Risk Assessment Terminology

Professor Tony Hardy

Science Director

Central Science Laboratory

Sand Hutton, York, UK

4th Chairs Parma 4-5th Nov 2008

a.hardy@csl.gov.uk

Non-food Scientific Committees

DG SANCO current (post-EFSA establishment)

- Scientific Committee on Consumer Products (SCCP)
- Scientific Committee on Health and Environmental Risks (SCHER)
- Scientific Committee on Emerging and Newly Identified Health Risks (SCENIHR)
- DG SANCO (pre EFSA establishment, 2004)
- Scientific Committee on Cosmetic Products and Non-food products intended for Consumers (SCCNFP)
- Scientific Committee on Medicinal Products and Medicinal Devices (SCMPMD)
- Scientific Committee on Toxicity, Ecotoxicity and the Environment (CSTEE)

Contract review study for DG SANCO

Objective

- Comparative review of terms and expressions used by SCCP, SCHER, SCENIHR, SCCNFP, SCMPMD and CSTEE
- Purpose
- Assist current committees to identify best practice in the expression of complex ideas used in risk assessment

Scope

- Concluding sections of 100 example opinions (out of 632 opinions published 1998 2006)
- Specified types of terms and expressions

Main types of terms & expressions covered

- Nature of hazards identified
- Expression of risk
 - Qualitative expressions
 - Quantitative expressions
 - Expression of "*de minimis*" risk
- Expression of uncertainties
- Identification of missing information
- Overall conclusions
- Recommendations for action

Qualitative expression of uncertainty

ambivalent, appear, approximately, arbitrary, believe, borderline, cannot be assumed, cannot be excluded, considered, could, disagreement, estimated, expected, few/most, in general, incorrect, increasing evidence, indicate, likelihood, **may** (46), might, not detected/detectable, not established, open questions, outlier, perhaps, possible, potential, probably, prone to, reasonable, seem, should not, some, suggest, suspected, theoretically, uncertain (20) unclear, under- or overestimate, unexplained, unknown, variable

Main conclusions & recommendations

- Wide variety of verbal terms currently used
- Harmonisation unlikely to improve communication
- When quantitative estimates available, use them
- When the assessment depends on expert opinion, try expressing it quantitatively
- Adopt a systematic approach to uncertainty
- Avoid implying risk management judgements
- Explore new approaches with case studies?

EFSA approach adopted by **REACH**

				1
	SOURCES OF UNCERTAINTY		VARIABILITY	DIRECTION &
			OR	MAGNITUDE
			UNCERTAINTY	
HAZARD	Model	Source 1	VAR	_
ASSESSMENT	litouer		, The	
	Input	Source 2	UNC	+++
	parameters	Source 2	one	
	parameters	Source n	UNC	++/
		Source II	UNC	++/
	Overall effect on hazard estimate			
	E.g.: Mainly affected by overestimation from Source 2, which is u			ncertainty that
	may be reduced by			incertainty that
EXPOSURE	Scenario	Source 1	UNC	++
ASSESSMENT	Scenario	Source I	UNC	++
ASSESSMENT	Model	Source 2	VAR	
	Model	Source 2	VAK	+
		Source 3	UNC	+/-
		Source 5	UNC	+/-
	Input	Source 4	UNC	
	parameters	Source 4	UNC	-
	parameters			
		Source M		
		Source W		
	Overall effect on exposure estimate			
	E.g.: Mainly affected by overestimation from Source 1 and Source 2. Source 1 can			
	be reduced by means Data on variability of Source 2 out line that adopted			
	conservative assumptions are plausible only if			
RISK	Overall effect on risk estimate			
CHARACTERI	E.g.: The risk estimate appears to be overestimated mainly based on assumptions in			
ZATION	exposure assessment, that may be revised on the basis of further investigation			
LATION	exposure assessment, that may be revised on the basis of further investigation			

 REACH Chapter 19,
Table R.19-3 Uncertainty analysis (ECHA, 2008)

Points for discussion

- 1. Is it useful to develop a set of harmonised terms for strength of evidence and other dimensions of risk?
- 2. What approaches could be considered for evaluating and expressing uncertainties, in addition to those mentioned above?
- 3. Is there a need to review the types of participation, the types of evidence admitted and approaches to the weighing of evidence by scientific committees?
- 4. What types of activity are required for progress on these issues in the short and medium term?
- 5. Would it help to develop case studies based on practical examples of risk problems?