

Tier 2 Effects and Risk Assessment - laboratory toxicity tests

Dan Pickford

Higher Tier Laboratory Tests

Reduce uncertainty in the risk assessment

- improved exposure scenarios
- more information on inter-species variation in sensitivity

Additional studies from Literature

Legal requirement in Data Requirements to submit data from peer-reviewed scientific literature

Data Quality important:

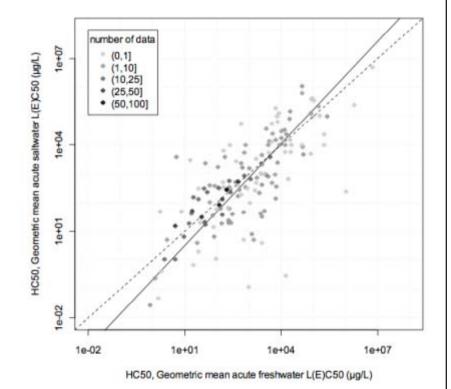
- statistical power
- verification of measurement methods
- control of experimental conditions
- universality of effects in validated test systems
- biological plausibility of results
- uniformity among substances with similar attributes

EFSA (European Food Safety Authority), 2011. Submission of scientific peer-reviewed open literature for the approval of pesticide active substances under Regulation (EC) No 1107/2009. EFSA Journal 2011;9(2):2092, 49 pp. doi:10.2903/j.efsa.2011.2092.

Freshwater vs Marine

Article 3

Definitions

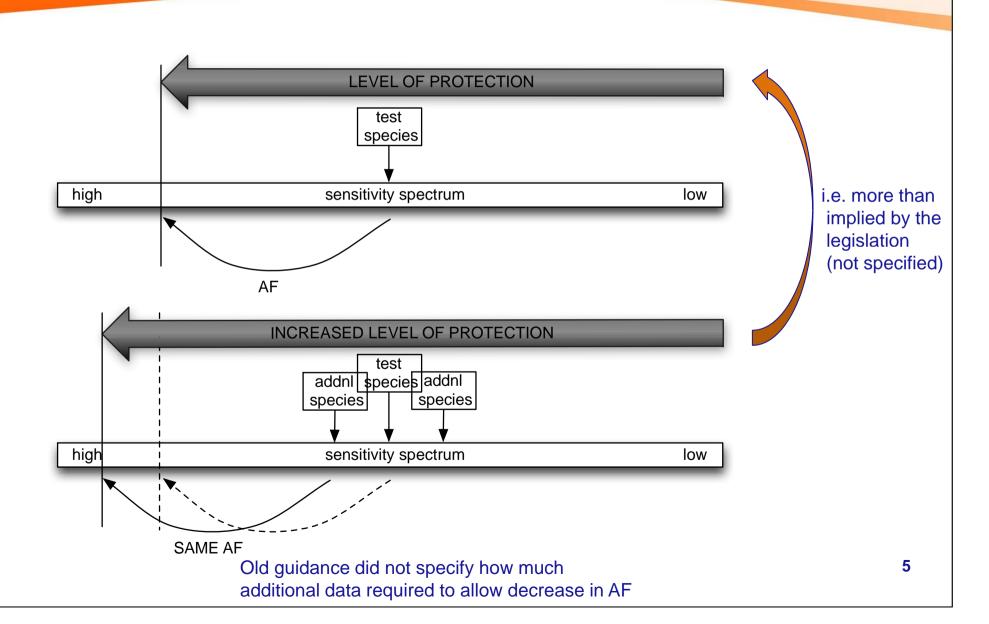

For the purposes of this Regulation, the following definitions shall apply:

13. 'environment' means waters (including ground, surface, transitional, coastal and marine), sediment, soil, air, land, wild species of fauna and flora, and any interrelationship between them, and any relationship with other living organisms;

No marine species in data requirements (except *A. bahia*)

but potentially admitted through open literature requirement...

- relevance to edge of field surface waters?
- salinity and test conditions
- relative sensitivity



Klok C, de Vries P, Jongbloed R and Tamis J, 2012. Literature review on the sensitivity and exposure of marine and estuarine organisms to pesticides in comparison to corresponding

fresh water species. Supporting Publications 2012:EN-357. [157 pp.].

Level of Protection

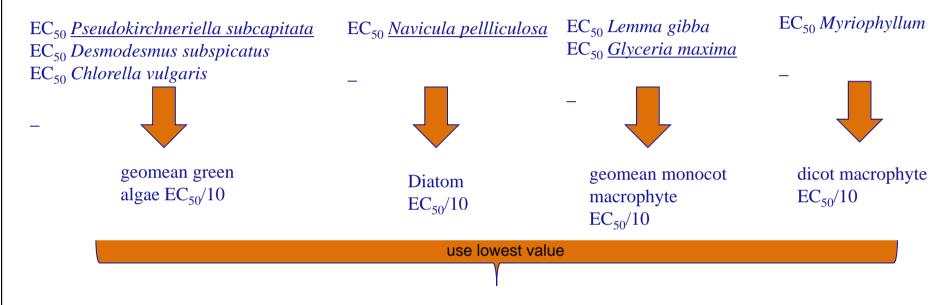
Geomean

Previous Approach

Taxa where only 1 species required:

- species sets level of protection
- with additional species: apply current AF to the geomean (Option 1, EFSA 2006*)

Taxa where 2 species required:

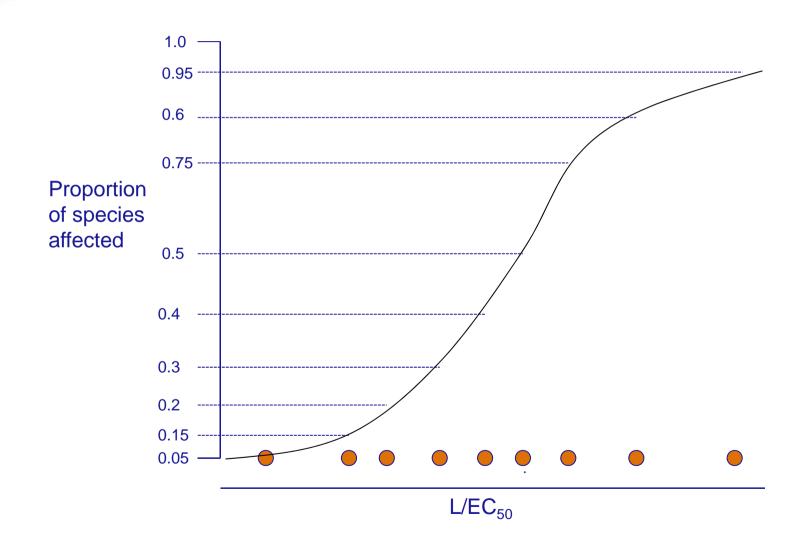

- higher level of protection implied
- with additional species: take 2nd/3rd most sensitive value (Option 2, EFSA 2006*)

Current Guidance:

where more species are available than the Tier 1 requirements use the Geomean

Deriving RAC geomean

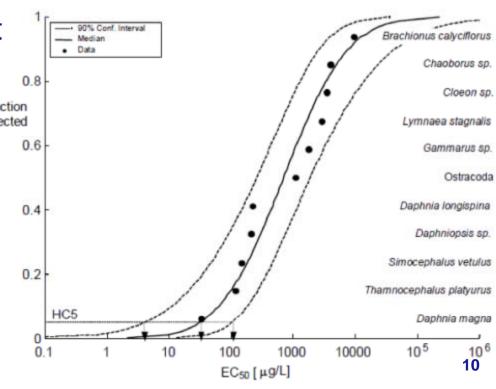
- taxonomic groupings must be scientifically justified i.e. consistent with data
- use Tier 1 taxonomic groupings as default
- use geomean value of most sensitive taxonomic group to generate RAC_{geomean}
- may be insensitive to a.s. with novel modes of action eg IGRs


How many values for RAC_{geomeans}?

Taxonomic group	No species values	RACgeomean Ecx/AF	Relevant environmental concentration
Acute Toxicity			
Aquatic vertebrates	< 5 acute LC ₅₀ s	geomean LC ₅₀ /100	PEC _{sw;max}
Aquatic inverts	< 8 acute EC ₅₀ s	geomean EC ₅₀ /100	PEC _{sw;max}
Chronic toxicity			
Aquatic vertebrates	< 5 chronic EC ₁₀ s or NOECs	geomean EC ₁₀ /10	PEC _{sw;max} or PEC _{sw;twa}
Aquatic inverts	< 8 chronic EC ₁₀ s or NOECs	geomean EC ₁₀ /10	PEC _{sw;max} or PEC _{sw;twa}
Primary producers	< 8 chronic EC ₅₀ s or NOECs	geomean EC ₅₀ /10	PEC _{sw;max}

Species Sensitivity Distributions SSDs

SSDs - HC₅

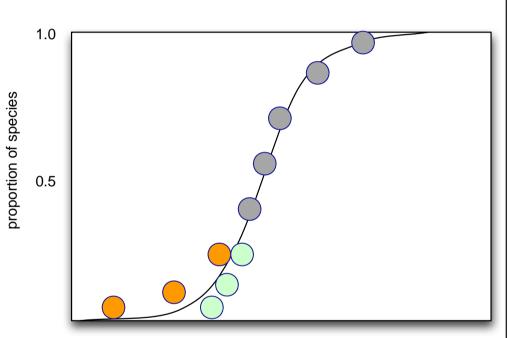

Probabilistic approach to better estimate toxicity to a wide range of organisms

Statistical distribution estimated from lab tox data

All species have equal weight

Estimate a concentration at Fraction Affected which a specified proportion of species expected to experience toxicity

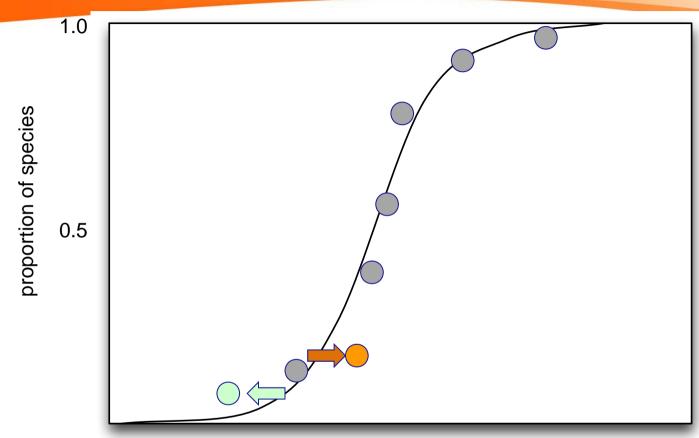
- HCx


Statistical considerations

Expect log-normal/log-logistic distributions

Tests for normality sensitive to amount of data

Judgement at lower end


L/EC50 (concentration)

Follow HARAP recommendations:

- separate SSDs for acute and chronic
- minimum of 5 species for fish
- otherwise minimum of 8 species

Unbounded values

L/EC50 (concentration)

Only use unbounded value if it lies outside the range of other values

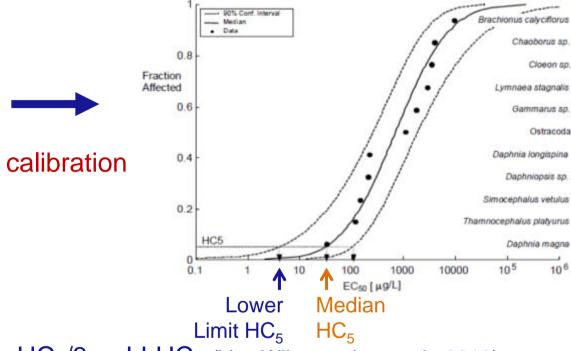
Selecting taxonomic groups for SSDs

Guided by Tier 1 data – SSD for sensitive taxonomic groups (>10 x)

Guided by mode of action

example 1. Auxin inhibitor herbicide may require macrophyte-only SSD

Use largest taxonomic grouping whose distribution gives an acceptable goodness of fit


example 2. for an insecticide, if an arthropod SSD gives a good fit, don't use a smaller grouping (insects or crustaceans)

example 3. for a general biocidal fungicide, use all aquatic organisms (ideally from <a>6 orders/families)

Calibration wrt Mesocosms

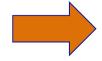
Insecticides: acute Median HC₅/3 or LLHC₅ (Van Wijngaarden et al., 2013)

Herbicides: LLHC₅ (acute) or median HC5 (chronic) (Van den Brink et al., 2006)

Fungicides: acute Median HC₅/3, LLHC₅, median HC₁ (Maltby et al., 2006)

Median HC₅/3 or LLHC₅ protective of longer term exposure due to single or repeated pulse exposure (Maltby *et al.*, 2009)

Calibration wrt real world


calibration

Variability in mesocosm data

- low replicate number
- effects thresholds
- community composition

Representativeness of real world

Additional AF – 2 for effects class 1 2-3 for effects class 2

SSD-RAC_{sw;ac}

Derivation RACs protective for Field exposure characterised by single and repeated pulses

- Vertebrates: Median HC₅/3 (based on NOEC/LC₁₀) or Median HC₅/9 (based on LC₅₀)
- Invertebrates: Median HC₅/3-6 (i.e. 3 x [1 or 2]) (based on LC/EC50 from standard or prolonged acute tests)

Factors to consider in selecting AF for invertebrate SSD-RAC

- Representativeness of the acute toxicity data (including EPT taxa?)
- Confidence limits of the distribution (higher if $LLHC_5 < 1/3$ median)
- Comparison to RACs from other tiers
- Steepness of the SSD curve (steeper higher AF)
- Read across from compounds with similar MOA
- Consideration of chronic effects (higher ACR- higher AF)

Chronic SSDs

Limited experience, less available data

More variability in endpoints

- comparability across taxonomic groups

Relevance of exposure duration

– what constitutes chronic?

Uncertainties arising from use of NOECs

Combine EC10 (preferred) and NOEC

 $SSD-RAC_{sw:ch} = median HC_5/3$

	Taxon. Group and Type of effect	Relevant PEC	Hazardous concentration	AF to derive RAC
	Invertebrates acute and chronic effects after single / repeated pulse exposure	PEC _{sw;max}	 Latency of effects NOT expected: Median HC₅ from L/EC₅₀ data from acute tests Latency of effects EXPECTED: Median HC₅ from <i>prolonged</i> acute tests or use chronic. 	3-6
	Invertebrates chronic effects after long-term exposure	PEC _{sw;max} or PEC _{sw;twa}	Median HC ₅ from chronic NOEC and/or EC ₁₀	3
	Primary producers	PEC _{sw;max}	Median HC ₅ from EC ₅₀ data	3
**************************************	Vertebrates acute effects/risk assessment	PEC _{sw;max}	 Latency of effects NOT expected: Median HC₅ from 96h NOEC and/or acute LC₁₀ data Or Median HC₅ based on 96h LC₅₀ or EC₅₀ data Or if latency of effects is expected go to chronic effects assessment 	3
	Vertebrates chronic effects and long-term exposure	PEC _{sw;max} or PEC _{sw;twa}	Median HC ₅ from chronic NOEC and/or EC ₁₀	3

Tier 2C: refined exposure lab tests

- Option if predicted exposure profiles differ substantially from exposure profile in standard tox tests
- Should use however realistic worst-case exposure profile
- Tests need to be long enough to allow expression of maximum effects, usually prolonged tests needed
- Usually performed with standard tier 1 species
- RAC should always be expressed as peak concentration in the test and compared to PEC_{swmax}

Summary

- Tier 2A (Geomean) and 2B (SSD) refine effects assessment by using more species data
- Geomean method where insufficient data is available for SSD – will still reduce uncertainty relative to single species test in Tier 1
- SSD allow probabilistic methods confidence intervals on hazardous concentrations
- Considerations on inclusion/exclusion of taxonomic groups important
- Selection of AF to reflect confidence in the data
- Tier 2C allows addressing the exposure side in the lab tests