A review of honeybee models and a short introduction to the new integrated colony model BEEHAVE

Volker Grimm
Presentation based on project: Honeybee population dynamics: integrating the effects of factors within the hive and in the landscape (Rothamsted Research, UK, 2009-2013). Co-funded by BBSRC (88%) and Syngenta (12%)

Matthias Becher*, Pete Kennedy*, Jenny Swain, Judy Pell, Juliet Osborne*: Rothamsted Research, UK
 *Current address: University of Exeter

Dave Chandler, Sally Hilton: University of Warwick

Pernille Thorbek: Syngenta

Volker Grimm: UFZ
Grimm V, Becher MA, Kennedy PJ, Thorbek P, Osborne J.
Ecological modeling for pesticide risk assessment of honeybees and other pollinators. In: Fischer D, Moriarty T.

Becher MA, Thorbek P, Kennedy PJ, Osborne J, Grimm V.
Towards a systems approach for understanding honeybee decline: a stock-taking and synthesis of existing models.

Becher MA, Thorbek P, Kennedy PJ, Grimm V, Osborne J.
<BEEHAVE: an integrated model of honeybees dynamics>. To be submitted to Journal of Applied Ecology (within next 4 weeks)
Three categories of models:

1. Within-hive colony dynamics (8)
2. Varroa mite population dynamics within hives (11)
3. Foraging (12)
1. Within-hive colony dynamics

Most important models:

- BEEPOP (deGrandi-Hoffmann et al. 1989): beekeeping management
- HoPoMo (Schmickl and Crailsheim 2007): science (drivers, feedbacks)
- Khoury et al. (2011): Impact of forager mortality on colony development
2. Varroa mite population dynamics

Most important models:
- Martin (1998): understand varroa effects on honeybees, beekeeping management
3. Foraging

Most important models: hard to tell

- Most models use "energetic efficiency" as basis for foraging decisions
- None of the models linked to colony dynamics, explicit landscape structure and dynamics, or pollen collection
Representation of stressors

<table>
<thead>
<tr>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Genetic diversity</td>
<td></td>
</tr>
<tr>
<td>Varroa mites</td>
<td>+</td>
<td>+</td>
<td>(+)</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>(+)</td>
<td>(+)</td>
<td>+</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>+</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Viruses</td>
<td></td>
</tr>
<tr>
<td>Bacterial pathogens</td>
<td></td>
</tr>
<tr>
<td>Nosema spp.</td>
<td></td>
</tr>
<tr>
<td>Loss of forage quantity</td>
<td></td>
</tr>
<tr>
<td>Forage nutritional quality</td>
<td></td>
</tr>
<tr>
<td>Beekeeping practice</td>
<td>(+)</td>
<td>(+)</td>
<td>(+)</td>
<td>(+)</td>
<td>(+)</td>
<td>(+)</td>
<td>(+)</td>
<td>+</td>
<td>(+)</td>
<td>(+)</td>
<td>(+)</td>
<td>(+)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>+</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Pesticides – inside hive</td>
<td></td>
</tr>
<tr>
<td>Pesticides – outside hive</td>
<td></td>
</tr>
<tr>
<td>Forager death unknown cause</td>
<td>(+)</td>
<td>(+)</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>(+)</td>
<td>+</td>
<td>(+)</td>
<td>(+)</td>
<td>(+)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>+</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Conclusions from review

- Model **testing, validation, and analysis** of most models was very limited
 - No clear separation of **imposed** and **emergent** dynamics
 - No clear indication of how much **calibration** was involved
 - Limited or no **sensitivity analysis**
- For foraging models, a **benchmark** test exist: the Seeley et al. (1991) feeder experiment
Conclusions from review

- **Well-tested building blocks** exist in existing models.
- A model that would allow **integrating stressors** within and outside the hive does not yet exist.
- Colony structure and important **feedback loops** need to be included (e.g., "age of first foraging").
- **Egg-laying rate, weather, colony structure, and availability of nectar and pollen** should drive the dynamics.
BEEHAVE: developed by Matthias Becher
Colony module (in-hive, daily time steps):
- Similar to BEEPOP
- Feedbacks: brood care, amount of honey and pollen
- Consumption of nectar and pollen

Varroa module (daily time steps):
- Similar to Martin (2001)
- Transmits either deformed wing or acute paralysis virus

Foraging module (minutes):
- Driven by energetic efficiency
- Can be linked to heterogeneous and dynamics landscape
- Includes pollen collection
Automated calculation of:
- number of patches
- distance to apiary
- area of patch
- chance to find the patch
- crop type (colour)
Implemented in **NetLogo** (free software platform)

Documented in **ODD** format (ca. 40 pages)

User **manual** and **guided tour** exist (ca. 60 pages)

Extensive **testing** (debug code, consistency tests, visual output)

Validation:
- Age of first foraging, lifespan
- Number of reproductive cycles of varroa in a year
- Seeley's feeder experiment
Colony Module

- Structure of in-hive cohorts & drones

Foraging Module

- Feeders & flower patches
 - Quantity of nectar/pollen
 - Distance to colony

Varroa Module

- Healthy & infected mites

Beekeeping

- Honey harvest
- Feeding
- Varroa treatment

Further Input Fields

- Flower patches
- Colony stores
- Egg-laying

Run Buttons & Output-Plots
1st Example Scenario

NO VARROA

N initial bees: 10000

2 patches:

- Distance: 1500 m 500 m
- Nectar concentration: 1.5 mol/l 1.5 mol/l
- Pollen (max): 1 kg/day 1 kg/day

Nectar flow:

Daily foraging period based on real weather:
1st Example Scenario

N adult workers (10 colonies) - no varroa – flower patches at 500 & 1500 m

10 surviving colonies
2nd Example Scenario

N adult workers (10 colonies) - with varroa and DWV
– flower patches at 500 & 1500 m

5 surviving colonies
3rd Example Scenario

N adult workers (10 colonies) - with varroa and DWV
– flower patches at 250 & 1500 m

8 surviving colonies
3rd Example Scenario

N adult workers (10 colonies) - with varroa and DWV – close flower patch: 250, 500 & 1000m

First combination of foraging AND Varroa model:
Improved food availability can compensate loss of diseased bees
No varroa – nectar feeder at 1000 m - sugar concentration 1.0/1.5 mol/l – double mortality per foraging trip for 30 days (equivalent to increase in forager mortality from ca. 15 to 30%) (similar to Khoury/Henry scenario)
BEEHAVE: to do list

Get it published as soon as possible

- Designed so that others can test and use it
- Offer training courses, workshops

2 PhD students currently working on

- Multiple stressors, landscape structure and dynamics (Juliane Horn, UFZ)
- Specific pesticide module (Jack Rumkee, Univ. Exeter/Syngenta)

From one to many colonies
Summary

• Three types of models (within-hive, varroa, foraging)
• Well-tested modules exist, but no integrated model
• BEEHAVE: first attempt to link within-hive dynamics to foraging in heterogeneous and dynamic landscape
• BEEHAVE (or refinements) would be suitable for regulatory risk assessment
Acknowledgements

Juliet Osborne
Matthias Becher
Peter Kennedy
Judith Pell
Jennifer Swain

(now at ESI, Univ. Exeter)
(now at ESI, Univ. Exeter)
(now at ESI, Univ. Exeter)
(now at J.K. Pell Consultancy)

David Chandler
Gillian Prince
Sally Hilton

Juliane Horn

Peter Campbell
Pernille Thorbek

International advisors:
Keith Delaplane
Steve Martin
Peter Neumann
Thomas Schmickl
Foragers:

- Foraging
- Resting
- Searching
- Collect nectar/pollen
- Dancing
- Unloading
- Leaving hive?
- Experienced?
- Good patch?
- Dying?
- Found a patch?
- Abandon patch? Stop foraging?

repetitions depending on weather conditions