

Challenges in assessing combined exposure to chemicals in Finland

Johanna Suomi

senior researcher

Risk Assessment Unit, Finnish Food Authority

73rd meeting of the EFSA Advisory Forum

18.9.2019

Combined exposure to chemicals: why and how?

- Consumers exposed to numerous chemicals through food (and other pathways)
- Risk assessments focus on one chemical at a time
 - Practical for control, but
 - May underestimate total risk from chemicals with same effect and MoA
- Relative potency factors based on dose-response data for the same effect

$$Exp_{mix} = RPF_1 \times Exp_1 + RPF_2 \times Exp_2 + RPF_3 \times Exp_3 + \cdots$$

Current status of cumulative exposure assessment

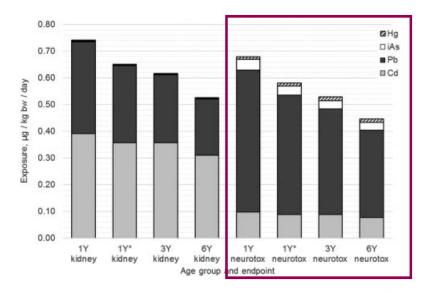
- Focus has mainly been on pesticides, but other foodborne compounds also may be of interest in food safety.
- Tools to assess cumulative exposure have been developed
 - MCRA tool (further developed in EuroMix project) so far the only published European tool
 - Other tools can also be utilised, if combined exposure function is included in the model.

What data are needed for assessment?

- 1. Consumption data (relevant foods, population subgroups)
 - ✓ Often easiest to obtain, although surveys expensive, % of participation.
- 2. Occurrence data for all studied chemicals in these foods
 - ✓ Comprehensive, good quality data
 - ✓ Monitoring data may not be enough; for best results, all compounds studied from same samples
- 3. Toxicological data for all studied chemicals
 - ✓ Dose-response data for all possible end points, info on mode of action for tox effect. Same species, same response.
 - ✓ Difficult to obtain for many chemicals

Finnish pilot: cumulative heavy metal exposure

- Finnish children (1Y 6Y)
- Cd, Pb, inorg As, inorg Hg or methyl Hg
- Effects studied: nephrotoxicity and neurotoxicity
- Assumption of additive effect.
- Comparability of available tox data?
 RPFs for neurotoxicity ← effects on human intelligence (MeHg, Pb),
 neuropathy in human (iAs) or mouse neurological damage / 100 (Cd).
- Literature suggests Cd and As also affect human intelligence, but no dose info → assumption that the dose is ≤ found values



https://doi.org/10.1080/10807039.2017.1314760

Finnish pilot: cumulative heavy metal exposure

J. SUOMI ET AL.

Neurotoxic effects in these age groups mainly through lead exposure ... the children consumed little fish

/ seafood.

Figure 1. Levels of heavy metal exposure at age group mean level. Age group "1Y*" consists of 1-year-olds who were still breastfed at the time of consumption data collection. Nephrotoxic endpoint results are marked by "kidney" and neurotoxic endpoint results by "neurotox." Cd cadmium; Pb lead; iAs inorganic arsenic; for nephrotoxic endpoint Hg is inorganic mercury and for neurotoxic endpoint methyl mercury.

https://doi.org/10.1080/10807039.2017.1314760

- In the long run we should study: combined exposure to food improvement agents, mycotoxins, other contaminants, any mixture of these groups...
 - MSs only, or also assisted / funded by EFSA?
- Establishing, supporting an open database for toxicological data!
- Open access to (some of the) data in EFSA Data Warehouse?

Thank you for your attention

Johanna Suomi

johanna.suomi@ruokavirasto.fi https://twitter.com/riskinarviointi www.ruokavirasto.fi/en/organisations/risk-assessment/

RUOKAVIRASTO

Livsmedelsverket • Finnish Food Authority

