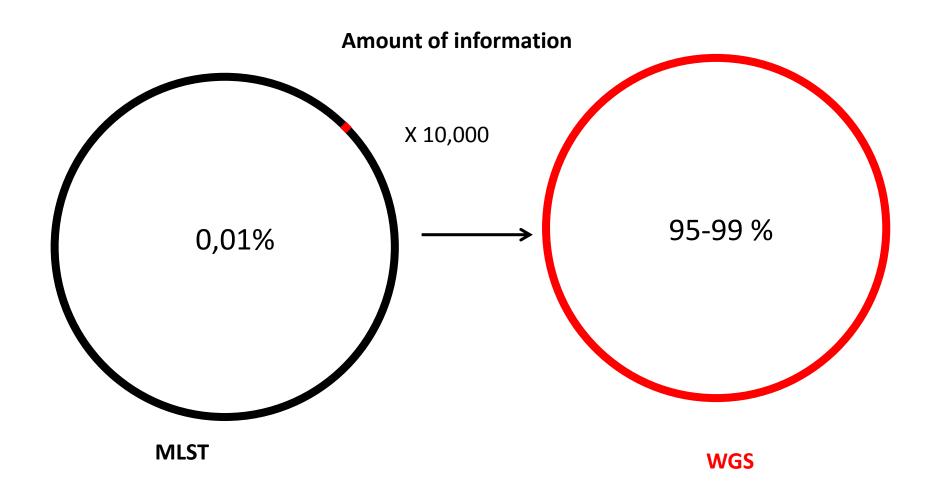


Investigate, evaluate, protect

Sequencing Technology and its application to risk assessment National Perspectives


Conventional typing methods> High Throughput Sequencing

Surveillance / Biological Properties / Epidemiological Investigation

MSLT vs WGS

The challenge for National organisations

Financial / Organizational / Technical / Scientific / Policy

- Access to sequencing technology (volumes, costs, deadlines)
- New skills and expertise
- IT infrastructure: Storage / calculations / network / cloud access
- Validation of methods Standardization
- Data analysis, portability and inter-laboratory harmonization
- Database governance: sharing, sustainability, accessibility of data

Contribution of HTS technologies to ANSES' activities

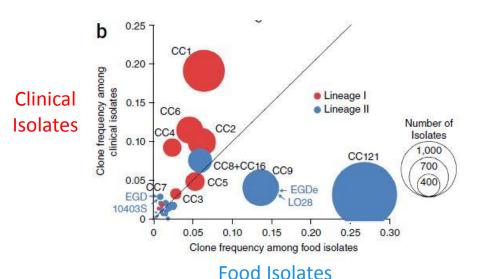
- Ultimate discrimination of isolates:
 - Robust phylogenies studies
 - Specific and accurate epidemiological investigations
- Phenotypic prediction (virulence, adaptation, AMR!?)
- Rapid methods development (targeted PCR) for hazards characterization
- Integration into Animal Health models Vehicles and sources better apprehended
- Microevolution > retrospective analysis of emergence > predictive models of emergence
- Exploration of strains collections

Better hazards knowledges > Evolution of National & EU Regulation - with focus point / targeted Regulation

A multitude of initiatives to prepare the HTS transition

In the field of food safety

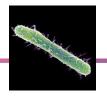
- Congress 2015-2016 (FAO, GMI, SFM, ASM, EFSA, CDC ...)
- Expert groups (GMI, eCDC, WHO, FAO, EFSA ... CDC, FDA)> reports
- ISO TC 34 / SC 9 / WG 25 food / microbiology / NGS
- CDC-FDA (\$ 30M 2014 GenomTrackr Program)
- PHE (Salmonella Surveillance)
- European Programs & Food Security
 - COMPARE H2020 (2015-2020) Global All foodborne pathogens
 - BioContam EFSA Call (2015-2017) Listeria biodiversity
 - EFFORT H2020 (2013-2018) AMR epidemiology & metagenomics
 - ENGAGE EFSA Call (2016-2018) HTS E. coli & Salmonella

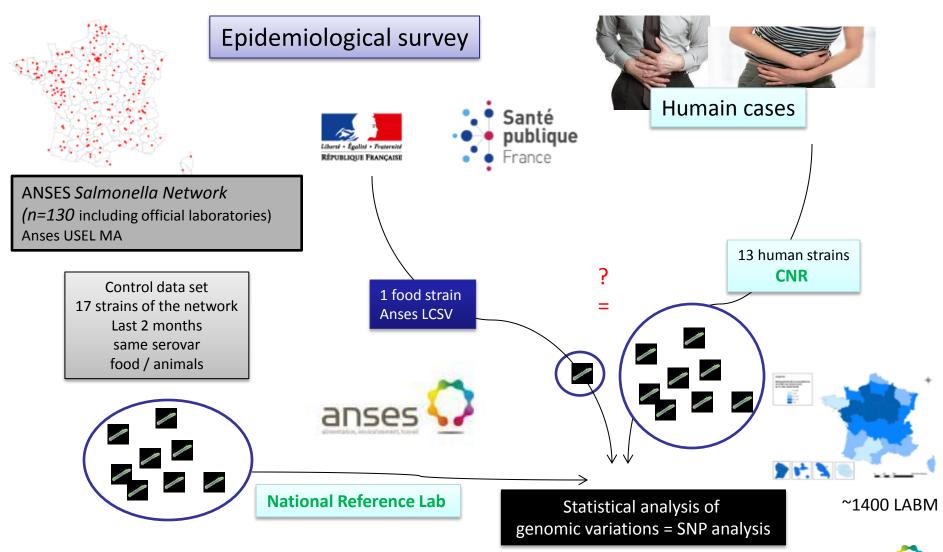

Strains collections investigation with WGS

Uncovering *Listeria monocytogenes* hypervirulence by harnessing its biodiversity (Nature genetics, 2016)

- Investigation of Listeria strains collections from clinical and food origins (NRL & NRC)
- Identification of clones associated with clinical cases (Food listeriosis or with human central nervous system (CNS) or maternal-neonatal (MN) listeriosis)

Comparative genomics

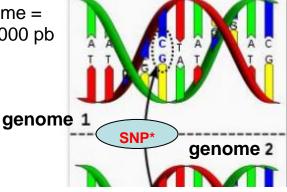

> Identification of new virulence factors - Experimental validation


> Impact on Regulation?

anses 🗘

Salmonella foodborne outbreak – WGS investigation 1/2

✓ Grouped cases of salmonellosis - December 2016 => catered dishes suspected.


Genomic variations (SNPs) & statistical analysis of links

- Molecular characterization method
 - a. R&D
 - b. Validation
 - c. Application to surveillance
- ✓ Highly efficient tool for isolate discrimination tool
- ✓ Genetic link between isolates (= phylogenetic tree)
- ✓ Statistical analysis
 - → 12 human strains linked to the catering ham strain!

Statistical definition of the genomic proximity threshold between linked and unrelated strains

Applicable specifically to each health alert investigation

1 genome = 5, 000, 000 pb

Thank you for your attention

