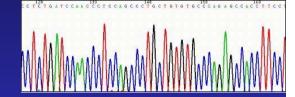

Taxonomic and toxicogenic potential derived from whole genome sequencing (WGS) information

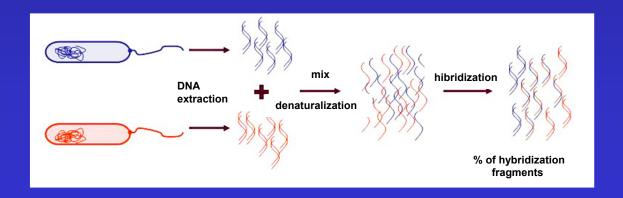
Reus, Spain

OBJECTIVES


➤ To present the strategies to determine the species and strain identity using the genome information

➤ To underline additional information such antibiotic resistance and virulence genes that can be found in the genomes

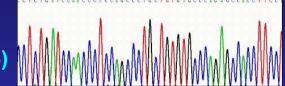
Standard requirements for defining new bacteria species (Stackebrandt et al., 2002)


- 1. As many strains as possible (different numbers proposed i.e. 5, 10, 25)
- 2. Phenotypic characterisation
- 3. Sequences of the 16S rRNA gene (>1300bp, <5% ambiguity)

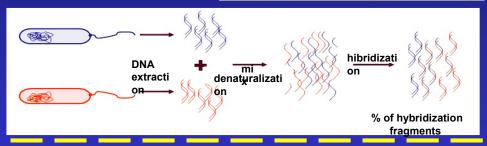
similarity > 97% (Stackebrandt & Goebel 1994)

DNA-DNA hybridization

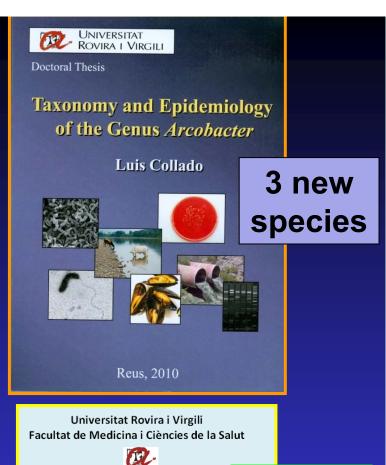
> 70% DNA corresponded to the same species


Genera and species of bacteria in which the 16S rRNA posses a poor resolution for their discrimination

Genus	Species	
Aeromonas	A. veronii, A. caviae, A. trota, A. salmonicida, A. bestiarum 100% sim	ilarity
Bacillus	B. anthracis, B. cereus, B. thuringiensis, B. globisporus, B. psychrophilus	
Bordetella	B. pertussis, B. parapertussis, B. bronchiseptica, B. holmesii	
Brucella	B. melitensis, B. abortus, B. suis y otros	
Burkholderia	B. mallei, B. pseudomallei, B. cocovenenans, B. gladioli, B. thailandensis B. cepacia, B vietnamiensis, B. multivorans, B. stabilis	
Campylobacter	C. jejuni C. coli 100% similarity	
Corynebacterium	C. diphtheriae, C. pseudotuberculosis, C. ulcerans, C. kutscheri. C. afermentans	
Enterobacteriaceae	E. coli, Shigella spp./ E. coli enteroinvasivo (EIEC)	
Streptococcus	S. sinensis , S. gallolyticus, S. infantarius, S. pneumoniae, S. pseudopneumoniae, S. salivarius, S. mutans, S. suis, S. sanguinis, S. cristatus, S. sinensis, S. anginosus,	
Vibrio	S. intermedius, S. constellatus, S. mitis, S. infant VS. harveyt, V. campbe etc	lli

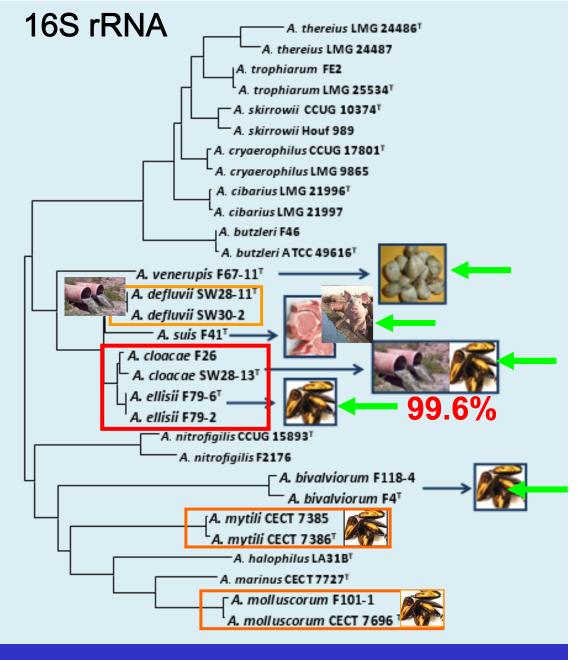

Standard requirements for defining new bacteria species (Stackebrandt et al., 2002)

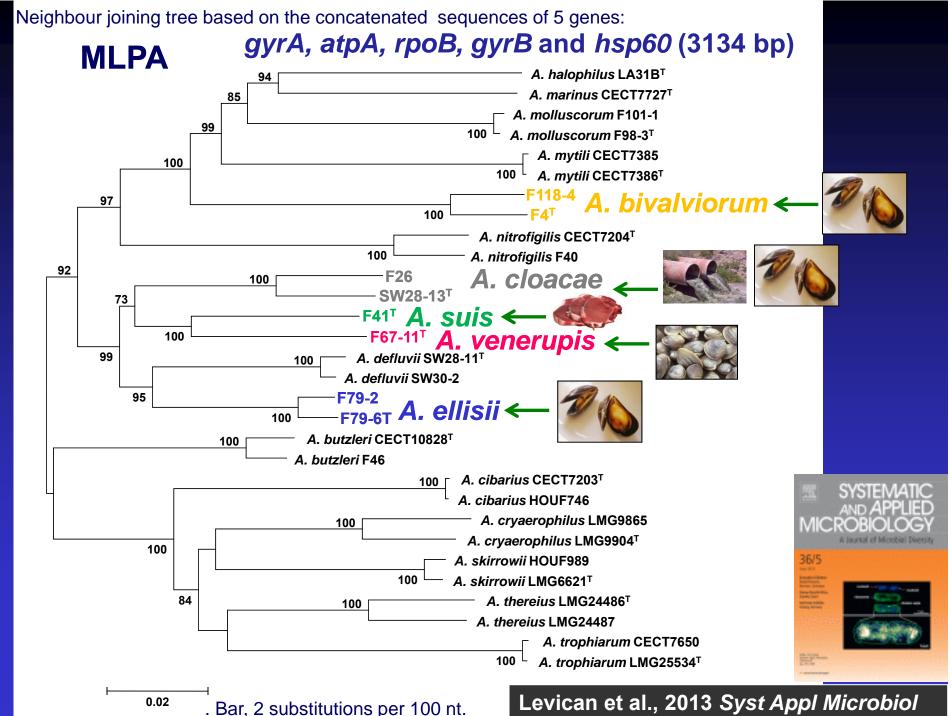
- 1. As many strains as possible (different numbers proposed i.e. 5, 10, 25)
- 2. Phenotypic characterisation
- 3. Sequences of the 16S rRNA gene (>1300bp, <5% ambiguity)

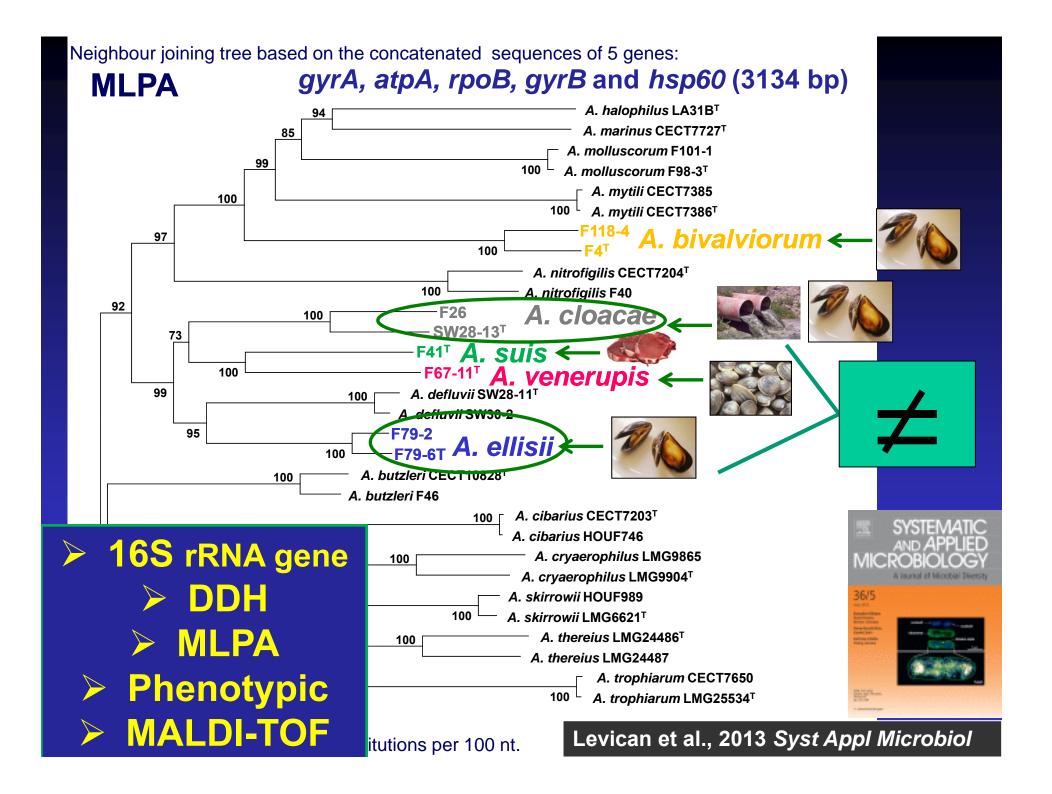

similarity > 97% 98.7-99% (Stackebrandt & Goebel 1994) (Stackebrandt & Ebers 2006)

DNA-DNA hybridization > 70%

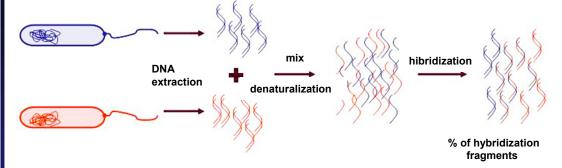
- 5. Multilocus sequence analysis (MLSA) or phylogenetic analysis (MLPA) of a minimum of 5 housekeeping genes
- 6. Genotyping (ERIC-PCR, AFLP..)
- 7. Chemotaxonomic properties (cell wall composition, lipids, fatty acids ...)




Sanitary importance of Arcobacter


5 new species

Arturo Alberto Levican Asenjo **Doctoral Thesis** 2013



1000

DDH

DNA-DNA hybridization (DDH)

60 70 80

20 40 607080 100

isDDH= in silico or digital= dDDH

Precision

The species concept for *Bacteria* and *Archaea* is based on the 16S rRNA gene and on DNA-DNA hybridization (DDH), a method known to be tedious.

The GGDC is in silico method for genome-to-genome comparison, thus reliably mimicking conventional DDH

DDH = digital DDH >70%

.iro https://www.dsmz.de/research/microorganisms/projects/genome-to-genome-distance-calculator.html

×

Website

Search

to product search »

Publications

Microorganisms

Group Geomicrobiology

Curators

Projects

Publications

Scientific Staff

Microbial Ecology and Diversity Research

Human and Animal Cell Lines

Plant Viruses

Central Services

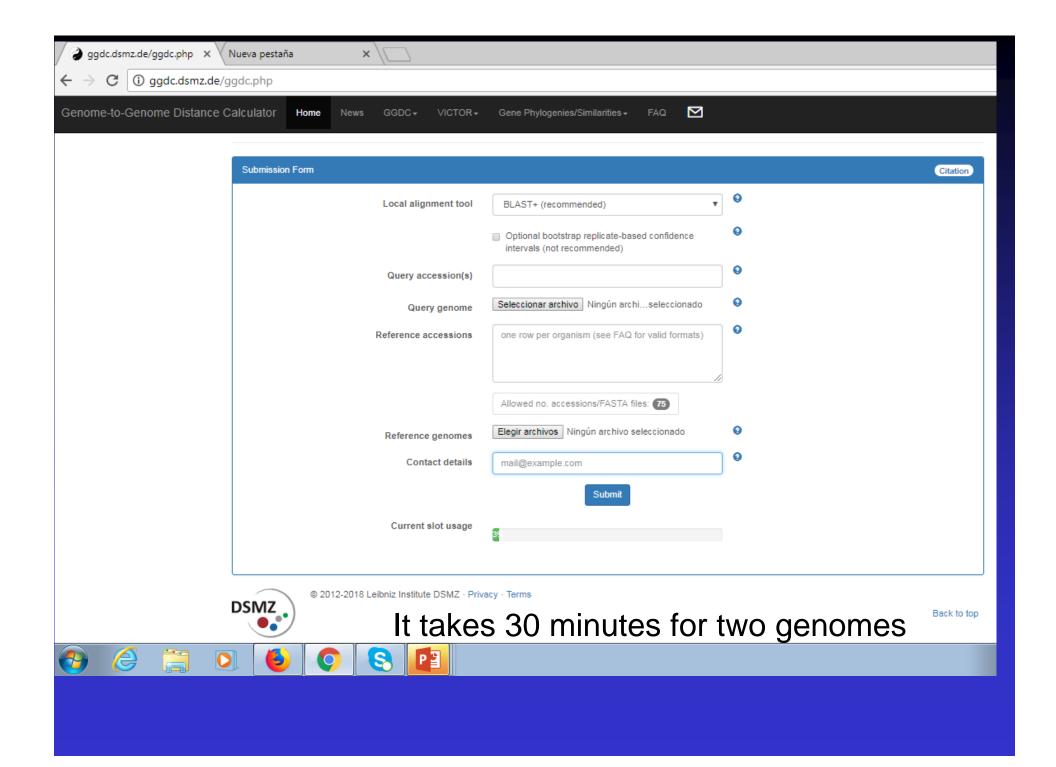
Research > Microorganisms > Projects > Genome-to-genome distance calculator

GGDC: Genome-To-Genome Distance Calculator

The pragmatic species concept for *Bacteria* and *Archaea* is ultimately based on **DNA-DNA hybridization (DDH)**. While enabling the taxonomist, in principle, to obtain an estimate of the overall similarity between the genomes of two strains, this technique is tedious and not easily be made reproducible between different labs and cannot be used to incrementally built up a comparative database. Recent technological progress in the area of genome sequencing calls for bioinformatics methods to replace the wet-lab DDH by in-silico genome-to-genome comparison.

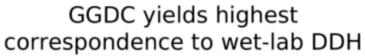
The web service $\underline{\omega}$ hosted at DSMZ offers state-of-the-art methods for inferring whole-genome distances which are well able to mimic DDH. Values calculated with GGDC yield a better correlation with wet-lab DDH values than alternative approaches such as "ANI". These distance functions can also cope with heavily reduced genomes and repetitive sequence regions. Some of them are also very robust against missing fractions of genomic information (due to incomplete genome sequencing). Thus, this web service $\underline{\omega}$ can be used for genome-based species delineation. As of 2014 the GGDC also delineates subspecies.

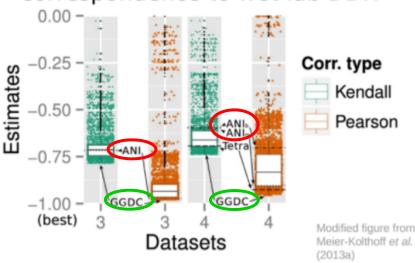
Use the GGDC here ₫.



Please login!

To Shopping Cart »
To Login/Logout »

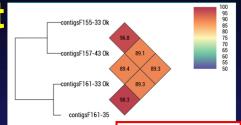




Tools to compare genomes to determine their taxonomic relatedness

Digital DNA:DNA hybridization. Very reliable in silico method.

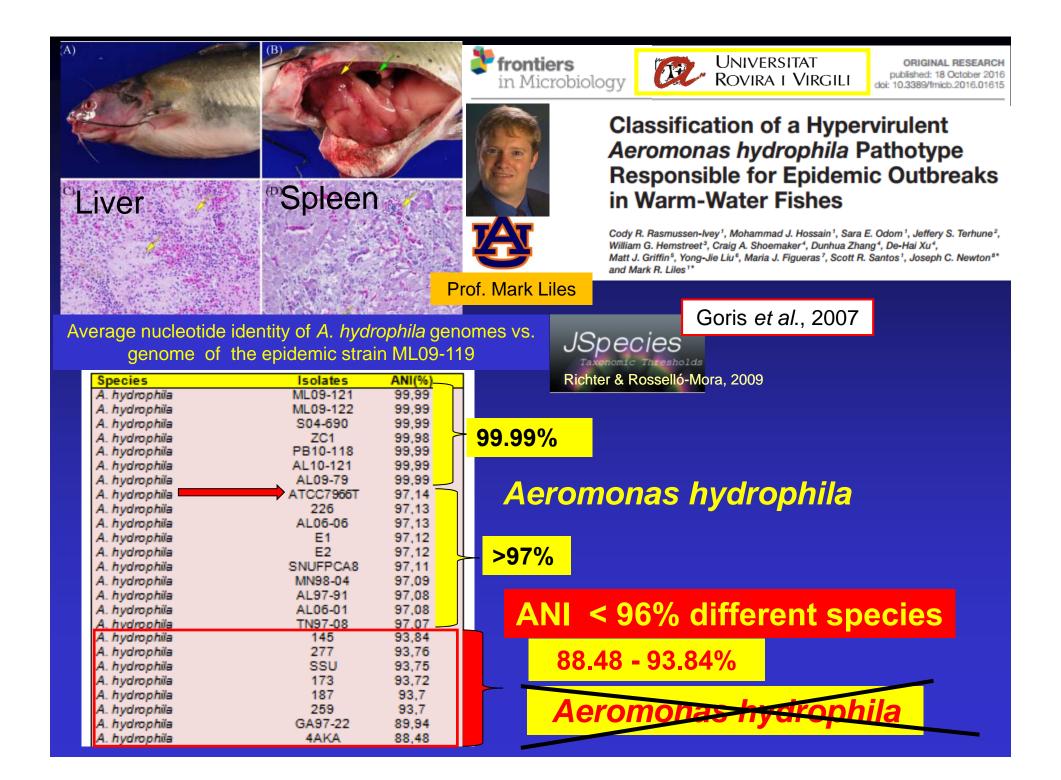
GGDC yielded higher correlations with wet-lab DDH (without mimicking its pitfalls) than other in silico approaches. GGDC uses statistical models that considerably improve on the linear models used by other approaches (e.g. ANI). A practical advantage of GGDC over ANI is that GGDC operates on the same scale than wet-lab DDH values, which makes comparisons much easier.

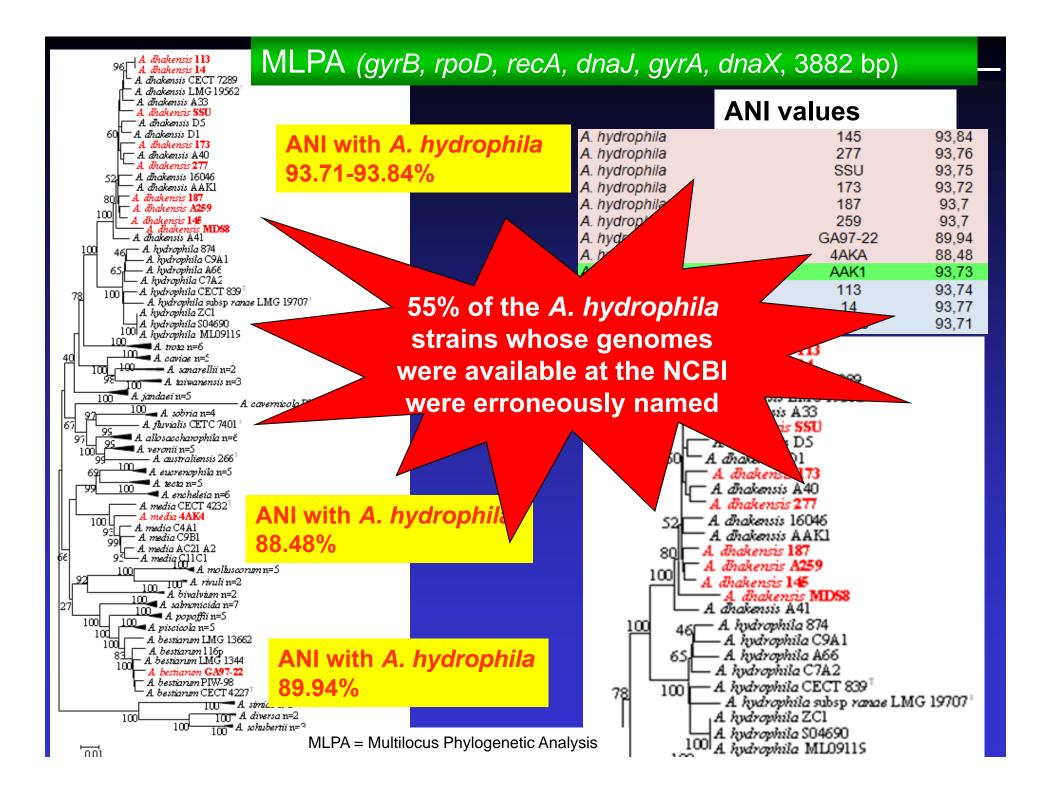


ANI = Average Nucleotide Identity is considered an overall genome related index (OGRI) that provides a % of relatedness between the genomes compared

Results of the comparison of the different available platforms that calculate the Average Nucleotide Identity (ANI)

Caracteristics	Jspecies	ANI calculator	EzGenome	OrthoANI	ANIU
Web server	✓	✓	✓	*	
Does not need internet connection	*	*	*	✓	
Alert when task is finished	×	✓	*	*	
Easy to handle	✓	✓	✓	✓	
Construct Matrix comparisons	✓	*	*	✓	
Direct results	*	✓	*	✓	
+2 genomes/analysis	<12Mb 🗸	*	*	10 gen. 🗸	





OAT-ANI is currently the best

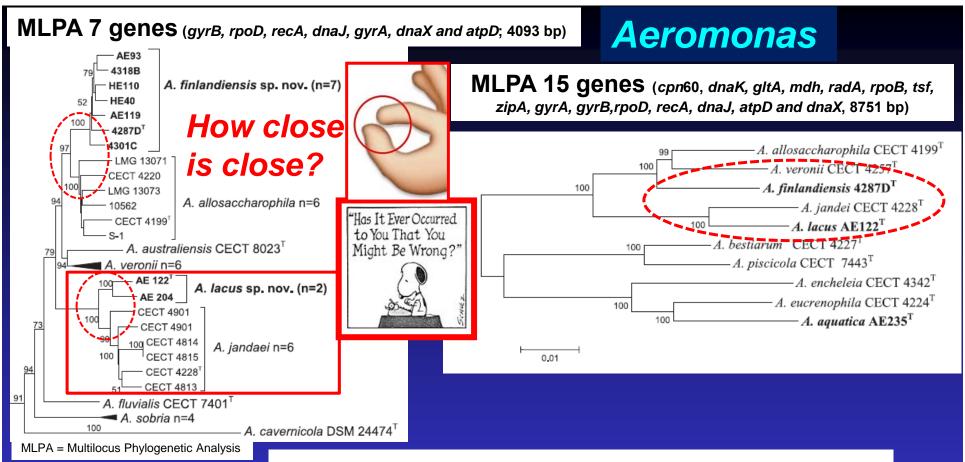
Prof. Mark Liles, Dr. Jahangir Hossain

Taxonomic Affiliation of New Genomes Should Be Verified Using Average Nucleotide Identity and Multilocus Phylogenetic Analysis

María José Figueras, a Roxana Beaz-Hidalgo, a Mohammad J. Hossain, b Mark R. Lilesb

Unitat de Microbiologia, Departament de Ciènces Médiques Bàsiques, Facultat de Medicina i Ciències de la Salut, IISPV, UniverDepartment of Biological Sciences, Auburn University, Auburn, Alabama, USA^b

RESEARCH ARTICLE


Strategies to Avoid Wrongly Labelled Genomes Using as Example the Detected Wrong Taxonomic Affiliation for *Aeromonas* Genomes in the GenBank Database

Roxana Beaz-Hidalgo¹, Mohammad J. Hossain², Mark R. Liles², Maria-Jose Figueras¹*

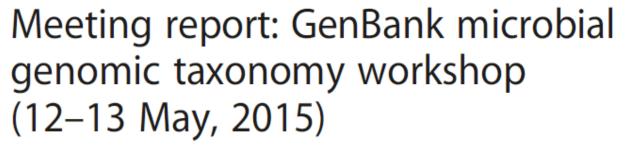
1 Unitat de Microbiologia, Departament de Ciènces Médiques Bàsiques, Facultat de Medicina i Ciències de la Salut, IISPV, Universitat Rovira I Virgili, Reus, Spain, 2 Department of Biological Sciences, Auburn University, Auburn, Alabama, United States of America

If ANI is < 96% = different species

- 1. The closest neighbours can be determined with a Multilocus Phylogenetic Analysis (MLPA) extracting the genes from the genomes.
- 2. Then the genome (of the type or another) of these closest neighbour species should be used for the Average Nucleotide Identity (ANI) and *in silico* DNA-DNA (isDDH) hybridization calculations to determine the final identity.

ANI values seems to be more objective

A. lacus ≠ A. jandaei ANI < 96% and isDDH < 70%


Results of ANI calculations using ANI calculator, EzGenome tools and JSpecies software and in silico DDH of the 3 new species with respect to the most closely related species.

Species	ANI Calculator (ANIb)	EzGenome (ANIb)	JSpecies (ANIb)	JSpecies (ANIm)	GGDC
A. lacus AE122 ^T vs. A. jandaei CECT 4228 ^T	95.16	95.17	95.44	95.74	63.20

MEETING REPORT

Open Access

Scott Federhen^{1*}, Ramon Rossello-Mora², Hans-Peter Klenk³, Brian J. Tindall⁴, Konstantinos T. Konstantinidis⁵,

ANI and Proxytype (= genome designated by NCBI to serve as a proxy for the type, for species that do not yet have a genome from type)

Abstract

Many genomes are incorrectly identified at GenBank. We developed a plan to find and correct misidentified genomes using genomic comparison statistics together with a scaffold of reliably identified genomes from type. A workshop was organized with broad representation from the bacterial taxonomic community to review the proposal, the GenBank Microbial Genomic Taxonomy Workshop, Bethesda MD, May 12–13, 2015.

Keywords: GenBank, Genomic taxonomy, Misidentified sequence entries

ANI_cutoff values in Taxo	nomy	
Acetobacter pasteurianus Acinetobacter pittii	92.5	
Aeromonas allosaccharophila Aeromonas veronii	95.0 94.0	WRONG CONCLUSION

This is a wrong conclusion derived from considering that some wrongly-labelled strains belong to those species

Klebsiella michiganensis	1	93.5
Listeria monocytogenes	1	92.4
Mycobacterium africanum	1	99.9
Mycobacterium bovis	1	99.9
Mycobacterium tuberculosis	1	99.9
Prochlorococcus marinus	1	78.0
Raoultella ornithinolytica	1	96.5
Raoultella planticola	1	96.5
Rhodococcus fascians	1	80.0
	Listeria monocytogenes Mycobacterium africanum Mycobacterium bovis Mycobacterium tuberculosis Prochlorococcus marinus Raoultella ornithinolytica Raoultella planticola	Listeria monocytogenes Mycobacterium africanum Mycobacterium bovis Mycobacterium tuberculosis Prochlorococcus marinus Raoultella ornithinolytica Raoultella planticola

Some current species concepts span much more (or much less) than the default ruleof-thumb 96% ANI. We can set this value on a species-by-species basis in the taxonomy database.

Genus JOURNAL OF SYSTEMATIC
AND EVOLUTIONARY
MICROBIOLOGY

RESEARCH ARTICLE

Chun et al., Int J Syst Evol Microbiol 2018;68:461–466 DOI 10.1099/ijsem.0.002516

January 2018

Proposed minimal standards for the use of genome data for the taxonomy of prokaryotes

Jongsik Chun,^{1,*} Aharon Oren,² Antonio Ventosa,³ Henrik Christensen,⁴ David Ruiz Arahal,⁵ Milton S. da Costa,⁶ Alejandro P. Rooney,⁷ Hana Yi,⁸ Xue-Wei Xu,⁹ Sofie De Meyer¹⁰ and Martha E. Trujillo^{11,*}

Web-services and standalone software tools for taxonomic purposes

Algorithm	Function	Туре	URL/Reference
OrthoANI with usearch	Calculation of ANI	Standalone	https://www.ezbiocloud.net/tools/orthoaniu [9]
OrthoANI with usearch	Calculation of ANI	Web service	https://www.ezbiocloud.net/tools/ani [9]
Genome-to-Genome Distance Calculator	Calculation of dDDH	Web service	http://ggdc.dsmz.de/ggdc.php/ [7]
ANI calculator	Calculation of ANI	Web service	http://enve-omics.ce.gatech.edu/ani/
JSpecies	Calculation of ANI	Standalone	http://imedea.uib-csic.es/jspecies/ [5]
JSpeciesWS	Calculation of ANI	Web service	http://jspecies.ribohost.com/ [30]
CheckM	Checking contamination	Standalone	http://ecogenomics.github.io/CheckM/ [29]
ContEst16S	Checking contamination	Web service	https://www.ezbiocloud.net/tools/contest16s [28]
BBMap	Calculation of sequencing	Standalone	https://sourceforge.net/projects/bbmap/
	depth of coverage		
Amphora2	Phylogenomic treeing	Standalone	http://wolbachia.biology.virginia.edu/WuLab/Software.html [21]
BIGSdb	Phylogenomic treeing	Standalone	https://pubmlst.org/software/database/bigsdb/ [31]
bcgTree	Phylogenomic treeing	Standalone	https://github.com/iimog/bcgTree [32]
Phylophlan	Phylogenomic treeing	Standalone	https://huttenhower.sph.harvard.edu/phylophlan[22]
UBCG	Phylogenomic treeing	Standalone	https://www.ezbiocloud.net/tools/ubcg

TABLE 1. Web-services and standalone software tools for taxonomic purposes

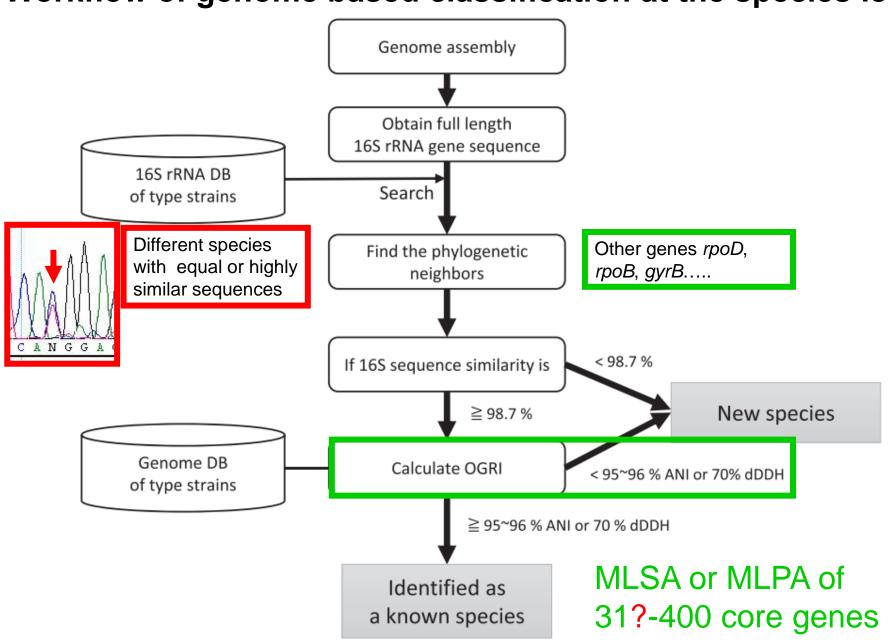
JOURNAL OF SYSTEMATIC
AND EVOLUTIONARY
MICROBIOLOGY

RESEARCH ARTICLE

Chun et al., Int J Syst Evol Microbiol 2018;68:461–466 DOI 10.1099/ijsem.0.002516

January 2018

Proposed minimal standards for the use of genome data for the taxonomy of prokaryotes


Jongsik Chun,^{1,*} Aharon Oren,² Antonio Ventosa,³ Henrik Christensen,⁴ David Ruiz Arahal,⁵ Milton S. da Costa,⁶ Alejandro P. Rooney,⁷ Hana Yi,⁸ Xue-Wei Xu,⁹ Sofie De Meyer¹⁰ and Martha E. Trujillo^{11,*}

Make sure that the quality of a genome sequence is suitable for taxonomic purposes and include:

- **1. Genome size** = is defined as the length sum of all contigs.
- 2. Number of contigs and N50.
- 3. Sequencing depth of coverage.

50X for the currently available NGS platforms (Illumina, Ion Torrent, and Pacific Biosciences) **is recommended**. BBMap estimate the sequencing depth of coverage.

Workflow of genome based classification at the species level.

65-A. dhakensis LMG 19562^T (AJ508765) A.hyd. AKK1 (3) A.hyd. AKK1 (9) A.hyd. AKK1 (6) A.hýd. AKK1 (4) 16S rRNA 49 A.hyd. YL17) A.hyd. YL17

— A.hyd. 187

— A.hyd. 187

— A.hyd. AKK1 (7)

— A.hyd. 14

— A.hyd. 13

— A.hyd. 13

— A.hyd. 14

— A.hyd. 15

— A.hyd. gene NJ tree (1503 bp) A. caviae NCIMB 13016^T (X60408) A.cav. YL12-1 A. trota ATCC49657* (X60415) 69 A.trota1999icr A. taiwanensis CECT 7403^T (FJ230077)

A. sanarellii CECT7 402^T (FJ230076) A.hyd. 173 A.hyd. 277 Aeromonas sp. MDS8 A.hyd. AKK1 (2) A.hyd/dhak.SSU A.hyd. AKK1 (1) A.cav. YL12 (8) A.cav. YL12 (9) A.cav. YL12 (3) A.cav. YL12 (4) A.cav. YL12 (7) A.cav. YL12 (10) A.hyd. 145 94 A.hyd. AL09-71 A.hyd. pc104A A.hyd. ML09-119 A.hyd. NF2 66 A.hyd. SNUFPCA8 A. hydrophila ATCC7966[†] (X60404) A. media 16S ATCC 33907[†] (X60410) 86 A.hyd. 4AK4 A.hyd. AD9 A.hyd. 226 A.hyd. Ae34 (8 A.hyd. Ae34 (3 A.hyd. Ae34 (4 A.hyd. Ae34 (5 92 A.hyd. Ae34 (9) 92 A.hyd. Ae34 (10) A.hyd. HZM 52 A.ver. AMC34 (1) A. allosaccharophila CECT 4199[†] (S39232) A. sobria NCIMB 12065[†] (X60412) A. sobria NCIMB 12065* (X60412)

A. pryulfi DSM 22539* (19)76900)

A. popoffi CECT 5176* (H0832415)

A. breatvair CECT 7113* (DG504429)

A. excernophila NCIMB 74* (X60411)

A. lecta CECT 7082* (H0832416*)

A. print CECT 32* (10053416*)

A. print CECT 34* (10053416*)

A. print CE A. jandaei ATCC 49568* (X60413)

A. januari ATCC 456241(X60444) 30 4 A.ver. AER39 66 A.ver. AMC35 A.ver. B565 A.ver. Hm21 A. simiae MDC 54^T (GQ860945) A. schubertii ATCC43700T (X60416) 94 A. diversa CECT4254[†] (GQ365710)

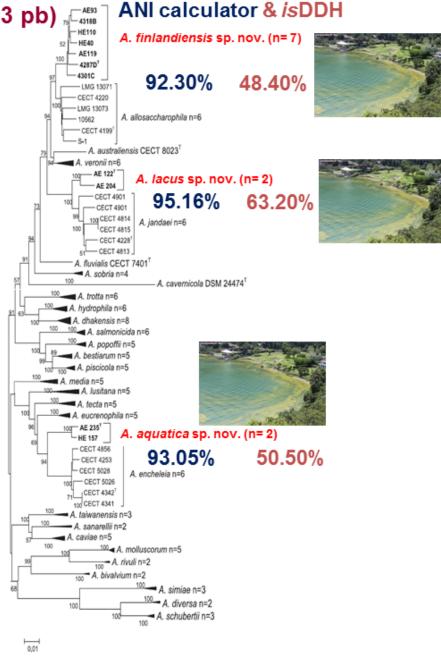
Evaluation of the 16S rRNA gene copies in genomes of *Aeromonas*

Sequenced mistakes or true variability????

Name at the NCBI	165 rRNA	Base pair size of the 165 rRNA copies	
	gene copies	(No) S NCBI	BLAST
A. veronii AER39	12	1503 (7), 1490, 1341, 1246, 1173	
A. hydrophila ATCC7966 ^T	10	1503	
A. hydrophila AKK1*	10	1503	
A. caviae YL12	10	1503	
A. veronii B565	10	1503	
A. hydrophila Ae34	10	1503	
A. salmonicida A449	9	1503	
A. veronii AMC35	9	1503	
Aeromonas sp. nov. 4AK4	9	1503	
A. dhakensis SSU	8	1503 (2), 1350, 1363, 440, 320, 233, 74	
A. hydrophila AL09-71	7	1503	
A. salmonicida A503	7	1503	
Aeromonas sp. MDS8	6	1503, 956, 639, 439, 68, 28	
A. hydrophila HZM*	6	1503, 86, 81, 80, 80, 62	
A. veronii Phln2	5	916, 364, 327, 56, 29	
A. veronii AMC 34*	4	1503 (2), 174 (2)	
A. dhakensis 145	4	1502, 39 (2), 38	
A. veronii Hm21	4	1503	
A. hydrophila pc104A	3	1503	
A. hydrophila ML09-119	3	345, 230, 226	
A. hydrophila NF2	2	1503	
A. hydrophila AD9	2	1503, 59	
A. veronii AER 397	2	1503	
A. dhakensis YL17	1	1503	
A. iydrophila 187*	1	1503	
y fr yp. ₹ /14*			ence
A. nydrop [‡] a 113		1503	Piloc
A. hydrophila 173*	1	1503	
4. hydrophi 1. 7 - C			teria
A. nydrophilu SNUFPLA8		1505	
A. hydrophila NF1	1	1503	
aydr ahi azr	200	700 CH 700	
Cydradi 27			
A. salmonicida NBR 13784	1	1503	
A. salmonicida 34mel ^T	1	1503	
	1	1503	
A. veronii 159			
A. veronii 159 A. jandaei Riv2	1	1503	

3 new species with MLPA (4093 pb) complete genomes Systematic and Applied Microbiology 38 (2015) 161-168 2015 Contents lists available at ScienceDirect Systematic and Applied Microbiology ELSEVIER journal homepage: www.elsevier.de/syapm Aeromonas aquatica sp. nov., Aeromonas finlandiensis sp. nov. and Aeromonas lacus sp. nov. isolated from Finnish waters associated with cyanobacterial blooms* R. Beaz-Hidalgo^a, F. Latif-Eugenín^a, M.J. Hossain^b, K. Berg^c, R.M. Niemi^d, J. Rapala^e, C. Lyra^c, M.R. Liles^b, M.J. Figueras^{a,*} 2014 CrossMark ld gen⊕me△ Journals.ASM.org Draft Genome Sequences of Two Novel Aeromonas Species Recovered in Association with Cyanobacterial Blooms Mohammad J. Hossain, a Roxana Beaz-Hidalgo, b María J. Figueras, b Mark R. Lilesa Department of Biological Sciences, Auburn University, Auburn, Alabama, USAa; Unitat de Microbiologia. Departament de Ciènces Médiques Bàsiques, Facultat de

Department of Biological Sciences, Auburn University, Auburn, Alabama, USA^a, Unitat de Microbiologia. Departament de Ciènces Médiques Bàsiques, Facultat de Medicina i Ciències de la Salut, IISPV, Universitat Rovira i Virgili, Reus, Spain^b


Aeromonas aquatica and Aeromonas lacus are two new species that have been found in association with cyanobacterial blooms from recreational Finnish lakes where adverse human health effects have been recorded. Here, we present the draft genome sequences of their type strains.

Received 2 October 2014 Accepted 16 October 2014 Published 20 November 2014

FADUA LEILA LATIF EUGENÍN Tesis Doctoral

2015

Prof. Mark Liles

OBJECTIVES

To present the strategies to determine the species and strain identity using the genome information

➤ To underline additional information such antibiotic resistance and virulence genes that can be found in the genomes

Limitations of the epidemiological typing methods

Environmental strains

Clinical strains

Equal genotypes for unrelated strains

Equal ST in unrelated strains

GOLD STANDARD

The European Working Group for Legionella Infections

Legionella preumophila Sequence-Based Typing

Sequence Base Typing database (v3.0) http://www.ewgli.org

viru	lence
viiu	

Multilocus Sequence Typing (MLST) - 7 genes

38

53

73

ST	Allelic profile	N	%
ST ₄₇	5, 10, 22, 15, 6, 2, 6	24	27.9
ST1	1, 4, 3, 1, 1, 1, 1	17	19.8

housekeepir	ng

Number of *pilE* alleles:

Number of *asd* alleles:

Number of **flaA** alleles:

Number of *mip* alleles: 85

Number of *mompS* alleles: 96
Number of *proA* alleles: 55

Number of *neuA* alleles: 65
Number of *neuAh* alleles: 30

Gaia et al., 2005; Ratzow et al., 2007; Qin et al., 2014; David et al., 2016

Whole-Genome Sequencing (WGS)

RESEARCH ARTICLE

Open Acces

Comparison of the Legionella pneumophila population structure as determined by sequence-based typing and whole genome sequencing

Anthony P Underwood1*, Garan Jones1,3, Massimo Mentasti2, Norman K Fry2 and Timothy G Harrison2

Clinical Infectious Diseases

MAJOR ARTICLE

AMERICAN

Applied and Environmental

Programme for Public Health Microbiology Training, European Centre for Disease Prevention and Control, Stockholm, Sweden

Seeding and Establishment of Legionella pneumophila in Hospitals: Implications for Genomic Investigations of Nosocomial Legionnaires' Disease

Sophia David, ^{1,2} Baharak Afshar,^{2,3} Massimo Mentasti, ² Christophe Ginevra, ^{4,5} Isabelle Podglajen, ⁶ Simon R. Harris, ¹ Victoria J. Chalker, Sophie Jarraud, ⁴⁵ Timothy G. Harrison, ² and Julian Parkhill ¹

¹Pathogen Genomics, Wellcome Trust Sanger Institute, Cambridge, and ²Respiratory and Vaccine Preventable Bacteria Reference Unit, Public Health England, London, United Kingdom; ³European

SOCIETY FOR MICROBIOLOGY

👨 Norman K. Fry, b 📵 Julian Parkhill, a Timothy G. Harrison b

Journal of

Validation Guidelines

MICROBIOLOGY Clinical Microbiology

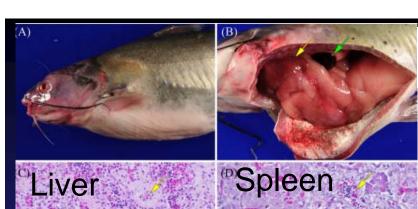
Genomic Resolution of Outbreak-Associated Legionella pneumophila Serogroup 1 Isolates from New York State

Brian H. Raphael, Deborah J. Baker, Elizabeth Nazarian, Pascal Lapierre, Dianna Bopp, Natalia A. Kozak-Muiznieks, a Shatavia S. Morrison, a Claressa E. Lucas, Jeffrey W. Mercante, Kimberlee A. Musser, Jonas M. Winchell

Evaluation of an Optimal Epidemiological Typing Scheme for

Legionella pneumophila with Whole-Genome Sequence Data Using

Sophia David, a,b Massimo Mentasti,b Rediat Tewolde,b Martin Aslett, a Simon R. Harris, Baharak Afshar,b,c Anthony Underwood,b


Wellcome Trust Sanger Institute, Wellcome Genome Campus, Hinxton, Cambridge, United Kingdoma; Public Health England, London, United Kingdomb; The European

- WGS is more discriminatory than SBT and PFGE
- Extended MLST scheme with ± 50 genes provides optimal epidemiological concordance
- Phylogenetic analyses of whole genome (wg) or core genome (cg) Single-Nucleotide Polymorphism (SNP)

There is a need for efficient, easy to handle and to interpret bioinformatic tools

Core genome = shared genome

➤ ANI can provide a similar resolution as other tools based on the WGS for recognizing strains involved in outbreaks

frontiers in Microbiology

ORIGINAL RESEARCH published: 18 October 2016 doi: 10.3389/fmicb.2016.01615

Classification of a Hypervirulent ²⁰¹⁶ Aeromonas hydrophila Pathotype **Responsible for Epidemic Outbreaks** in Warm-Water Fishes

Cody R. Rasmussen-Ivey¹, Mohammad J. Hossain¹, Sara E. Odom¹, Jeffery S. Terhune², William G. Hemstreet3, Craig A. Shoemaker4, Dunhua Zhang4, De-Hai Xu4, Matt J. Griffin5, Yong-Jie Liu6, Maria J. Figueras7, Scott R. Santos1, Joseph C. Newton8* and Mark R. Liles 1*

Prof. Mark Liles

Average Nucleotide Identity of A. hydrophila genomes vs. genome of the epidemic strain ML09-119

JSpecies

Goris *et al.*, 2007

Richter & Rosselló-Mora, 2009

99.99% clone

Aeromonas hydrophila

>97%

ANI < 96% different species

88.48 - 93.84%

Aeromo

Species	Isolates	ANI(%)	
A. hydrophila	ML09-121	99,99	
A. hydrophila	ML09-122	99,99	
A. hydrophila	S04-690	99,99	
A. hydrophila	ZC1	99,98	┝
A. hydrophila	PB10-118	99,99	
A. hydrophila	AL10-121	99,99	
A. hydrophila	AL09-79	99,99	
A. hydrophila	ATCC7966T	97,14	
A. hydrophila	226	97,13	
A. hydrophila	AL06-06	97,13	
A. hydrophila	E1	97,12	
A. hydrophila	E2	97,12	
A. hydrophila	SNUFPCA8	97,11	
A. hydrophila	MN98-04	97,09	
A. hydrophila	AL97-91	97,08	
A. hydrophila	AL06-01	97,08	
A. hvdrophila	TN97-08	97.07	
A. hydrophila	145	93,84	
A. hydrophila	277	93,76	
A. hydrophila	SSU	93,75	
A. hydrophila	173	93,72	
A. hydrophila	187	93,7	
A. hydrophila	259	93,7	
A. hydrophila	GA97-22	89,94	
A. hydrophila	4AKA	88,48	

http://www.ezbiocloud.net/tools/orthoani

Orthologous Average Nucleotide Identity Tool

DASHBOARD

IDENTIFY

TOOLS RESOURCES

HOW TO CITE

ABOUT

SUPPORT

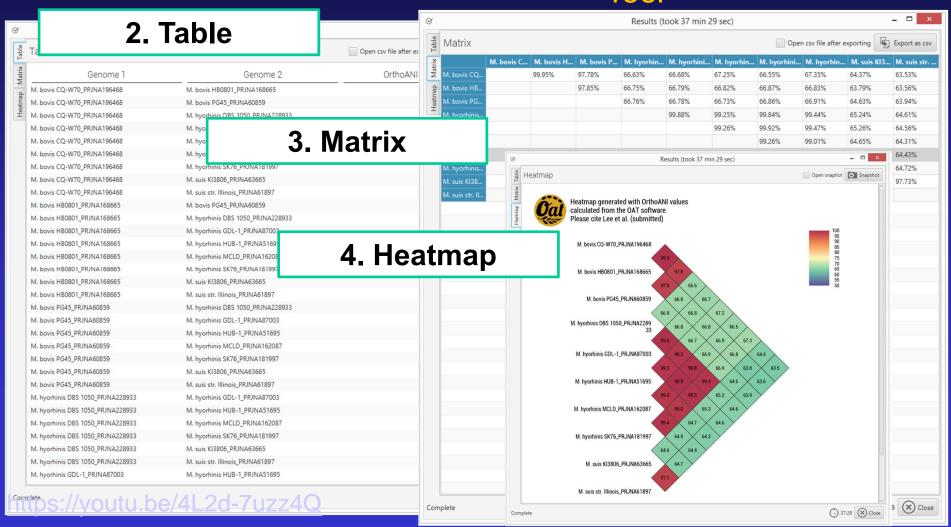
Ē

Log In

Requirements

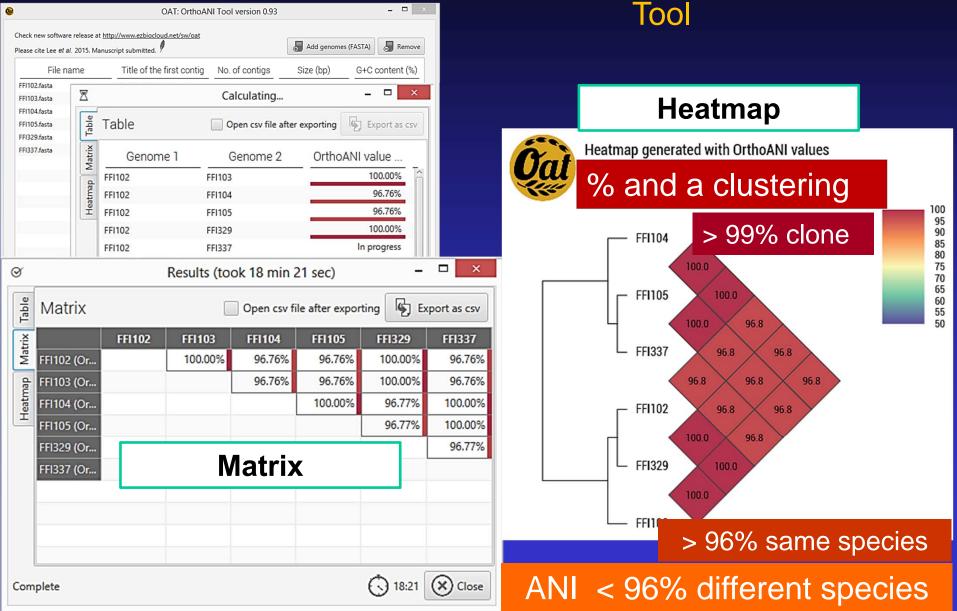
- Java Runtime Environment Version 8 (Java Download)
- NCBI BLAST is required if you are using the Runnable JAR version of OAT. We recommend ncbi-blast-2.2.30+ or higher since OAT was tested with ncbi-blast-2.2.30+ (BLAST+ executables)

Download OAT


· OAT standalone

OAT Runnable JAR	Download 64 bit
OAT for Windows OS	Download 64 bit
OAT User Manual	Download PDF

· OAT command line


http://www.ezbiocloud.net/tools/orthoani Orthologous Average Nucleotide Identity Tool

http://www.ezbiocloud.net/tools/orthoani

Orthologous Average Nucleotide Identity

Outbreak Philadelphia ST36

Mercante et al., 2016

Maximum-likelihood tree based on 11,356 core SNPs

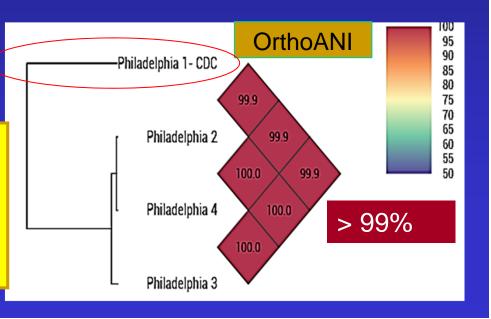
Philadelphia-1 CDC
Philadelphia-1 NCBI
Philadelphia-4
Philadelphia-3

RESEARCHARTICLE

Genomic Analysis Reveals Novel Diversity among the 1976 Philadelphia Legionnaires' Disease Outbreak Isolates and Additional ST36 Strains

Jeffrey W. Mercante, Shatavia S. Morrison, Heta P. Desai, Brian H. Raphael, Jonas M. Winchell*

Pneumonia Response and Surveillance Laboratory, Respiratory Diseases Branch, Centers for Disease Control and Prevention, Atlanta, Georgia, United States of America


* iwinchell@cdc.gov

Philadelphia-2 E1-P

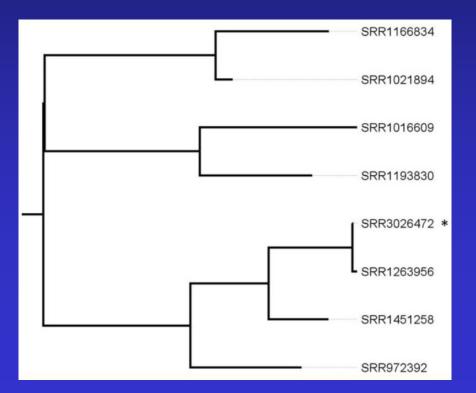
Philadelphia-1 ATCC

CDC genome set apart from the historical outbreak Philadelphia 2, 3 and 4 genomes

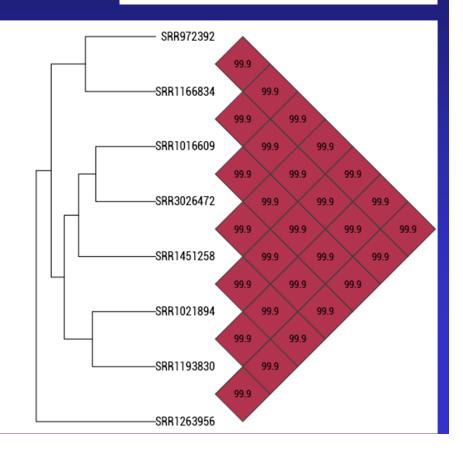
ANI results could distinguish the small genetic differences among ST36 Philadelphia outbreak strains

Front Microbiol. 2018; 9: 446.

Published online 2018 Mar 14. doi: 10.3389/fmicb.2018.00446


PMCID: PMC5861 PMID: 29593

A Validation Approach of an End-to-End Whole Genome Sequencing Workflow for Source Tracking of *Listeria monocytogenes* and *Salmonella enterica*


Anne-Catherine Portmann, ¹ Coralie Fournier, ² Johan Gimonet, ¹ Catherine Ngom-Bru, ¹ Caroline Barretto, ¹ and Leen Baert ^{1,*}

Phylogenetic tree based on SNP differences from selected patient isolates and the lettuce reference

isolate*

CHIMERIC OR CONTAMINATED GENOMES

Genome Analysis

Quality control of identity and possible contamination

FastQ

Assembly

Annotation

MSR

RAST server/sftw

Search for HK genes for a MLPA (BLASTn)

Comparison with the previously sequenced genes

HK = housekeeping genesMLPA = Multilocus Phylogenetic Analysis

Method

CheckM: assessing the quality of microbial genomes recovered from isolates, single cells, and metagenomes

Donovan H. Parks, ¹ Michael Imelfort, ¹ Connor T. Skennerton, ¹ Philip Hugenholtz, ^{1,2} and Gene W. Tyson^{1,3}

2017

OPEN

The ISME Journal (2016) 10, 269–272 © 2016 International Society for Microbial Ecology All rights reserved 1751-7362/16

CheckM

SHORT COMMUNICATION

ProDeGe: a computational protocol for fully automated decontamination of genomes

2016

Kristin Tennessen¹, Evan Andersen¹, Scott Clingenpeel¹, Christian Rinke¹, Derek S Lundberg², James Han¹, Jeff L Dangl³, Natalia Ivanova¹, Tanja Woyke¹, Nikos Kyrpides¹ and Amrita Pati¹

Maruyama et al. BMC Bioinformatics (2017) 18:152 DOI 10.1186/s12859-017-1572-5

BMC Bioinformatics

SOFTWARE

SAG-QC: quality control of single amplified genome information by subtracting non-target sequences based on sequence compositions

Toru Maruyama^{1,2}, Tetsushi Mori³, Keisuke Yamagishi¹ and Haruko Takeyama^{1,2,3*}

2017

ContEst16s:

Contamination Estimator by 16S

http://tool.ezbiocloud.net/contest16s/

EZBioCloud

RESEARCH ARTICLE

Lee et al., Int J Syst Evol Microbiol 2017;67:2053–2057 DOI 10.1099/ijsem.0.001872

ContEst16S: an algorithm that identifies contaminated prokaryotic genomes using 16S RNA gene sequences

Imchang Lee, ¹ Mauricio Chalita, ² Sung-Min Ha, ^{1,3} Seong-In Na, ² Seok-Hwan Yoon ^{1,3} and Jongsik Chun ^{1,2,3,*}

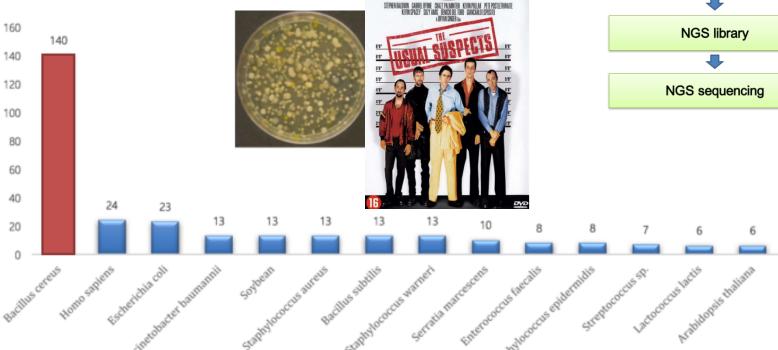
Genome: Arcobacter anaerophilus DSM24636T

Dr. J Chun CHUNLAB* Seoul National University Seoul, South Korea

Bergey's International Society for Microbial Systematics third meeting on

When was it contaminated?

Microbial Systematics and Metagenomics

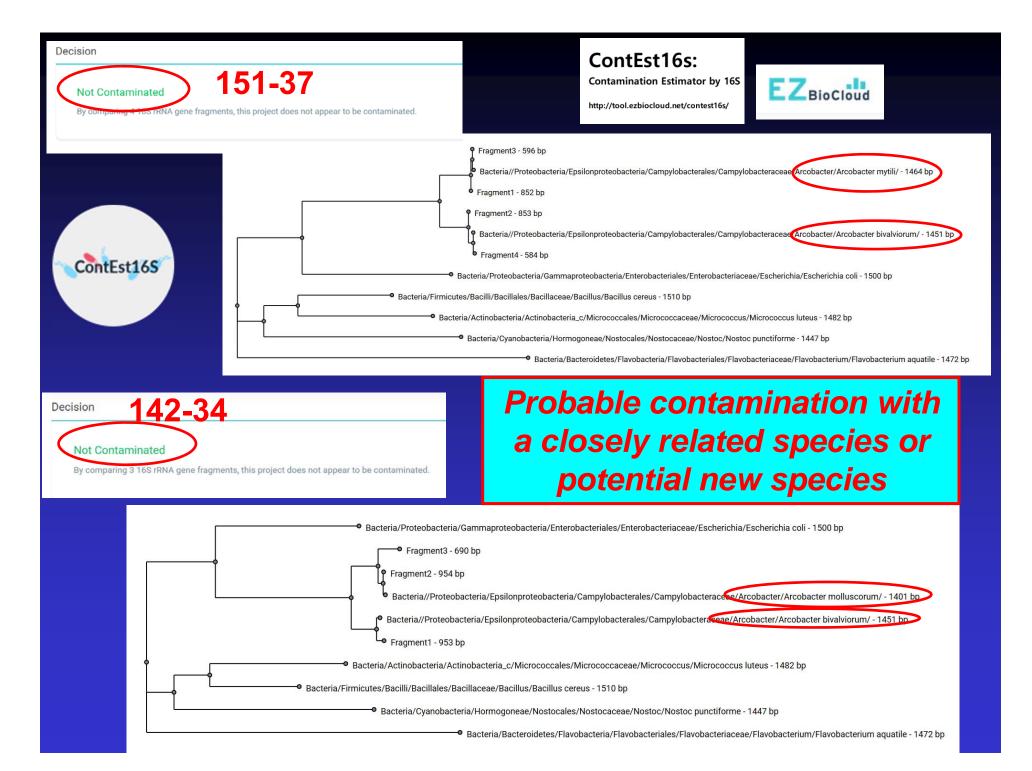

MICROBIAL CULTURE COLLECTION, PUNE eptember 12- 15, 2016

Contaminated genomes in public database

Bacillus cereus (13.6%)

Common contaminant while isolation & culturing

BISMiS


Isolation & Culturing Microbiology Lab. **DNA** extraction Microbiology Lab. Sequencing Lab. Sequencing Lab.

ContEst16s:

Contamination Estimator by 16S

http://tool.ezbiocloud.net/contest16s/

Tools to compare genomes to determine their taxonomic relatedness

ANI and isDDH produce consistent results

	Genome 1	Genome 2	ANI	isDDH
Ą	Contaminated	Type strain	97.9%	81.7%
	Correct	Type strain	97.8%	81.7%

OBJECTIVES

To present the strategies to determine the species and strain identity using the genome information

➤ To underline additional information such antibiotic resistance and virulence genes that can be found in the genomes

Genome Analysis

Virulence genes were searched by BLASTn:

- Virulence Factors of Pathogenic Bacteria Database (VFDB) (Chen et al., 2005)
- Victors Database (University of Michigan, USA)
 - PATRIC_VF (Wattam et al., 2017).
 - Search for specific genes by BLASTp analysis

Antibiotic resistance genes:

- Antibiotic Resistance Database (ARDB) (Liu and Pop, 2009)
- Comprehensive Antibiotic Resistance Database (CARD) (Jia et al., 2017).
- Antibiotic Resistance Gene-Annotation database (ARG-ANNOT) (Gupta et al., 2014)

Streptomycin/Spectinomycin^a

A Polyphasic and Taxogenomic Evaluation Uncovers *Arcobacter cryaerophilus* as a Species Complex That Embraces Four Genomovars

IV

Alba Pérez-Cataluña¹, Luis Collado²*, Oscar Salgado², Violeta Lefiñanco² and María J. Figueras ¹*

a) RAST/PATRIC results, b) ARG-ANNOT results, c) BLASTn of virulence genes results, d,b)-lactamase class D, e) Phospholipase A and C.

	1	2	3	4	5	6	7	8	9	10	11	12	13
ANTIBIOTIC RESISTANCE													
Multidrug efflux pumps													
CmeABC system ^a	+	+	+	+	+	+	+	+	+	+	+	+	+
MFS Superfamily ^a	_	+	_	+	+	+	+	+	+	_	_	_	_
Macrolids													
MacAB-TolCa	+	+	+	+	+	+	+	+	+	+	+	+	+
Quinolones													
gyrA mutation	_	_	_	_	_	_	_	_	_	_	_	_	_
23S rRNA mutations	_	_	_	_	_	_	_	_	_	_	_	_	_
OqxB ^b	+	+	+	+	+	+	+	+	+	+	+	+	+
β-lactamics													
β-lactamase ^a	_	_	_	_	_	_	_	$+^{d}$	_	_	_	_	_
Colistin													
Mcr-1 ^b	+	_	+	+	+	+	+	+	+	_	+	_	+
Mcr-2 ^b	+	_	+	+	+	+	+	+	+	_	+	_	+
Acriflavin resistance ^a	+	+	+	+	+	+	+	+	+	+	+	+	+

CLUSTERS

	CL	US	TEF	₹S								
				I					II	III	ľ	V
1	2	3	4	5	6	7	8	9	10	11	12	13

VIRULENCE FACTOR	S												
Invasion													
ciaB ^c	+	+	+	+	+	+	+	+	+	+	+	+	+
mviN ^c	+	+	+	+	+	+	+	+	+	+	+	+	+
Adhesion													
cj1349 ^c	+	+	+	+	+	+	+	+	+	+	+	+	+
cadF ^c	_	_	_	_	_	_	_	_	_	_	_	_	_
Filamentous hemmag	lutinin												
hecA ^c	-	-	_	-	-	_	-	-	-	-	_	-	_
Hemolysis													
hecB ^c	-	-	-	-	-	-	-	_	-	-	_	-	_
tlyA ^c	-	_	_	_	_	_	_	_	+	_	+	_	_
Outer membarne prot	ein												
irgA ^c	_	-	-	+	-	-	+	_	_	-	_	-	_
Phospholipase													
pldA ^c	+	+	+	+	+	+	+	+	+	+	+	+e	+

The International Molecular Subtyping Network for Foodborne Disease Surveillance

Africa, Asia Pacific, Canada, Europe, Latin America & Carribbean, Middle East, USA

Home International

Networks

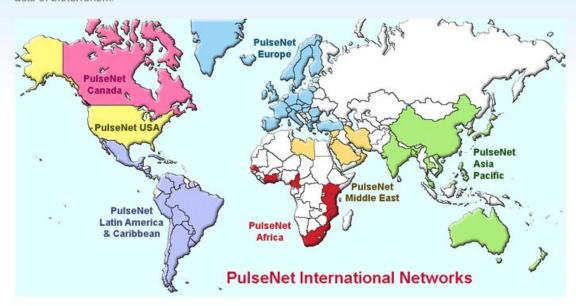
Outbreaks -

Molecular Typing -

Publications - About -

Home | PulseNet International

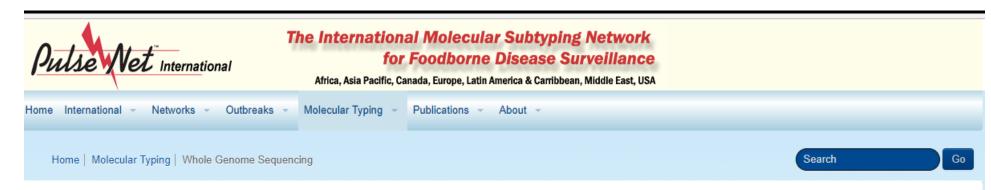
http://www.pulsenetinternational.org/


PulseNet International

Foodborne illnesses do not respect any borders. As a result of increasing international trade, food produced in one country may be consumed in a different part of the world and cause disease if contaminated with a foodborne pathogen.

Similarly, international travel is increasing and it is possible to get to almost any destination from almost any place in the world in a matter of hours. Therefore, a disease contracted in one part of the world may first become apparent thousands of miles away.

PulseNet International is a network of National and regional laboratory networks dedicated to tracking foodborne infections world-wide. Each laboratory utilizes standardized genotyping methods, sharing information in real-time.


The resulting surveillance provides early warning of food and waterborne disease outbreaks, emerging pathogens, and acts of bioterrorism

What's available on this site?

Key tools & collaborators

We are looking to bring together the best tools and approaches from around the world, and implement them within the PulseNet network. Key collaborators or tools we are exploring include:

- Center for Genomic Epidemiology (Denmark)
- Integrated Rapid Infectious Disease Analysis IRIDA(Canada)
- Whole genome multi locus sequence typing (wgMLST) (Applied Maths, Belgium)

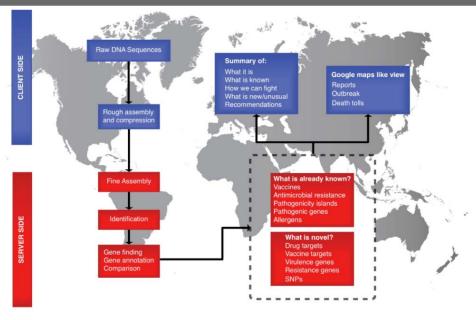
Frequently Asked Questions

What is Whole Genome Sequencing (WGS)?

1. WGS is the output and the process of generating the full DNA sequence of the genome of a microorganism. For foodborne bacteria, the genome includes the chromosome and any extrachromosomal genomic material such as plasmids. The actual process is also called next generation sequencing (NGS) and is performed by sequencing the DNA in multiple (10->100 x) small random fragments ('reads') that typically vary in size between less than 100 to several 1000 DNA basepairs (bp) ('massive parallel sequencing'). The average number of times the genome is sequenced is called the coverage. Before the data can be analyzed, it must be cleaned and assessed for quality and often assembled into as few contiguous pieces (contigs) as possible. A completely assembled genome is in one contig for the chromosome and the extrachromosomal elements in each one piece but most often a genome will be assembled in 5- 200 contigs. If a genome is not fully assembled, we do not know the actual sequence of the whole genome but rather 97- 99 % of it. Assembling genomes is a computer intensive process that can be done by aligning the raw sequences against a well assembled sequence of a closely related strain (reference based assembly) or simply by aligning overlapping sequences from different reads without the need of a reference genome (de novo assembly). However, some comparisons of genomes may be performed little assembly ('assembly free') with minimal processing. For example, if you want to check if a specific gene, e.g., rpoB for species identification, or a specific set of genes, e.g., those used for multi locus sequence typing (MLST), for which the sequence(s) are known, the raw reads of the strain in question may be queried without assembly for the presence of this gene or these genes.

Center for Genomic Epidemiology

Organization Home **Project** Contact Services


Services

Phenotyping:

- · Identification of acquired antibiotic resistance genes ResFinder
- · Identification of functional metagenomic antibiotic resistance determinants. ResFinderFG
- · Identification of acquired antibiotic resistance genes using Kmers. KmerResistance
- Prediction of a bacteria's pathogenicity towards human hosts. PathogenFinder
- · Identification of acquired virulence genes. VirulenceFinder
- Determination of Restriction-Modification sites (based on REBASE.) ModificationFinder
- SPIFinder identifies Salmonella Pathogenicity SPIFinde

Typing:

- · Multi Locus Sequence Typing (MLST) from an assembled genome or from a set of reads
- · PlasmidFinder identifies plasmids in total or partial sequenced isolates of bacteria. PlasmidFinder
- Multi Locus Sequence Typing (MLST) from an assembled plasmid or from a set of reads pMLST
- · Prediction of bacterial species using a fast K-mer algorithm. KmerFinder
- · Prediction of bacterial species using the S16 ribosomal DNA sequence SpeciesFinder
- · Fast prediction of bacterial

Welcome to the Center for Genomic Epidemiology

The cost of sequencing a bacterial genome is \$50 and is expected to decrease further in the near future and the equipment needed cost less than \$150,000. Thus, within a few years all clinical microbiological laboratories will have a sequencer in use on a daily basis. The price of genome sequencing is already so low that whole genome sequencing will also find worldwide application in human and veterinary practices as well as many other places where bacteria are handled. In Denmark alone this equals more than 1 million isolates annually in 15-20 laboratories and globally up to 1-2 billion isolates per year. The limiting factor will therefore in the future not be the cost of the sequencing, but how to assemble, process and handle the large amount of data in a standardized way that will make the information useful, especially for diagnostic and surveillance.

The aim of this center is to provide the scientific foundation for future internet-based solutions where a central database will enable simplification of total genome sequence information and comparison to all other sequenced including spatial-temporal analysis. We will develop algorithms for rapid analyses of whole genome DNA-sequences, tools for analyses and extraction of information from the sequence data and internet/web-interfaces for using the tools in the global scientific and medical community. The activity is being expanded to also include other microorganisms, such as vira and parasites as well as metagenomic samples.

http://www.genomicepidemiology.of Salmonella enterica included WGS for outbreak of the control o

What Can We Learn from a Metagenomic Analysis of a Georgian Bacteriophage Cocktail?

December 2015 Link to article....

WGS typing is a superior alternative to conventional typing strategies

August 2015

In combination with other available WGS typing tools, E. coli serotyping can be performed solely from WGS data, providing faster and cheaper typing than current routine procedures. Link to article..

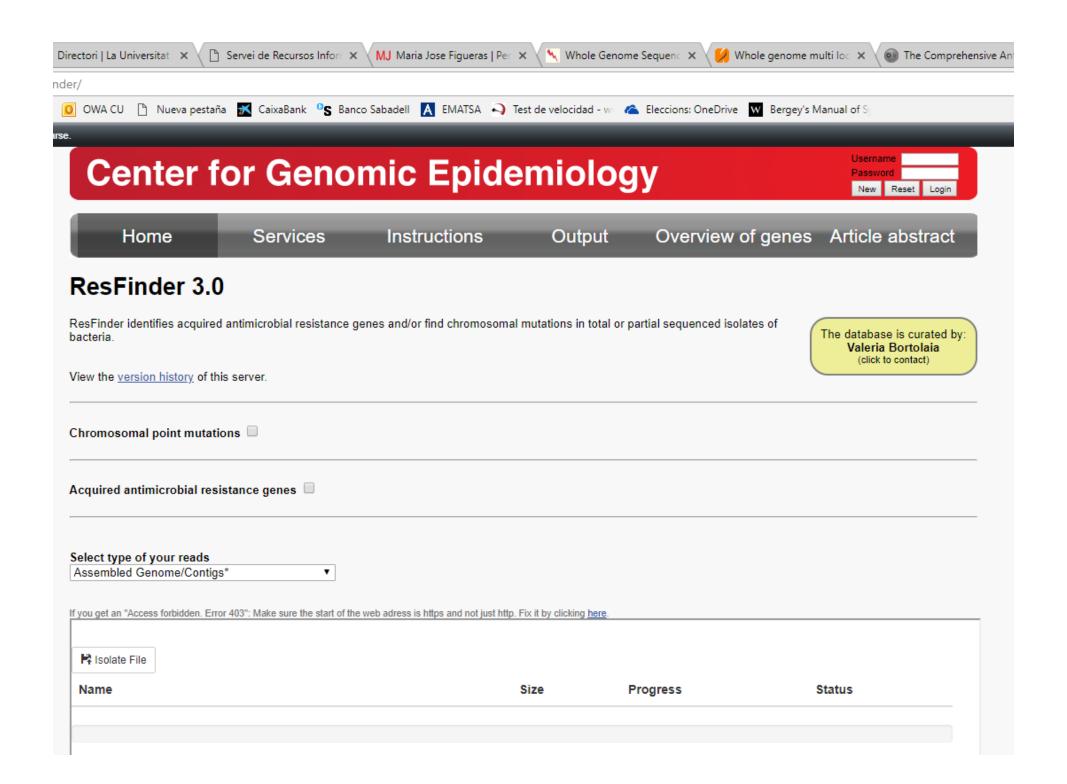
Introduction to microbial whole genome seguencing and analysis for clinical microbiologist

April 2015 We offer clinical microbiologists the possibility to learn how to use the tools for e.g. typing, identifying plasmids, antibiotic resistance and virulence genes and for phylogenetic analysis. Sign up....

Consortium to combat infectious disease outbreaks

January 2015 The COMPARE project has been funded with 20 million Euros from the EU. The Consortium consists of 29 partners with multidisciplinary expertise in human health, animal health and food safety. Read more...

Benchmarking of Methods for Genomic Taxonomy

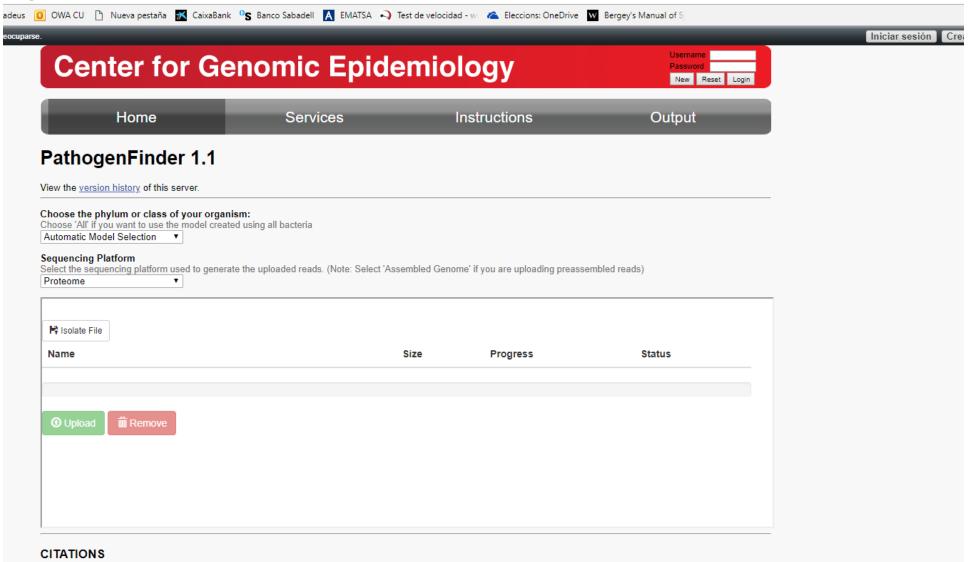

April 2014 How to optimally determine taxonomy from whole genome sequences. Link to article...

CGE tools applied for bacteriophage characterization March 2014

Applying the ResFinder and VirulenceFinder web-services for easy identification of acquired antibiotic resistance and E. coli virulence genes in bacteriophage and prophage nucleotide sequences. Link to article.

Evaluation of Whole Genome Sequencing for Outbreak Detection of Salmonella enterica

analyzing and comparing with a traditional typing, PFGE. Link to



arse.

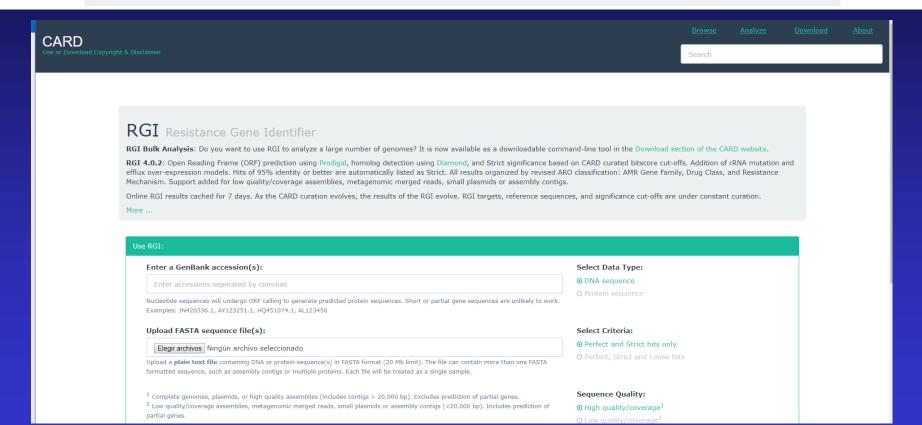
Center for Genomic Epidemiology

	Home	Services	Instructions	Output	Article abstract
Kmer	Resistance	2.2			
View the ver	sion history of this serv	/er.			
Species de	termination on maximu	m query cov∈ ▼			
	nost database	15° - 10° - 10°			
Bacteria org		▼			
Salact the o	jene database				
Resistance		▼			
Select ident	tity threshold				
70 %	any amount	▼			
Select thres	shold for depth corr				
10 %		▼			
Input me(s)		ats are supported, fastq is reco	Jillileilueu.		
Name			Size	Progress	Status
① Upload	d Remove				

For publication of results, please cite:

PathogenFinder - Distinguishing Friend from Foe Using Bacterial Whole Genome Sequence Data.
 Cosentino S, Voldby Larsen M, Møller Aarestrup F, Lund O
 (2013) PLoS ONE 8(10): e77302.
 PMID: 24204795 doi: 10.1371/journal.pone.0077302

Username **Center for Genomic Epidemiology** New Reset Login Home Output Services Instructions Article abstract VirulenceFinder 1.5 View the version history of this server. The database is curated by: Flemming Scheutz, SSI (click to contact) Select species Listeria S. aureus Escherichia coli Enterococcus Select threshold for %ID 90 % • Select minimum length 60 % • Select type of your reads Assembled Genome/Contigs* • Isolate File Name Size **Progress** Status ① Upload


Search

The Comprehensive Antibiotic Resistance Database

A bioinformatic database of resistance genes, their products and associated phenotypes.

3907 Ontology Terms, 2492 Reference Sequences, 1207 SNPs, 2409 Publications, 2524 AMR Detection Models

Resistome predictions: 1358 chromosome, 1622 plasmid, 34883 WGS assemblies

Main limitations of WGS

- 1. Absence of genomes of many type strains

 Missing in ca. 50% of the bacteria species with validly
 published names (Chun et al., 2018)
- 2. Presence of mislabeled genomes
 27% (16701/62362) of the Whole Genome Assemblies (WGAs)
 studied by Yoon et al. (2017)
- 3. Absence of 16S rRNA genes in 6% (4285/69745) of the WGAs (Lee et al., 2017)
- 4. Contaminated genomes or chimeras

 0.9% (597/69745) detected using the ContEst16 (Lee et al., 2017)

Conclusions

- ➤ The isDDH, ANI and the MLPA are excellent tools to verify the identity of existing genomes and are extremely useful for defining new species and for recognizing strains.
- > The Orto ANI seems to be the best platform.
- ➤ The 16S rRNA gene should be sequence ca. 1500 bp using conventional sequencing approaches.
- The use of several methodologies in parallel show their individual limitations and help to determine with more precision the similarity of the genomes.
- > Quality control measure for genomes are essential.
- Update databases of virulence genes and ARG are needed.

NEWMICRORISK

2012-16

Laboratory of Virus Contaminants of Water and Food (MIRGONI)

Universitat Rovira i Virgili

Subproject 1:

VIRRECRISK 2012-16

BACTRECRISK

2015-2018

About ASM

- Oldest and largest life science organization in the world
- >47,000 members worldwide
 - · Membership starting at \$22
 - · Student discounts available
- 27 disciplines of microbiological specialization including a division for microbiology educators
- Meetings: ASM Microbe, BioDefense, and specialize conferences
- Professional Development: Workshops, Student Travel Awards, Fellowships, and more
- Publications: 13 journals 42% of all citations in microbiology. 100s of book titles in multiple languages

María José Figueras

Universidad Rovira i Virgili Spanish ASM ambassador

AMERICAN SOCIETY FOR

The mission of the ASM is to promote & advance the microbial sciences

> "ASM is a member driven society"

Victor DiRita, Ph.D.

2016 JOIN or RENEW

SOCIETY FOR