

Overview

- Past
 - MedVetNet WP 24: a comparison of "Campylobacter in broiler meat risk assessments" in Europe
- Present
 - A consensus framework: CRAF
- Future
 - Challenges of European Campylobacter QMRA

Risk assessment: what do I mean?

- Food chain risk assessment
- Model describes transmission and survival of Campylobacter in the broiler meat chain: changes in distribution of concentrations
- Exposure assessment
 - + Dose response = risk
- Quantitative Microbiological Risk
 Assessment (QMRA) is still developing!

Why we need risk assessment

- Relative risk estimates
 - The effects of control measures
 - Comparison of interventions all over the food chain
- Added value
 - food chain data
 - epidemiology
 - below the detection limit
 - check our understanding
- Indispensable for PO / target setting

Campylobacter in broiler meat risk assessments in Europe

• UK	Hartnett	2001
Denmark	Rosenquist, Christensen	2003
 Netherlands 	Havelaar, Nauta	2005
Germany	Brynestad 2	
• Belgium	Uyttendaele	2006
	Gellynck, Messens	2008
Sweden	Lindqvist, Lindblad	2008
• Italy	Calistri, Giovannini	2008

MedVetNet Workpackage 24

March 2006 - June 2009

- Objective: consensus on Campylobacter QMRA?
- UK, DK, GE, NL models compared
 - Input from New Zealand and FAO/WHO risk assessment
- Differences
 - objectives
 - approach
 - models
 - results

Similar conclusions

Different objectives

- Gain risk assessment modelling experience
- Human incidence estimation
- Evaluation of risk reduction after intervention and control
 - general
 - specific interventions
 - incl. economic analysis
- Interaction with risk management

Differences between models

- objectives
- expertise of modellers
- national differences
- data and/or expert opinion
- statistical description and/or dynamic model
- details included in the models
- channel assignment
- end product
 - whole carcass
 - specific product
 - side dish
- but all use quantitative risk assessment
 - probabilistic models

Differences between model results

example

Three chicken processing models with the same input

- different dynamics
- similar end results
- similar effects of interventions (?)

Different end results?

- Varying human incidence estimates
 - Differences in models, (national) data and assumptions
 - Risk estimates are uncertain
 - Not easy to decide what is the "main cause" of differences in results
- Evaluation of risk reduction after intervention
 - In general similar, despite quantitative differences
 - Relative risk estimates are less uncertain

Similar conclusions (1)

 Farm models predict many low prevalent flocks at the farm that may not be detected

False negative flocks occur frequently

Similar conclusions (2)

- "Logistic slaughter" has little effect
 - No growth of Campylobacter in processing environment
 - Each model MUST predict that concentrations on carcasses of cross contaminated flocks are lower

Data:

- Typing shows *Campylobacters* are transmitted from one flock to the other (e.g. Miwa et *al.* 2003)
- Transferred quantities are small (Johannessen et al. 2007)

Similar conclusions (3)

High concentrations pose the largest risks

Nauta et al, unpublished results

- targetting high concentrations is an effective intervention
- get data on *distributions* of concentrations, not just *means*
- confirmed by Callicott et al. (2008)

Conclusions from WP 24

- QMRA model must be fit for purpose
 - different purposes require different models
 - balance between simple and complex
- Many modelling methods explored
 - try to combine the good qualities of different models
- Similar conclusions!
 - useful insights for risk managers
- No consensus European Risk assessment <u>Model</u>
 - no single purpose, many national differences
- Towards a consensus <u>Approach</u>
 - development of Campylobacter Risk Assessment Framework (CRAF)

Campylobacter Risk Assessment Framework CRAF

- Software tool for risk assessors
- Structured information on five Campy QMRAs
- Compare and link models for modules
- An aid to make your own Campylobacter QMRA

19 February 2009:

The Final General Meeting of MedVetNet Workpackage 24

INVITATION

20 February 2009:

Campylobacter Risk Assessment Framework (CRAF)
Training Course

hosted by BfR in Berlin

New Campylobacter QMRA in Europe (1)

- Baseline data from caeca and neck skins
- Challenge: how to relate those data to risks?
 - QMRA models don't have either of them as inputs
 - Data don't always show a good link caecal samples meat products; why not?

product

caeca			
	-	+	tot
-	17	19	36
+	4	22	26
tot	21	41	62

source: Nauta, Bolder et al, in prep.

New Campylobacter QMRA in Europe (2)

Target setting: link with human health risks

Quantitative distribution

Differences between member states

How to model the differences for each MS? How important are those?

Take away messages

• Much Campylobacter QMRA experience in Europe,

but

- different objectives and approaches
- different results

still

- similar and useful conclusions
- European Campylobacter QMRA needs
 - a clear objective
 - further development of QMRA modelling
 - integration of good ideas
 - balance between complexity and simplicity
 - incorporation of differences between MS

