

European Food Safety Authority

Modelling approaches

Andy Hart, Central Science Laboratory; UK
Valencia workshop 8-11 May 2007

What is the current model?

- Exposure model: ETE equations, e.g.

$$ETE = \frac{FIR}{bw} \times C \times PT \times PD \times AV$$

- Toxicity model: lowest LD50 or NOEL
- Risk model: TER + uncertainty factor of 5 or 10

Why consider alternative models?

- To account for avoidance and metabolism
 - Frequently cited as factors reducing acute risk
- To account for non-dietary routes of exposure
 - Dermal: evidence from lab and field studies
 - Drinking water: evidence from incident reports
- An empirical model may give better predictions
 - Equations based on field data may predict mortality more accurately than the ETE-TER approach

Avoidance and metabolism (1)

- PPR Opinion on methamidophos
 - AV in current ETE equation is inappropriate
 - Avoidance usually cessation of feeding driven by dose, not a partial reduction driven by concentration
- PPR Opinion on pirimicarb
 - Proposed an alternative exposure-toxicity model
 - Improved representation of avoidance
 - Takes account of metabolism/elimination

$$Acute Dose = AVT \times e^{-k \times AVD} + \frac{(FPM \times C)}{(bw \times k)} \times (1 - e^{-k \times AVD})$$

Avoidance and metabolism (2)

- Working group:
 - Reviewed PPR pirimicarb model
 - Considered industry model under development
 - More explicit modelling of ADME processes
- Conclusions:
 - These approaches require more research before they could be recommended for routine use (e.g. 1st tier)
 - Premature to settle on a single model
 - Uncertainty about applicability to different substances
 - Uncertainty about extrapolation between species

- **Draft recommendations:**
 - Modelling of avoidance and metabolism can be one option for refined assessment
 - EFSA or industry approach may be considered
 - Model, assumptions and input data will require detailed explanation and justification in every case
 - Specialised dietary studies could also be considered
 - Assess effect of avoidance and metabolism directly for relevant species, and/or provide inputs for modelling
 - Study design and choice of species require detailed explanation and justification in every case

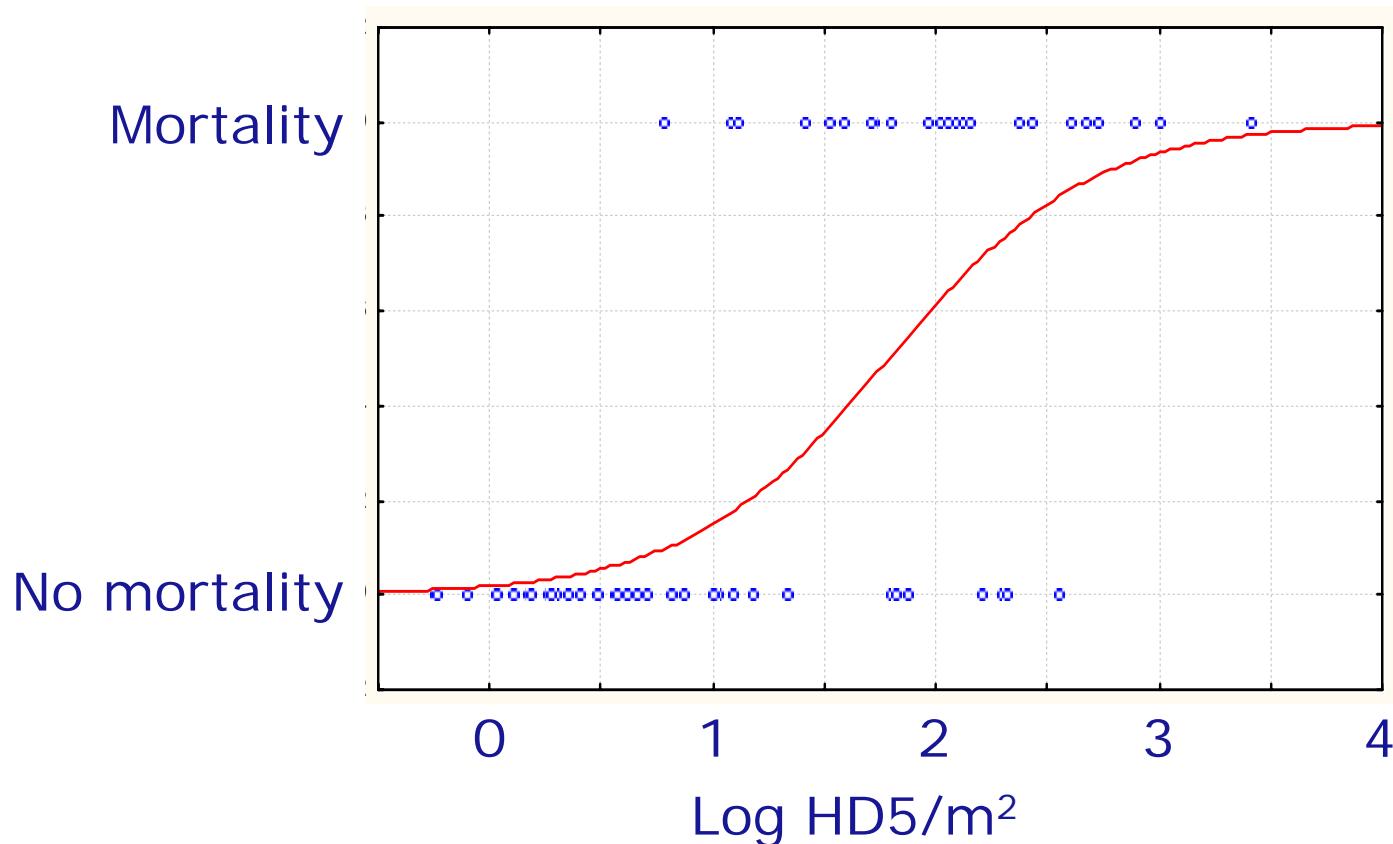
Evidence that dermal exposure can be important:

- Laboratory studies
 - Driver et al. 1991 – dermal contributed more than dietary for quail exposed to methyl parathion
 - CSL 2006/7 – dermal contributions measured for pigeons exposed to 3 different OPs
- Analysis of field data
 - Mineau 2002 – occurrence of avian mortality predicted by toxic potential ($HD5s/m^2$) and dermal toxicity index

Options for modelling dermal exposure:

- Theoretical model
 - ETE-style equations available in literature
 - But – deposition of substance on animal depends on behaviour and is very difficult to model
- Empirical model
 - Updated Mineau model correctly predicts occurrence of mortality in high proportion of avian field studies
 - But – need to resolve questions and uncertainties before recommending for regulatory use

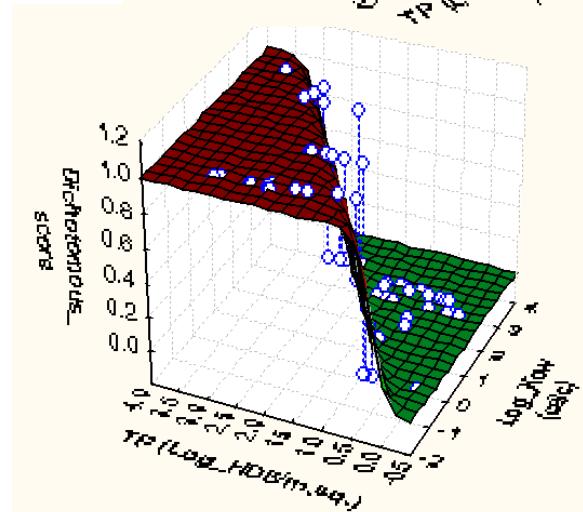
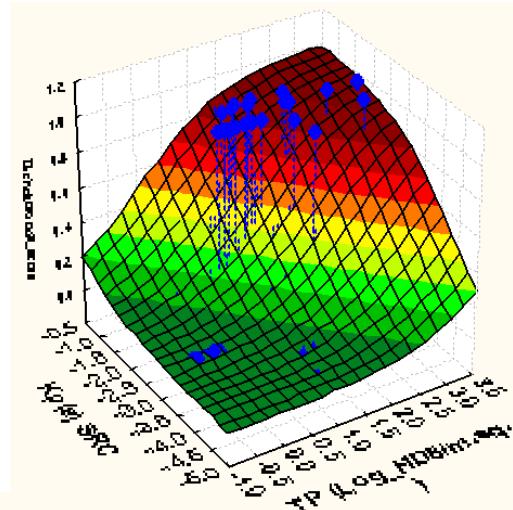
Analysis of avian field studies (1)


- Large number of studies collated by Pierre Mineau
 - All OPs and carbamates
 - Arable, orchard and forestry uses
 - Aerial, airblast and ground sprays
 - Most involved searching for dead birds
 - Some with residue analysis
 - Some with bird censuses
 - Some measured cholinesterase inhibition

Analysis of avian field studies (2)

- Mineau classified studies according to impact:
 1. No impact or slight, sublethal effects
 2. Compound-related mortality
- Looked for factors that can predict compound-related mortality
 - Original results published by Mineau (2002)
 - Updated analysis in preparation

Analysis of avian field studies (3)



- Risk of mortality is positively correlated with the number of lethal doses applied per square metre

Analysis of avian field studies (4)

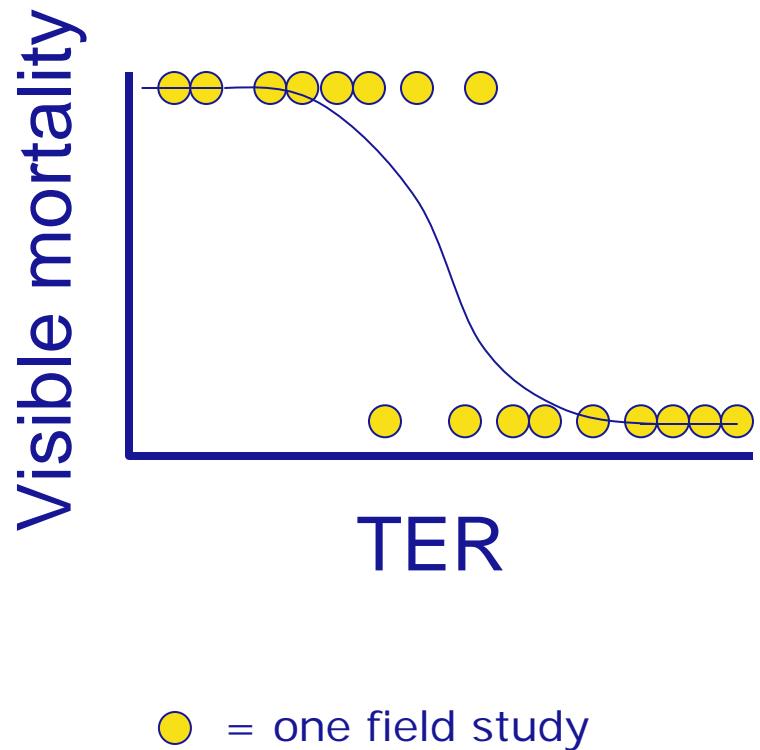
In addition to effect of toxicity:

- Indirect-acting substances:
high K_{ow} increases risk
 - OPs requiring activation
 - **72% predicted correctly**
- Direct-acting substances:
high K_{ow} decreases risk
 - Carbamates, OPs not requiring activation
 - **98% predicted correctly**

Analysis of avian field studies (5)

- Taking account of K_{ow} significantly improves prediction of mortality
 - Better than the existing ETE-TER approach
 - Ideally make use of this in risk assessment
 - Reduce frequency of false positives and negatives
- BUT
 - Mechanism of K_{ow} effect is uncertain
 - Direction of effect different for direct and indirect-acting anticholinesterases: reason not yet clear
 - Uncertainty about application to other chemistries
 - Some questions about quality and classification of field studies

Work group actions underway:


- Re-evaluate summaries of all field studies
- New classifications, taking account of uncertainty
 - Separate classifications by Mineau, CSL and industry
- Seek extra industry studies with different chemistries
- Seek expert advice on mechanisms involved
- Seek advice on relation to population effects

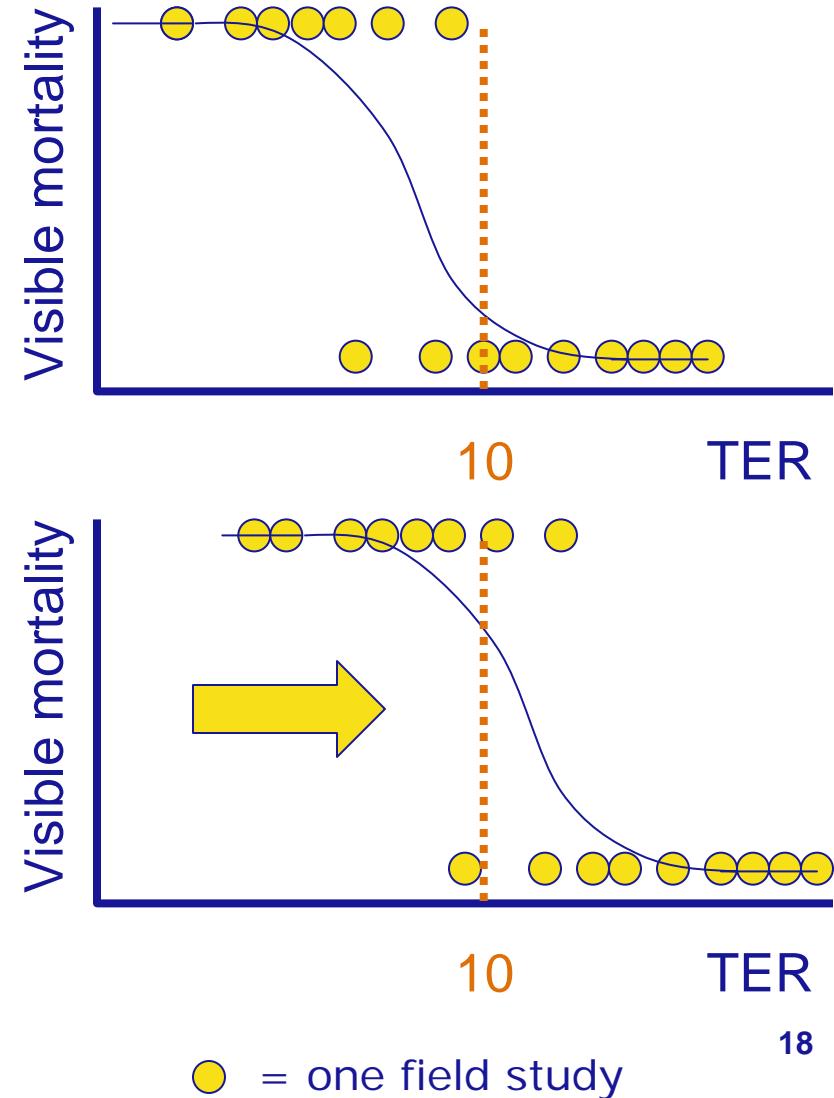
Possible outcomes

1. No use of field study model – if unreliable
2. Use field study model to replace ETE-TER
 - for all substances, or
 - for selected substances (e.g. anticholinesterases)
3. Use field study model as a check for when to consider dermal exposure
4. Use field studies to calibrate ETE-TER approach

Calibration of ETE-TER approach

- Apply proposed assessment procedure to each substance
- Compare TERs with impacts in field
 - where data exist!
- Estimate frequency of impacts at TER = 10

Calibration of ETE-TER approach


FIR/bw, PD	RUD, PT	Calibration factor (CF)	% visible mortality at TER=10	% substances fail at tier 1
Mean*	90 th %ile*	?	?	?

- Initial result may not give desired level of conservatism at TER = 10
- Introduce a **CALIBRATION FACTOR** to adjust level of conservatism

* Choice of value not yet decided, e.g. mean, 90%ile, 95%ile

Calibration of ETE-TER approach

- Apply proposed assessment procedure to each substance
- Compare TERs with impacts in field
- Estimate frequency of impacts at TER = 10
- Change calibration factor, recalculate TERs, estimate new frequency of impacts at TER=10
 - E.g. reduce CF, increase TERs
 - increase impacts at TER=10
 - reduce fail rate at tier 1/2

Calibration of ETE-TER approach

FIR/bw, PD	RUD, PT	Calibration factor (CF)	% visible mortality at TER=10	% substances fail at tier 1
Mean	90 th %ile	1	20*	50*
Mean	90 th %ile	0.8	30*	35*
Mean	90 th %ile	0.6	40*	10*

Choose CF to achieve desired level of conservatism

* Example for illustration – numbers are fictional

Calibration of ETE-TER approach

- Choice of calibration factor & level of conservatism will be left to the relevant authorities
- EFSA can advise on science, e.g. implications for populations

Calibration of ETE-TER approach

- Calibration only possible with appropriate field data
- Best dataset is for acute risks to birds
- Limited dataset on short-term population declines in small mammals
 - Calibration will be more uncertain
- Almost no data on reproductive effects on birds
 - Quantitative calibration not possible – Working Group will summarise available evidence qualitatively

Other routes of exposure

- Exposure via drinking water
 - Will provide ETE-style equations
- Exposure to solid formulations (incl. granules)
 - Some field studies available – analyse if time permits
 - Otherwise, refer reader to existing publications including SCP Opinion on fosthiazate

- Make best possible use of field study data
 - Partially or wholly replace ETE-TER in tier 1?
 - And/or calibrate ETE-TER approach
 - Accounts for combined effect of all factors influencing risk
- Tier 1 method for exposure via drinking water
- Approaches for solid formulations
- Refer reader to approaches for addressing avoidance and metabolism in refined assessments
- Some issues require longer term research

Questions for discussion

- We are considering to use an empirical model for RA for certain compounds. Your views on this idea would be welcome.
- We are proposing to calibrate the ETE equation using data from field trials. Is this a reasonable approach? Will this provide sufficient info for regulatory impact assessment?
- What could be the role of a body burden model in RA?