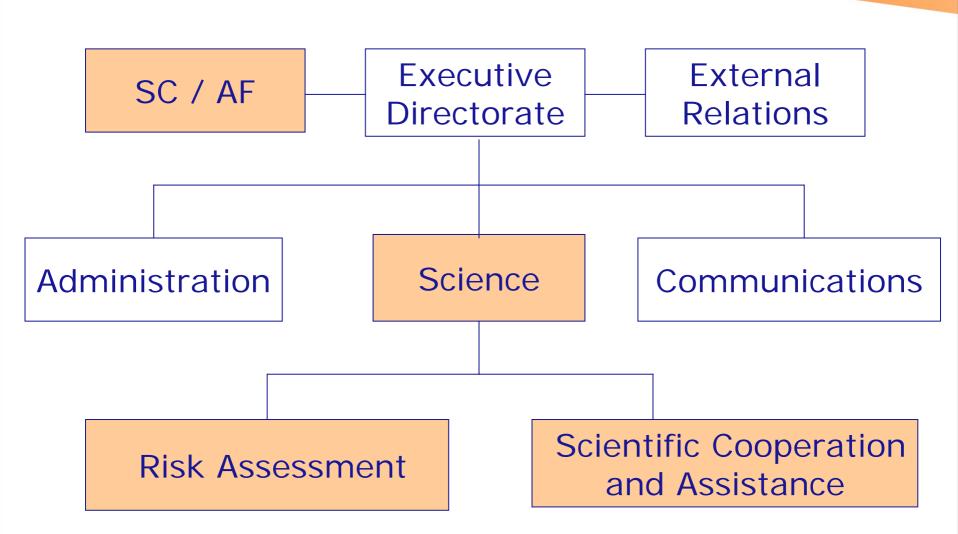


Scientific symposium on food safety, nutrition and nanotechnology

HERMAN B.W.M. KOËTER

Deputy Executive Director and Director of Science


EFSA Mission and tasks

- Provision of scientific advice and scientific and technical support for the Community's legislation and policies in all fields which have a direct or indirect impact on food and feed safety - including nutrition, plant health and animal health/welfare;
- Provision of independent information on all matters within these fields;
- High level of scientific excellence, independence and transparency;
- Risk communication.

EFSA Science

Science Directorate

Department of Risk Assessment (RA)

comprising 9 Panel Support Units:

- > AFC
- > AHAW
- > BIOHAZ
- > CONTAM
- > FEEDAP

- > GMO
- > NDA
- > PLH
- > PPR

Science Directorate

<u>Department of Scientific Cooperation and Assistance (SCA)</u>

comprising:

- Data collection and exposure (DATEX) Unit;
- Scientific cooperation (SCOOP) Unit;
- Emerging risks (EMRISK) Unit;
- Assessment methodology (ASMET) Unit;
- Pesticides risk assessment (PRAPeR) Unit;
- Zoonosis Unit.

Scientific activities (work themes):

- Providing scientific opinions, guidance and advice in response to questions;
- Assessing the risk of regulated substances and development of proposals for risk-related factors;
- Monitoring of specific animal health risk factors and diseases;
- Development, promotion and application of new and harmonized scientific approaches and methodologies for hazard and risk assessment of food and feed.

Scientific cooperation is essential to the success of EFSA

Working together

Keywords:

- Transparency: implies openness, communication and accountability
- Harmonization: removing discrepancies between different approaches

Transparency in science

Scientific considerations:

- Strengths, robustness and limitations of the data used for risk assessment;
- Description of underlying assumptions and uncertainties which provide the reasoning for conclusions;
- Criteria for inclusion or exclusion of available scientific information an selection of pivotal studies;
- Science-based justification for the need for studies (stepwise risk asessment).

Harmonization in science

Considerations:

- International agreement on Good Risk Assessment Practices (GRAP);
- Development of Guidance Documents on scientific aspects of risk assessment, including:
 - o Exposure assessment
 - o Assessment of genotoxic carcinogens
 - Hazard characterization

Scientific cooperation = working together = making use of contributions of others = developing truly European opinions

Investing in food science

Focus areas:

- Harmonization of detection methodology for chemical and microbiological contaminants in food/feed;
- Improving the risk assessment process (e.g., environment, transparency, animal health and welfare, specific substances);
- Methodologies to detect and recognise emerging risks;
- Exposure assessment modelling (chemical and microbiological).

Investing in food science

Scientific cooperation projects:

- Harmonization of risk assessment methodologies;
- Risk assessment of botanicals;
- Risk assessment of nanomaterials applied in food and feed;
- Fortification of food with folic acid;
- Identification of emerging risks;
- Establishment of European databanks (national experts, food consumption data, chemical occurrence data)