

Chemical Mixtures Calculator

Julie Boberg, PhD, Senior Scientist

Elsa Nielsen, Annette Petersen, Bodil Hamborg Jensen, Lea Bredsdorff, Anne Marie Vinggaard and more.

National Food Institute, Technical University of Denmark.

What is the Chemical mixtures calculator?

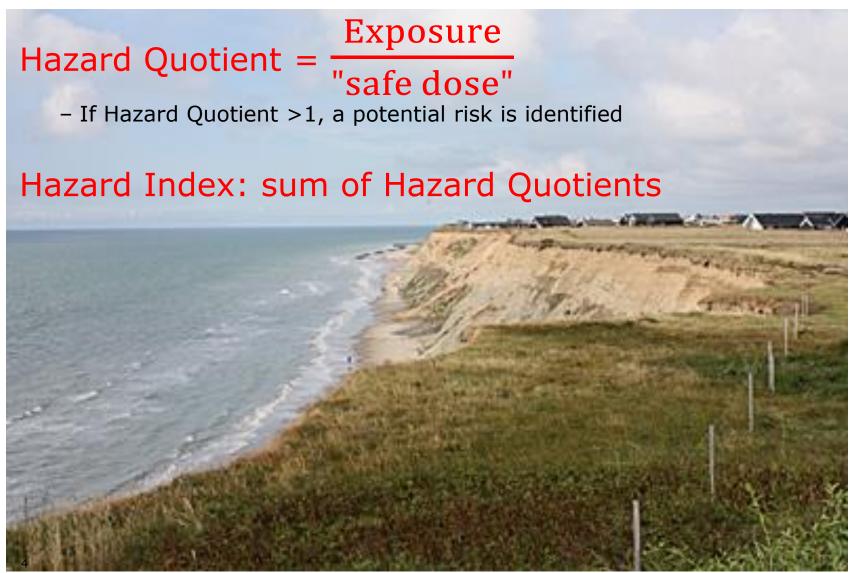
A tool/database for **pragmatic mixture risk assessment**

- Chemical exposures from food and environment
- Toxicity data collected to set human "safe dose" for various endpoints
- Grouping based on similar effects and/or mode of action



Using the Chemical mixtures calculator

- performing cumulative risk assessment
- determining critical food groups or chemicals
- determining the impact of altering food habits and intake patterns



Being on the safe side...

What does this tool do?

We make

- 1. Filtering for toxic endpoint, chemical group and more
- 2. Calculation of Hazard Index for dietary and environmental exposure

HI = Exposure₁/"safe dose"₁ + Exposure₂/"safe dose"₂ + ... (low concern if HI<1)

Different levels of refinement: Grouping based on specific toxic endpoint

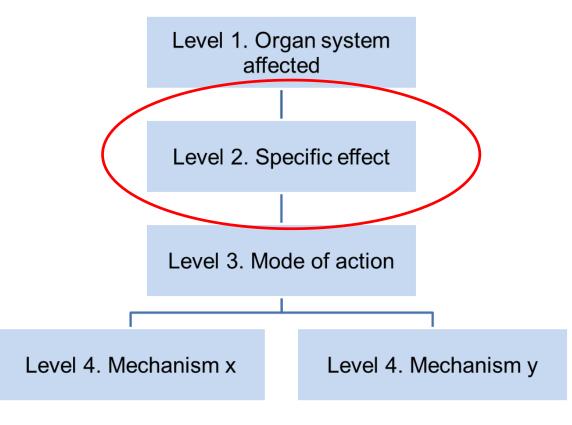
toxicity grouping **Filtering Criteria** Hazard Index Value [Adults]: 1, possible → Clear filter Consumer group → Mean U → h U → Mean U → Hig Dose Adults ~ 1 → 2,4-D (sum) 50 0,0023 2 → Acephate 30 0,0012 0 Chemical class We use 3 → Acetamiprid 70 0,011 0 0 ☐ Acrylamide → Aclonifen 70 0,00003 0 ☐ Bisphenols exposure 5 → Acrylamide 0 Brominated flame retardants 1.8 0,19 0.33 data from ☐ Dioxin and PCBs 6 → Aldicarb (sum) 3 0,0013 0 0 ☐ Mycotoxins food and → Aldrin and Dieldrin 0,1 0,00023 ☐ Perfluorinated compounds 12 → Atrazine 20 0,000041 Pesticides environment Phthalates 0 13 → Azinphos-methyl 5 0,022 ☐ Polycyclic aromatic hydrocarbons 14 → Azoxystrobin 200 0 0,021 15 → BBP 500 0,04 0,0154 0,248 0,0000308 CAG1 - Organ System 16 → BDE-153 0,83 0,00003 0,00007 0 0,0000361 ☐ Developmental and reproductive ☐ Kidney 17 → BDE-209 17 0,00035 0 0,0007 0,0000206 Liver 18 → BDE-47 3.09 0,00029 0,0011 0.0000939 ☐ Nervous system

Data colletion

Exposure

- Danish data on chemical content in food and dietary intake
- Published reports from e.g. EFSA and ECHA
 - Dietary and non-dietary exposures
- Mean and "high" exposure values

Toxicity


- Reports from EFSA and ECHA
- (TDI / ADI)
- Target organ specific doses

Grouping:

CAGs - Cumulative assessment groups

Less adequate for grouping

- conservative

Possibly adequate for grouping

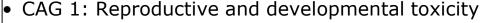
- Preferred here

Adequate for grouping

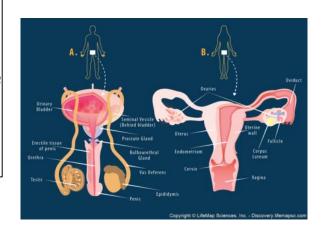
- But few available data

Adequate for grouping

- But few available data


Selected organ systems in Chemical mixtures calculator

- Nervous system
- Reproductive and developmental toxicity
- Thyroid gland
- Haematological system
- Kidney
- Liver


Examples of **Subgrouping** in the Chemical mixtures calculator

- CAG 1: Nervous system
 - CAG 2: Functional changes related to motor division
 - CAG 3: Modulation of the cholinergic transmission
 - CAG 4: Acetylcholinesterase inhibition

- CAG 2: Delayed development and decreased body weight
- CAG 2: Malformations and variations
- CAG 2: Prenatal death
- CAG 2: Postnatal death
- CAG 2: Changes in reproductive organs of male/female offspring
 - CAG 3: Anti-androgenic mode of action
 - CAG 4: Androgen Receptor antagonism

Examples of using the Chemical mixtures calculator

- Mixture risk assessment for chemical groups
- Mixture risk assessment for population groups

Example 1: Phthalates

- Previously: ECHA mixture risk assessment on 4 phthalates based on male reproductive effects
 - Concern for toddlers exposed via food and environment

Chemical Mixtures Calculator

- Exposure data: food and environment
- Toxicity groups: Reproduction/development, kidney, thyroid, liver
 - Same overall conclusions as ECHA, but for several toxicity targets
 - Grouping with numerous other chemical groups/sources possible
 - Level of refinement matters

Example 2: Comparing population groups

Chemical exposure in two populations with different degree of fulfilling dietary guidelines

Chemical mixture calculator

- Exposure data: fit-for-purpose
- Toxicity groups: MRA at several levels of refinement possible

Conclusion

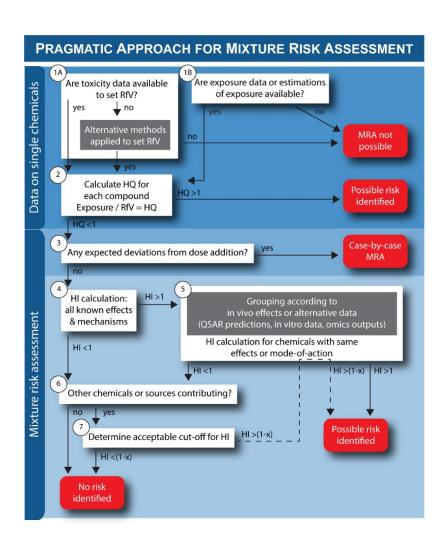
Mixture risk assessment directs the focus to most influential chemicals

Petersen et al. Under revision

Boberg et al. In prep

Take home messages

- Chemical mixtures calculator can be used as a pragmatic tool for mixture risk assessment
 - Identification of the chemicals and food groups that are main contributors to the overall risk
 - Grouping across chemical classes and sources
 - Level of refinement makes a large difference in results



Expanding the Chemical mixtures calculator

- Lack of information limits the number of chemicals in database
 - Toxicity and exposure data
- Perspective: including risk assessment based on "alternative" data
 - In vitro/human biomonitoring
 - In vitro-in vivo extrapolations
 - Relative potency factors

Boberg et al. A pragmatic approach for human risk assessment of chemical mixtures.

Current Opinion in Toxicology 2019, 15:1–7.

THANK YOU ⁽²⁾

• Tool expected online early 2020

