Toxicological studies Part IV

CORE AREAS FOR EVALUATION

- Toxicokinetics (ADME)
- Genotoxicity
- **Toxicity** (subchronic, chronic, carcinogenicity)
- Reproductive & Developmental toxicity
- Additional studies (immunotoxicity, neurotoxicity, human, etc)

OBJECTIVES

- Implementation of characterisation of hazard
- Dose response data for risk characterisation

Design Considerations – Toxicity studies

Rationale

- Tiered approach (balancing data requirements against other considerations)
- Experimental studies and human data

Design of toxicological studies — Issues to consider

- compliance with EU standards & regulations (i.e. welfare standards)
- principle of the 3 Rs and animal welfare
- toxicity studies should comply to international agreed test guidelines (e.g. OECD) and performance standards (e.g. GLP)
- Administration route: oral

Toxicokinetics (ADME)

David Gott

Vice-chair of the ANS Panel

Chair & Rapporteur - WG Guidance on Food Additives

Stakeholders workshop 21 September 2012, Brussels

Toxicokinetics

OBJECTIVE

Describe the systemic exposure of the food additive and its relationship to dose levels.

RATIONALE

Selection for appropriate species & doses for toxicity testing

General Considerations

Aims of toxicokinetics testing:

- determine systemic absorption to the chemical and its metabolites
- understanding of processes involved in ADME
- define possible species differences

End-points of interest:

- systemic exposure/systemic availability
- absorption, distribution, metabolism
- mechanisms of toxicity

Other considerations:

- toxicologically relevant constituents
- matrix effect
- negligible absorption

Negligible absorption

Demonstration of negligible absorption either through experimental studies or from theoretical considerations

CONSIDERATIONS

Physicochemical parameters:

chemical structure, molecular weight, octanol water partition coefficient, aqueous solubility, molecular shape, charge & dissociation constants

Study design parameters:

% of absorption, robustness of study design and performance, sensitivity & specificity of methods of detection, detection limits, amount in faeces, dose accountancy

Other parameters:

likelihood of persistence in tissues, predicted metabolic stability, results of tier 1 testing

Toxicokinetics - Tiered approach

TIER 1 (applicable to all additives)

Absorption studies & in vitro gastrointestinal metabolism

End-points of interest:

- Absorption from GI tract
- Stability in GI tract

Testing requirements:

- absorption (in vitro, in vivo & ex vivo models)
- stability of the compound (in vitro GI metabolism & other models)

Toxicokinetics - Tiered approach

TIER 2 (applicable to additives with systemic availability)

Define distribution, metabolism & excretion, and other toxicokinetic parameters (single dose)

End-points of interest:

- 'where it goes'
- 'what happens to it'
- 'how quickly it is removed'

***** Testing requirements:

- in vivo assessment of ADME
- Toxicokinetics (OECD TG 417)

Toxicokinetics - Tiered approach

TIER 3 (triggered by limited excretion or bioaccumulation)

Define toxicokinetic parameters (repeated dose)

End-points of interest:

- ADME (repeated dose-animals)
- Other studies (predict ADME in humans)
- Volunteer studies (humans)

Testing requirements:

- repeated dose studies in animals
- human kinetic studies (volunteer studies)