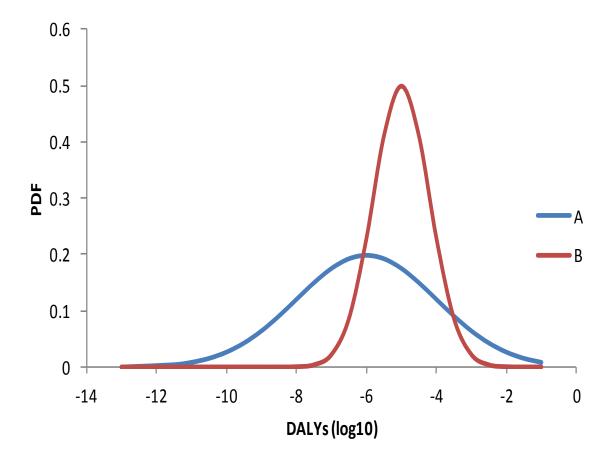
The NUSAP method

2. Selection of major uncertainty sources to be quantified

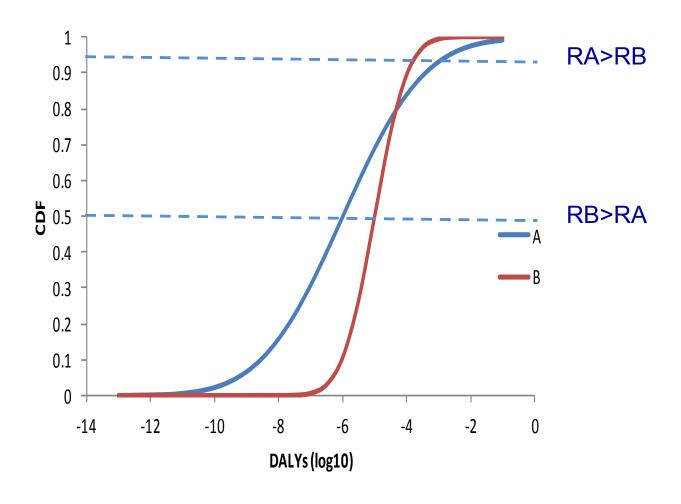


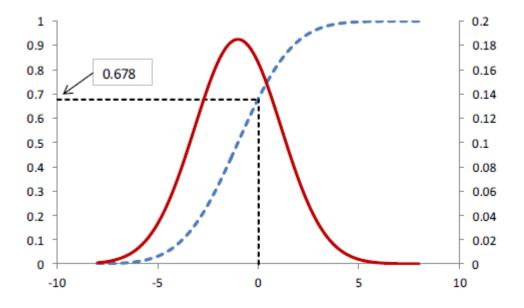

Quantifying uncertainty in risk ranking

Parameters of Model inputs variability distribution		Variability distribution model (first order iteration in Figure 24)	Uncertainty distribution (second order iteration in Figure 24)		
Prevalence	.р	Bernoulli (p)	p ~ beta (a, b)		
Initial concentration in	m_0	Normal (m ₀ ,s ₀)	M ₀ ~ normal (x, y)		
log ₁₀ CFU/g	s ₀		$S_0 \sim \text{gamma}(z, w)$		
Growth potential in	mg	Gamma (mg, sg)	m _g ~ normal (t, u)		
log ₁₀	Sg		s _g ~ gamma (d, f)		
Cross-contamination	m _c	Normal (m _c ,s _c)	mg ~ normal (q, s)		
(log ₁₀ probability of transfer)	Sc		s _g ~ gamma (g, h)		
Portion size	m _s	Gamma (ms, ss)	mg ~ normal (k, 1)		
	Ss		s _g ~ gamma (n, r)		
Potential reduction	m _r	Normal (m _r ,s _r)	m _g ~ normal (i, o)		
	Sr		s _g ~ gamma (p, m)		
Dose-response	ſ	No variability	p ~ beta (a', b')		
DALY	DALY	No variability	DALY ~ gamma (v,e)		
Frequency of consumption	FR	No variability	FR ~ normal (j,k')		


DALY: disability-adjusted life years.

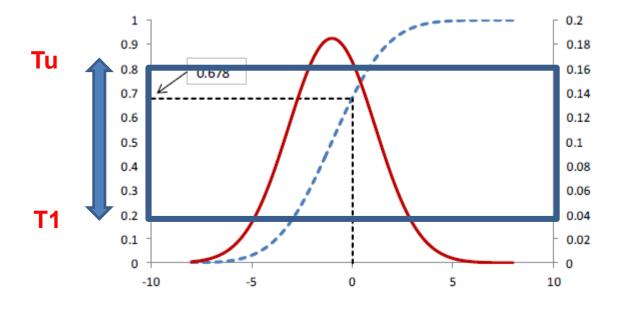
2D Monte Carlo Simulation





Quantifying uncertainty in risk ranking

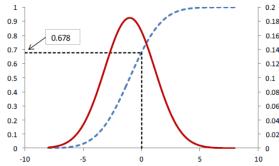
PDF and CDF of the random variable (DA–DB). The probability of DA–DB < 0 is 0.678.


In the presence of Uncertainty When risk-A different than risk-B?

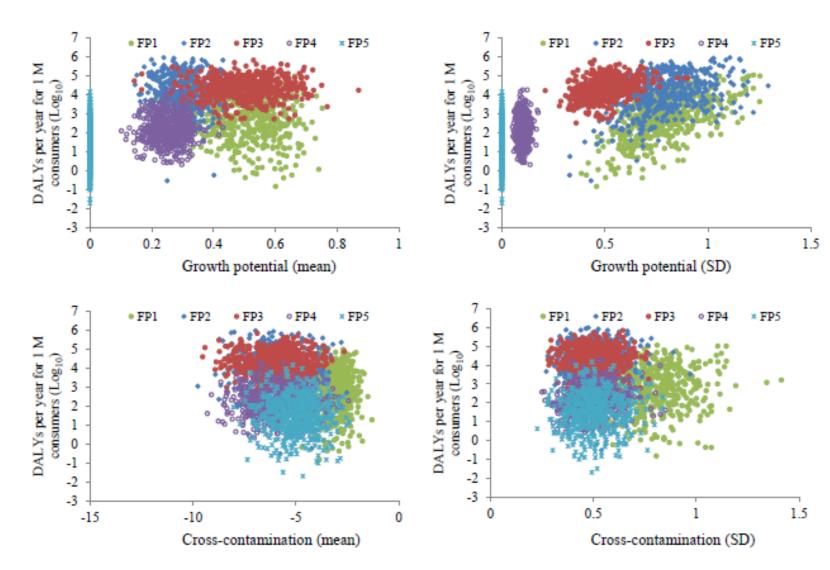
Quantifying uncertainty in risk ranking

Threshold probability range for ranking in the presence of uncertainty:

A risk management decision


- if rAB > Tu, then A is more risky than B;
- if rAB < T1, then B is more risky than A;
- if T1 < rAB < Tu, then A is equally risky to B.

Quantifying uncertainty in risk ranking


Threshold probability range for ranking in the presence of uncertainty:

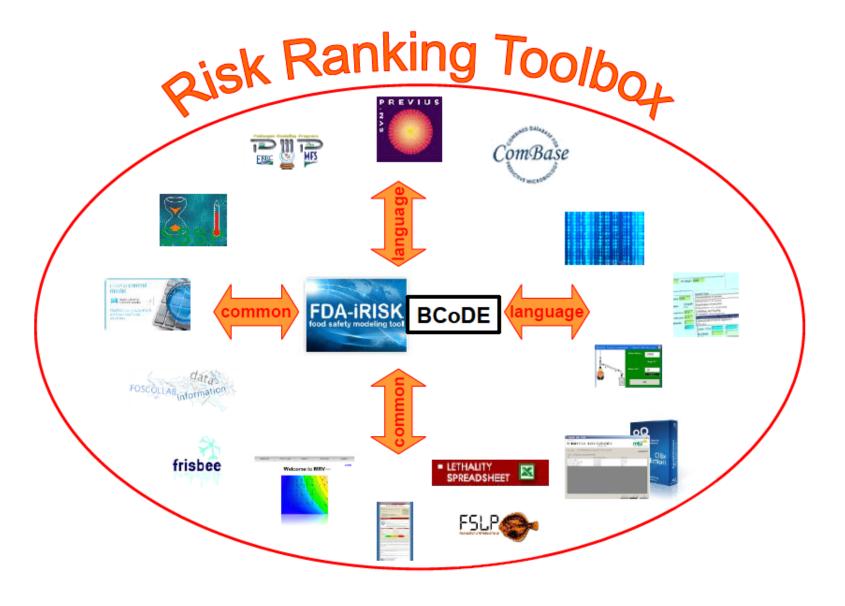
A risk management decision

Table 49: Pairwise comparison using the probability of one food pathogen being ranked higher than the other food—pathogen pairs (rAB)

Rank orders without uncertainty	Median rank (2D Monte Carlo)	FP3	FP2	FP1	FP4	FP5	Final rank (2D Monte Carlo)
4	FP3	-	0.61	0.91	0.99	0.99	FP3, FP2 (1)
1	FP2		_	0.78	0.93	0.96	FP3, FP2 (1)
2	FP1			_	0.72	0.81	FP1 (3)
5	FP4				_	0.70	FP4, FP5 (4)
3	FP5					_	FP4, FP5 (4)

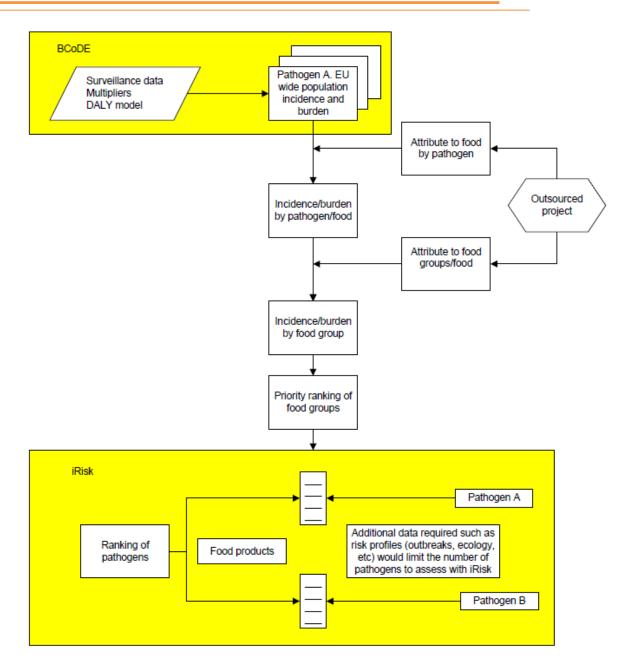
Evaluation of Risk Ranking software tools

Input Data for pathogen/food prevalence, concentration, growth/inactivation, dose response, serving size, consumption


Predicted number of illness cases from food consumption

BCoDE (gender, age group)

DALY's estimate



Evaluation of Risk Ranking software tools

Evaluation of Risk Ranking software tools

Conclusions

- Fully quantitative stochastic models most reliable for risk ranking but need a good characterization of input parameters
- Deterministic models that ignore variability may result in risk ranking errors, which may be greater for the food-pathogen combinations with the highest risk
- In deterministic approaches, the selection of the point estimate used in the model can affect the risk ranking. Among different possible point estimates (arithmetic mean, median, 75th and 90th percentiles), the use of a high percentile provides, in general, ranking results which are most similar to a stochastic model
- Semi-quantitative models with ordinal scoring may lead to food-pathogen combinations classified into broad sets of categories with little discrimination. Considerable differences in risk ranking compared with a quantitative stochastic model. More errors than the deterministic approaches.

Conclusions

- Uncertainty in risk ranking needs to be carefully addressed and communicated to decision makers and stakeholders as one of the outcomes of the risk ranking process
- Uncertainty in rank orders cannot be formally quantified using qualitative or semi-quantitative ranking methods even though these are often applied in situations where data are limited.
- Expert elicitation procedures to incorporate diffuse information into the corresponding probability distributions may be adopted.

Acknowledgements

- Members of the BIOHAZ Panel
- Members of the working groups on risk ranking: Herbert Budka, Alessandro Cassini, Pablo S. Fernández Escámez, Tine Hald, Arie Havelaar, Kostas Koutsoumanis, Roland Lindqvist, Christine Müller-Graf, Moez Sanaa and Ivar Vågsholm
- EFSA Secretariat

Methodology and uncertainty impact on risk ranking of microbiological hazards: present and future

Kostas Koutsoumanis

Aristotle University of Thessaloniki

Thank you