

INDEX

Point of discussion

- Background
- Phase I: different steps
- Phase II: Environmental Risk Assessment
 - Phase II A different steps & examples
 - Phase II B different steps & examples
 - Phase II C different steps & examples
- New EXCEL tool for calculation

Mandate: "The guidance on environmental risk assessment should be completely revised in order to take into account of new developments in methodology and the extensive documentation produced by EFSA Scientific Committee and other bodies (EMA, OECD)."

FEEDAP Guidance ERA feed additives 2008

- Based in two phases (I and II)
- When specific thresholds are reached in terrestrial or aquatic compartments in phase I, a phase II ERA assessment is needed.
- Harmonised with the CVMP/VICH (2005)
 Guideline for the terrestrial compartment
- In line with REACH Guideline for the aquatic compartment

NEW GUIDANCE

- Harmonisation within EFSA (e.g. pesticides, Scientific Committee new guidance)
- Harmonisation with other assessment bodies like EMA and ECHA (a contact has been established with **EMA/CVMP)**
- New developments in the field
- The experiences gained in the past years (2008 up to now)
- Characteristics: practical (to help in solving problems), short, simple (as much has been possible), covering uncertainties (as much as possible), cross refers to internal/external documents (EFSA, CVMP) or appendices

DISCUSSION GROUP

In compliance with the EFSA's Stakeholder Engagement Approach

- A call was sent to Consumers, Environmental/health NGOs and advocacy groups, Farmers and primary producers, Business and food industry, Practitioners' associations, Academia and Member States
- Business and feed industry organisations (6) and
 Association of practitioners (1) proposed 10 candidates
- 3 of Business and feed industry organisations were selected. They could comment the draft guidance at different stages of development.

PUBLIC CONSULTATION ON THE ERA GUIDANCE From 8 Oct to 19 Nov 2018

EFSA received 133 comments from 11 interested parties

- 6 public organisations, (Spanish Medicines Agency (AEMPS), ISS, Institute of Marine Research, German Environment Agency (UBA), Institute of the Republic Slovenia for Nature Conservation and University of Ljubljana, Biotechnical Faculty)
- 1 industry associations (FEFANA)
- 1 private companies (Puratos)
- 3 consultant organisations (SCC Scientific Consulting Company, Pen&Tec Consulting, S.L.U. and Association of Veterinary Consultants)

NEW GUIDANCE

Guidance more structured

- More structured: different phases are clearly identified,
 data requirements are tabled with specific guidelines
- Better explained: questions of phase I have their own explanations; appendices provide tools and further explanations
- However clause: possibility to deviate (whenever scientifically based!) both for evaluators and applicants.
- Guidance developed for **both** the applicants **and** the evaluators

NEW GUIDANCE

Guidance more structured

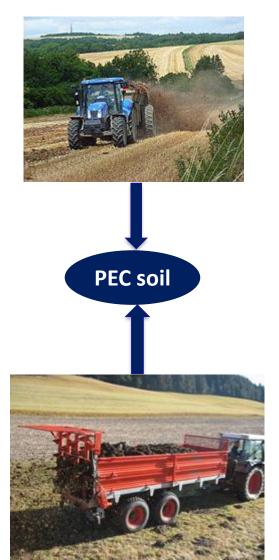
NEVERTHELESS

This guidance is still a guidance, establishing major rules, unable to cover all possible situations in a risk assessment

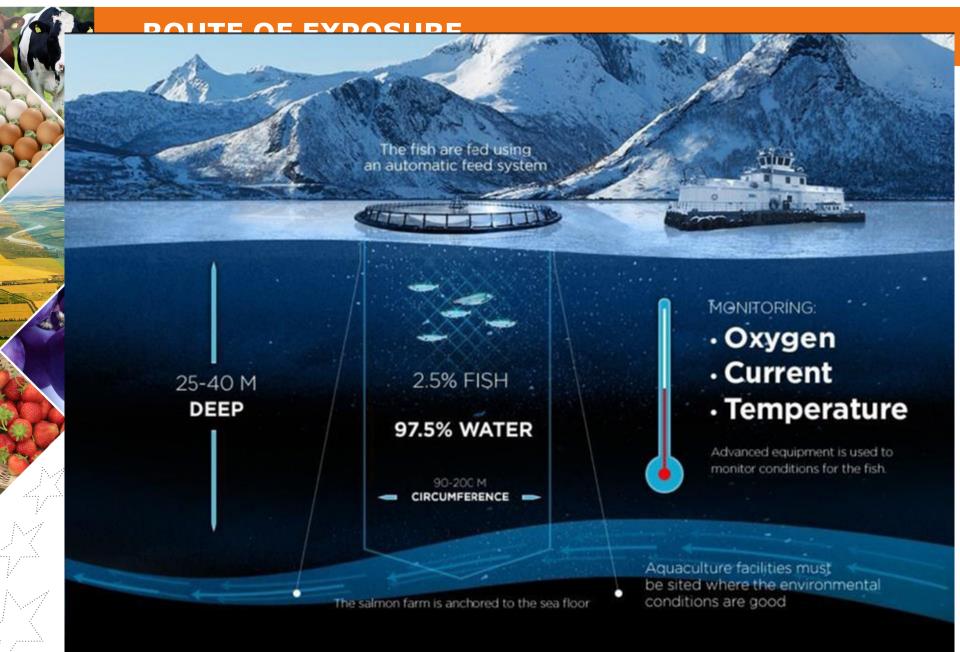
WHICH ENVIRONMENT?

Environmental compartments to protect

- Agricultural soils that receive animal slurry contaminated with feed additives
- The water compartment of <u>surface water</u> (input via drainage and run-off from agricultural fields, or via land-based fish farms)
- The ground water compartment (input via leaching from soil), and
- The <u>sediment</u> compartment (at least for fish farmed in cages)



ROUTE OF EXPOSURE



European Food Safety Authorit

ROUTE OF EXPOSURE

GUIDANCE ENVIRONMENT

Two phases Phase I

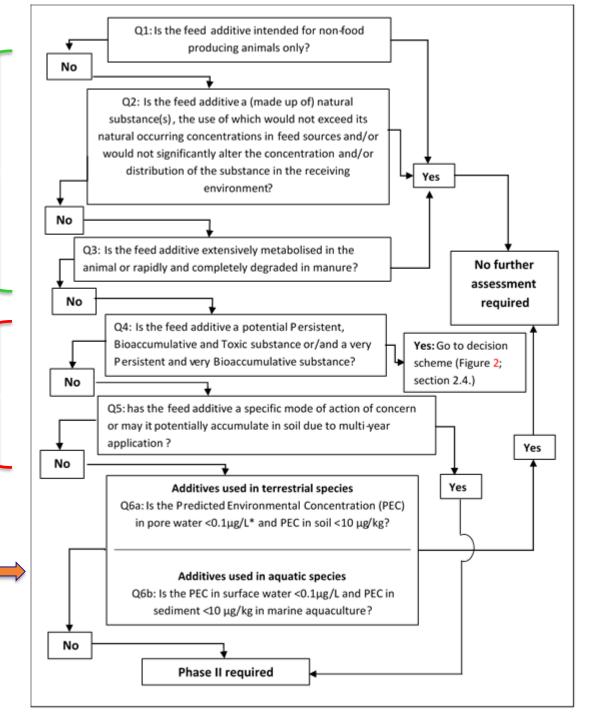
- Decision tree: exclusion criteria from a complete ERA
- Preliminary identification of problematic substances
- Screening based on exposure

Phase II

- Complete risk assessment
- Different steps of increasing complexity

The ERA of major species can be extrapolated to minor species when the same use is proposed.

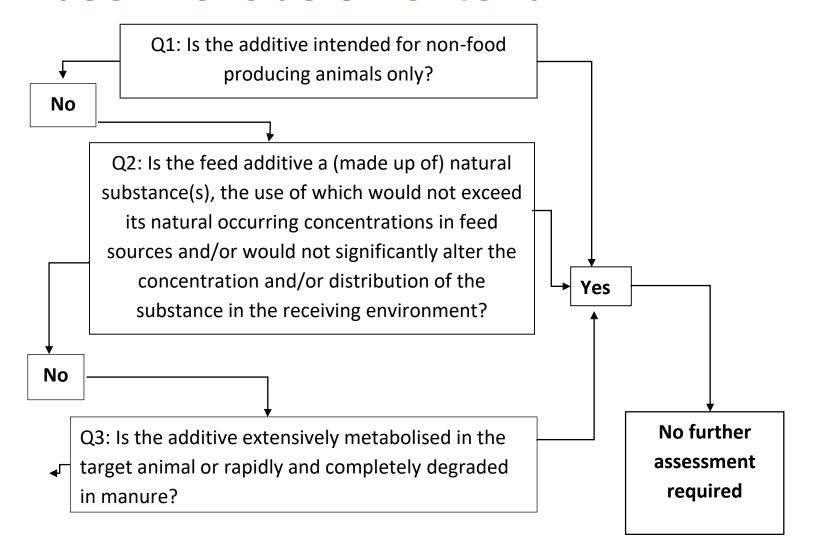
PHASE I


Phase I

- Phase I is based on a list of questions (decision tree).
- Questions: explanations/examples provided to clarify the meaning.
- The decision tree describes the process needed to evaluate a substance

Q1, Q2, Q3: Exclusion criteria from an ERA

Q4, Q5: identification of substances of concern


Q6: Exposure vs. trigger

Phase I: exclusion criteria

Questions of Phase I

Question 1: Is the additive intended for nonfood producing animals only?

Generally, non-food producing animals are not intensively reared or/and their excrements are not spread over agricultural land. Therefore, due to the limited total amount of product used, feed additives for non-food animals are expected to produce less environmental concern than the feed additives in food-producing animals.

Question 2: Is the feed additive a (made up of) natural substance(s), the use of which would not exceed its natural occurring concentrations in feed sources or plants that potentially occur in habitats near the receiving environment?

Evidence should be provided showing that comparable concentrations of the feed additive can be expected in other plant(s) and/or that the use of the feed additive will not significantly alter the concentration of the additive in the receiving environmental compartments of concern.

Example 1 (iron and methionine): The components of the additive, iron and methionine, are ubiquitous in the environment.

The iron content of soils is typically in the range of 5,000–50,000 mg/kg; the predicted PECsoil is around 1.75 mg/kg after a 1-year application of manure, assuming that 100% of the dose will be excreted.

Methionine as amino acid is a physiological and natural component of animals and plants.

After dissociation of the ingested additive, methionine is not excreted as such (but as urea/uric acid, sulphate and CO_2). Therefore the use of iron and methionine in animal nutrition would not lead to any localised increase in the concentration in the environment.

Astaxanthin for salmonids.

Astaxanthin in the environment is synthesised by algae. Algae contain up to XXX mg/kg carbon In unfiltered sea water, natural astaxanthin is present in the range of XXX ng/LShrimp can contain natural astaxanthin in the range XXXX mg/kg total dry weight Natural astaxanthin accumulates in wild salmon via the food chain.... For salmon in cages to develop a red colour similar to wild salmon, they must receive a similar dose of ATX. If it would be possible to give salmon in cages the same feed as wild salmon the natural astaxanthin in the sediment would be the same. The use of synthetic ATX does not pose a significant additional risk to the environment compared with natural astaxanthin

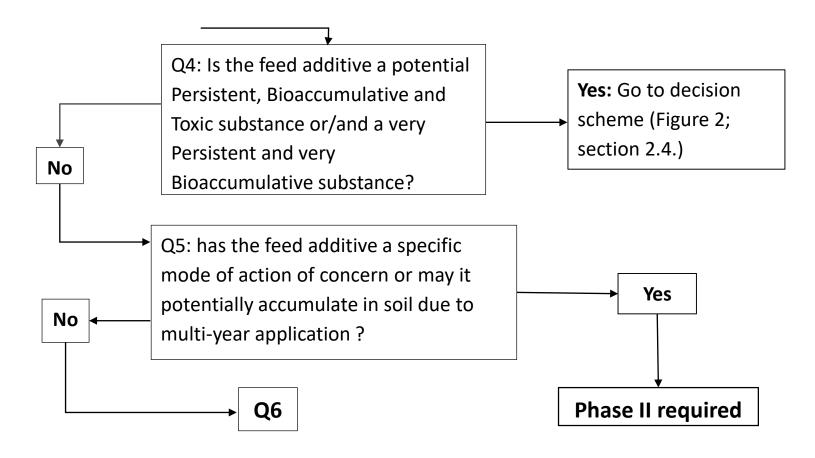
Question 3: Is the additive extensively metabolised in the target animal or rapidly and completely degradable in manure?

Extensively metabolized:

converted into metabolites present in the excreta that do not possess a biological activity of environmental concern, like water, CO₂ and common salts.

Degradation in manure.

The active substance has to be rapidly and completely degraded in manure (inter-species extrapolation of data can be applied):

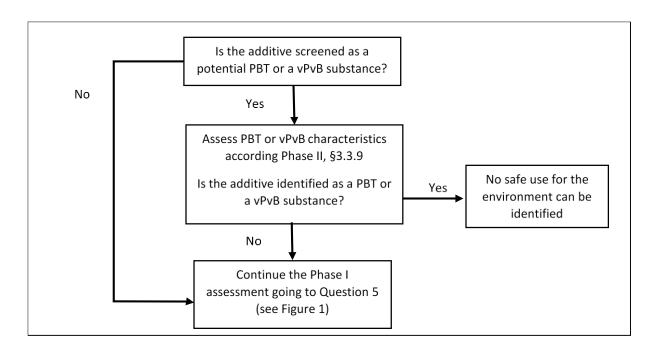

- 1. total mineralisation or
- 2. presence of degradation products all presenting 5% or less of the dose,

http://www.ema.europa.eu/docs/en GB/docu ment library/Scientific guideline/2009/10/WC5 00004386.pdf

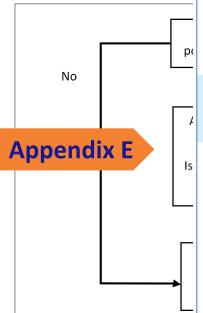
Phase I: identification of substances of concern

Question 4: Is the feed additive a potential PBT or/and vPvB substance?

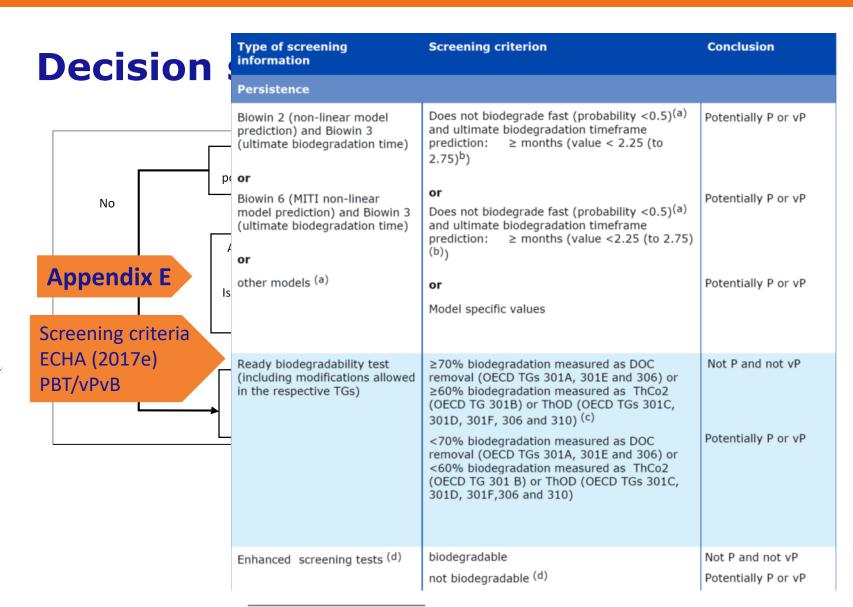
PBT/vPvB substances: potential to accumulate in parts of the environment difficult to reverse. Stop of emission not necessarily reduce chemical concentration


PBT or vPvB substances: potential to contaminate remote areas to be protected from further contamination by hazardous substances due to the intrinsic value of pristine environments

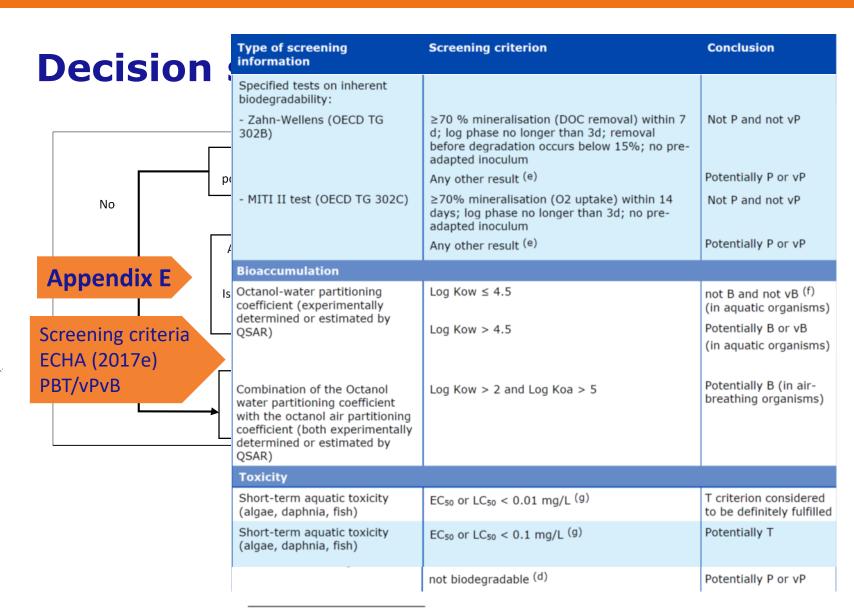
Effects of accumulation unpredictable in the long-term



Decision scheme for PBT or vPvB



Decision



	Property	PBT-criteria	vPvB-criteria
	Persistence	A substance fulfils the persistence criterion (P) in any of the following situations: • T _{1/2} > 60 days in marine water; • T _{1/2} > 40 days in fresh- or estuarine water; • T _{1/2} > 180 days in marine sediment; • T _{1/2} > 120 days in fresh- or estuarine sediment; • T _{1/2} > 120 days in soil.	A substance fulfils the "very persistent" criterion (vP) in any of the following situations: • T _{1/2} > 60 days in marine, fresh- or estuarine water; • T _{1/2} > 180 days in marine, fresh- or estuarine sediment; • T _{1/2} > 180 days in soil.
_	Bioaccumulation	A substance fulfils the bioaccumulation criterion (B) when: BCF > 2000	A substance fulfils the "very bioaccumulative" criterion (vB) when: BCF > 5000
s	Toxicity	A substance fulfils the toxicity criterion (T) in any of the following situations: NOEC or EC ₁₀ < 0.01 mg/L for marine or freshwater organisms; substance is classified as carcinogenic (category 1A or 1B), germ cell mutagenic (category 1A or 1B), or toxic for	-
		reproduction (category 1A, 1B or 2); • there is other evidence of chronic toxicity, as identified by the classifications: STOT (repeated exposure), category 1 (oral, dermal, inhalation of gases/vapours, inhalation of dust/mist/fume) or category 2 (oral, dermal, inhalation of gases/vapours, inhalation of dust/mist/fume) according to the CLP Regulation.	

Question 5: has the feed additive a specific mode of action of concern or may it potentially accumulate in soil due to multiyear application?

Coccidiostats and histomonostats are chemicals with a specific toxic mode-of-actionmay be toxic to non-target organisms in environments that receive poultry and rabbit manure.

Substances that are very persistent or not degradable may accumulate in the receiving compartment(s). When there is already evidence (either experimental or by screening) that a feed additive is very persistent or not degradable, e.g. metals, these substances have to be assessed in Phase II.

Trigger of 10 μg/kg does not consider accumulation.

PHASE I – Exposure vs. trigger

- **Question 6a Terrestrial animals** Is the Predicted Environmental Concentration (PEC) in pore water* <0.1µg/L and PEC in soil $<10 \mu g/kg$?
- **Question 6b Aquatic animals** Is the PEC in surface water <0.1µg/L and PEC in **sediment <10 μg/kg** in marine aquaculture?

^{*}PEC in ground water is set equal to PEC in pore water

PHASE I – Exposure vs. trigger

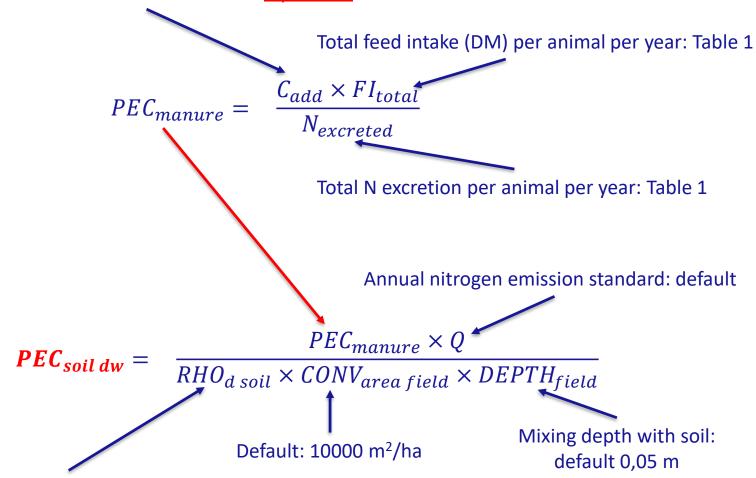
Exposure calculation – worst case

- Additive <u>continuously</u> applied at the <u>maximum</u> dose to the feed of the target animals;
- Total intake of the active substance is totally excreted as parent compound;
- Annual nitrogen load standard is 170 kg N/ha/y
- No dissipation of the parent compound during storage and spreading of slurry/manure;
- The additive is mixed in the soil up to 5 cm depth.

PHASE I – EXPOSURE CALCULATION

Default values for feed intake and nitrogen excretion

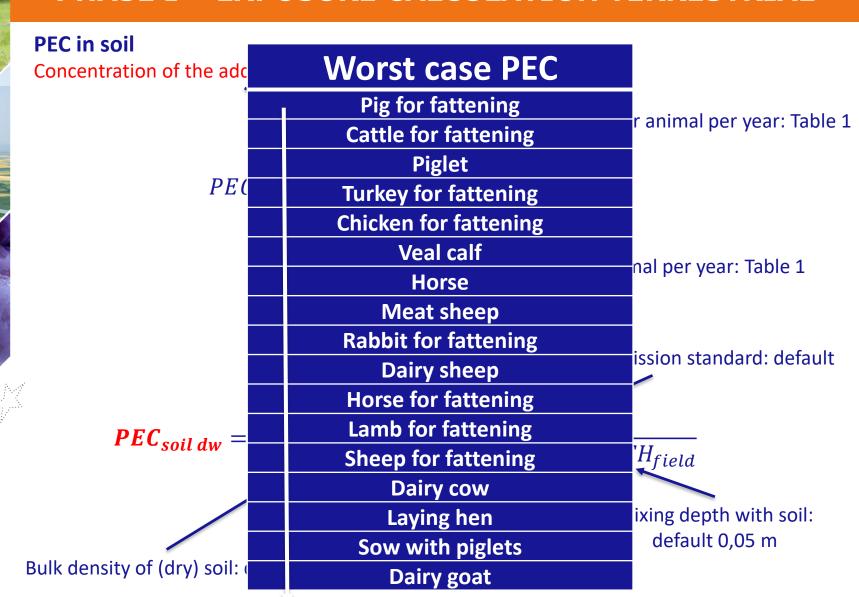
	Animals	Body weight start-	Productive	Feed intake (kg/animal place per	Nitrogen excreted (kg/animal place per
		end (kg)	cycles/year ⁽¹⁾	year) ⁽²⁾	year)
	Piglet	7-30	7.4	296	4
	Pig for fattening	30-115	3.2	800	9
	Sow with piglets	200	2.4	1140	23
	Cattle for fattening	250-630	1.2	4050	54
	Veal calf	45-250	1.5	730	11
	Dairy cow (3)	650	0.92	6584	125
	Lamb for fattening	4-32	1.5 ⁽⁷⁾	273	5
	Sheep for fattening	15-55	1.5 ⁽⁷⁾	267	5
•	Meat sheep	60	1	607	10
	Dairy sheep	60	1	580	10
	Dairy goat	50	1	714	16.4
	Chicken for fattening	0.045-2.2	6.5	22	0.33
	Laying hen ⁽⁴⁾	1.4-2	0.84	42	0.8
	Turkey for fattening ⁽⁵⁾	0.05-10(f)/16(m)	2.6	70	1
	Rabbit for fattening	0.9-3.1	4.8	30	0.5
	Horse ⁽⁶⁾	500	1	3650	58
	Horse for fattening	270-480	1.5 ⁽⁷⁾	2385	43



PHASE I – EXPOSURE CALCULATION TERRESTRIAL

PEC in soil

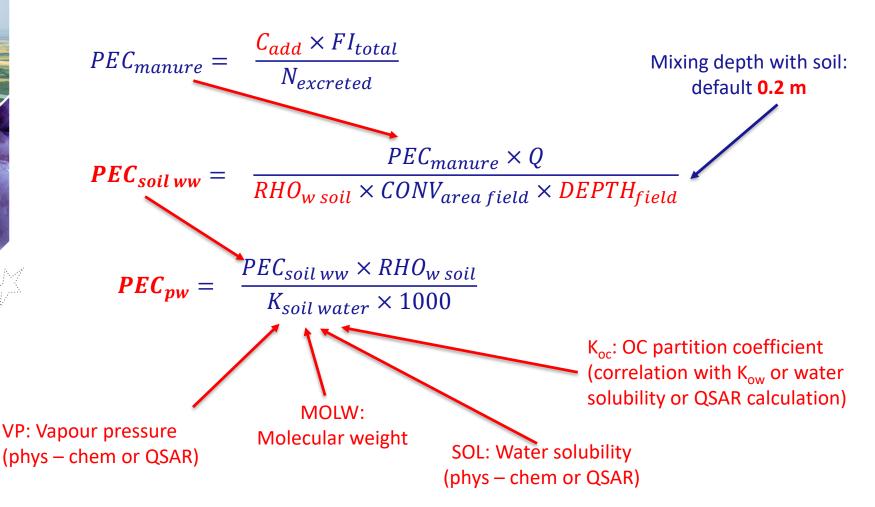
Concentration of the additive in feed: input data



Bulk density of (dry) soil: default

European Food Safety Authority

PHASE I – EXPOSURE CALCULATION TERRESTRIAL



PHASE I – EXPOSURE CALCULATION TERRESTRIAL

PEC in groundwater is set equal to PEC in pore water.

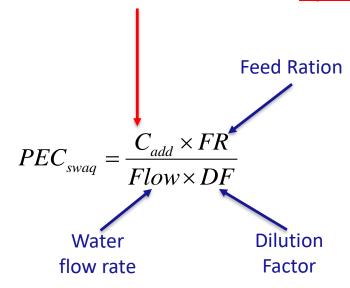
Worst-case assumption, neglecting transformation and dilution in deeper soil layers. Same simple calculations with default values.

PHASE I – EXPOSURE CALCULATION

Feed ration and water flow rate in fish farming in EU

Fish types	Feed Ration (kg feed/kg fish per day)	Water flow rate (L/kg fish and day)
Salmon	0.01	865
Rainbow trout	0.02	1400
Sea bass/Sea bream	0.01	400
Turbot	0.01	720

PHASE I – EXPOSURE CALCULATION AQUATIC


Aquaculture: sea cages versus land-based aquaculture

Land-based fish farms: organisms living in the water column at risk from discharge to shallow freshwater ecosystems.

Simple calculations with default values.

Land-based fish farms

Concentration of the additive in feed: input data

Aquaculture: sea cages versus land-based aquaculture

Sea cages organisms living in or on sediments are most at risk.

Simple calculations with default values.

Sea cages

Concentration of the additive in feed: input data

 $PC_{faeces} = C_{add} \times CF$

Conversion factor (kg feed to kg total carbon in faeces)

Max deposition rate of faeces

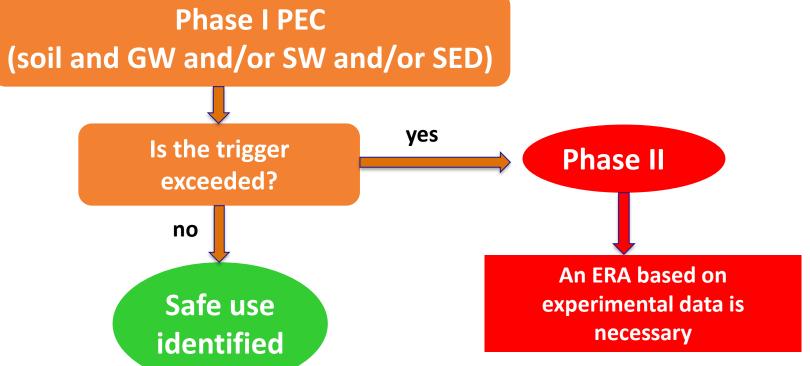
 $PEC_{sed} = \frac{PC_{faeces} \times k_{dep} \times T_{production}}{RHO_{solid} \times F_{solid} \times DEPTH_{sed}}$

Bulk density of solids: default

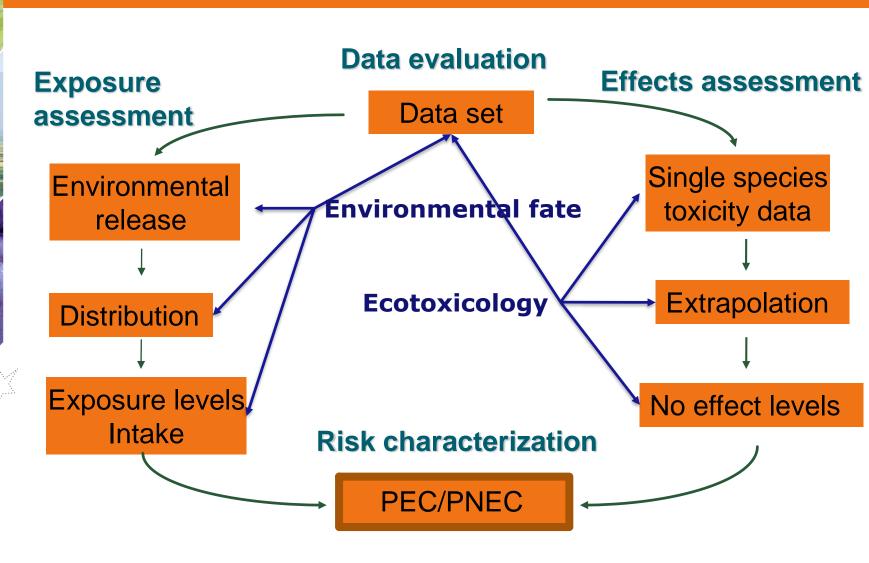
Volume fraction of solids in sed

No. of production days

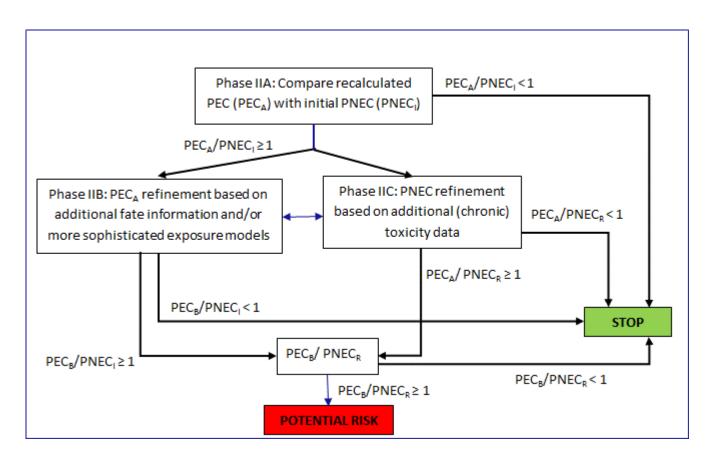
Mixing depth in sed: 0.05 m


97.5% WATER

· Oxygen · Current · Temperature


PHASE I – Exposure vs. trigger

ENVIRONMENTAL RISK ASSESSMENT



PHASE II ASSESSMENT

Different Steps, different complexity

Basic physico-chemical properties are needed to evaluate the fate and toxicity of the feed additive

PHYSICAL-CHEMICAL STUDIES

Affect distribution in **OECD 105** Water Solubility different compartments **Dissociation Constant OECD 112** Potential to photodegrade **UV-Visible Absorption Spectrum OECD 101** and/or phototoxicty Vapour Pressure **OECD 104** n-Octar ol/Water Partition OECD 107, 117 or 123 Melting point/melting range **OECD 102**

May affect adsorption on soils and sediments

Calculation only, unless VP may exceed 10⁻⁵ Pa at 20° C.

Different guidelines depending on compound characterisctics (i.e. lipophilic)

PHASE II: ENVIRONMENTAL FATE STUDIESS

Environmental fate studies

Study	Guideline			
Soil Adsorption/Desorption	OECD 106/121			
Soil Biodegradation (route and rate)	<u>OECD 307</u>			
Water/sediment degradation (route and rate, optional)	<u>OECD 308</u>			
Photolysis in water (optional)	<u>OECD 316</u>			
Hydrolysis (optional)	<u>OECD 111</u>			
Required just for the terrestrial branch. Required both for terrestrial and aquatic animals. Required just for additives used in aquaculture or for				
higher tier modelling with FOCUS SW				

Recommended just for additives used in aquaculture

SOIL DEGRADATION

Aerobic degradation in soil (OECD 307)

- Controlled conditions, dark, (20 \pm 2° C, pF 2-2.5).
- Samples extracted and analysed for a.i, metabolites and volatiles. 120 days study.
- Soil selection: sandy loam, silty loam, loam, loamy sand; pH=5.5-8; OC%=0.5-2.5%

Critical points:

High recovery in the study At least 4 soils, to use a geomean value DT₅₀ derived according SFO (FOCUS guideline)

WHICH KINETICS?

Which criteria?

- The SFO kinetics, where possible, is the preferred mode for deriving a proper DT₅₀
- For PEC calculations:
 - Geometric mean value when there are no dependence on soil properties such as clay or pH.
 - Parameters derived by best-fit kinetics from lab (normalised to 12°C). If not SFO, longest phase to be used
- As input for exposure modelling of higher tier:
 - **Geometric mean value** derived by **SFO kinetics** from laboratory (**normalised to 20°C**); for higher-tier modelling also bi-phasic kinetics possible.

ADSORPTION TO SOIL

Soil adsorption/desorption studies (OECD 106)

K_d: distribution coefficient, simple ratio of sludge or soil to solution concentration at equilibrium

$$Kd = \frac{Csoil}{Cwater}$$

For neutral organic compounds often the Kd is related to the organic content of sludge or soil. In these cases the Kd is normalised

$$Koc = \frac{Kd}{\text{percentage organic carbon}} \times 100$$

Aim: to determine the strength of sorption of a.s. to soil

ADSORPTION TO SOIL

Soil adsorption/desorption studies (OECD 106)

CRITICAL POINTS

- ☐ High recovery range for labelled substances
- ☐ At least 4 soil to be selected according to the guidance
- ☐ Attention when:
 - Active substance shows a weak sorption
 - Active substance is adsorbed on the test vessel
 - Active substance declines during the study

ADSORPTION TO SOIL

OECD 121

- Useful for chemicals difficult to study (i.e. substances volatile, not soluble in water at a concentration which can be measured analytically, with a high affinity to the surface of incubation systems
- A minimum of six reference points, at least one above and one below the expected value of the test substance should be used.

More reliable than a QSAR evaluation

PHASE II A PEC- TERRESTRIAL ANIMALS

Phase I PEC recalculation

Experimental data: may lower or increase PECs

Recalculation based on metabolism

Reduction of excreta: lower PEC_{soil} lower PEC_{sw} lower PEC_{gw}

Recalculation based on degradation in soil for persistent compound (PEC_{soil plateau})

higher PEC_{soil} higher PEC_{sw} higher PEC_{gw}

Recalculation based on DT₅₀ in soil under multiple applications

Applicable in few cases; lower PEC_{soil}

PHASE II A PEC- TERRESTRIAL ANIMALS

Phase I PEC recalculation

Groundwater

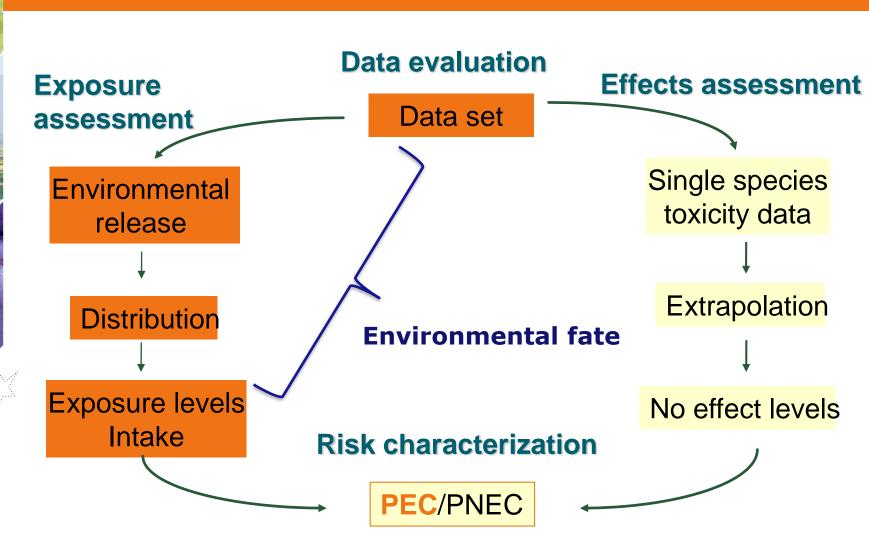
❖ Recalculation PEC_{pw} and PEC_{pw plateu}

Surface water and sediment

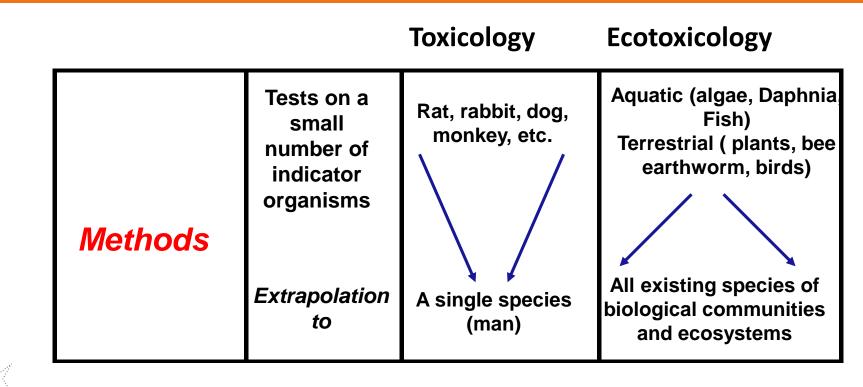
- ◆ PEC_{sw} = 1/3 PEC_{groundwater}
- ◆ PEC_{sed} from PEC_{sw} Equilibrium partitioning

PHASE II A PEC- AQUACULTURE

Phase I PEC recalculation

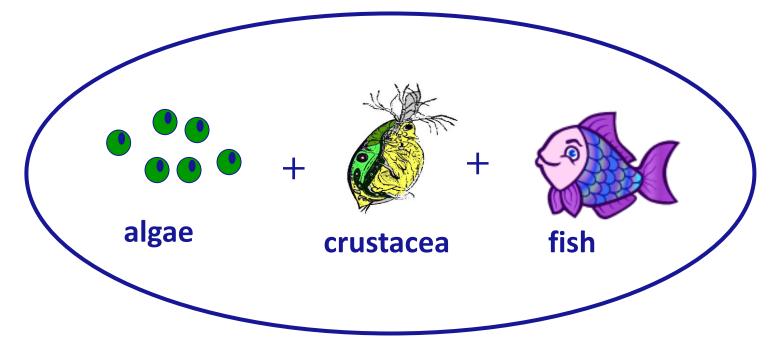

Aquaculture (freshwater and marine)

- There are no advanced models accepted at EU level which can be suggested for the refinement of the exposure for marine and freshwater aquaculture.
- In Phase I it is assumed that there is no retention in the system.
- ❖ In Phase II, for freshwater aquaculture, this could be considered as a further PEC refinement.
- An applicant could also present further assessment, using other modelling tools, more studies or relevant arguments provided that these models, studies and/or arguments are scientifically underpinned.


ENVIRONMENTAL RISK ASSESSMENT

DIFFERENCES BETWEEN TOX AND ECOTOX

Objectives


Protection of individuals

Maintaining structure and function of ecosystems

- various trophic levels
- laboratory testing (single species; standardised test)

ERA - Considered organisms

Terrestrial Organisms

- -Earthworms
- -Soil micro-organisms
- -Non-target plants

Aquatic Organisms

- -Fish
- -Aquatic invertebrates
- -Algae

Sediments

Sediment dwellings

Predicted No Effect Concentration (PNEC)

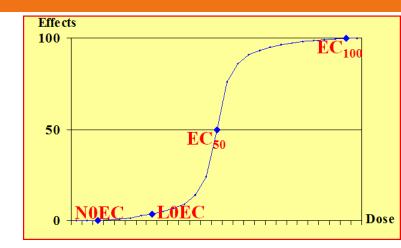
Critical review of the reliability of test results (often based on OECD criteria)

An extensive literature search may provide information on the safety of the feed additive under the proposed conditions of use for the environment.

Selection of key studies with lowest reliable $LC_{50}/EC_{50}/NOEC$

Application of Appropriate Assessment Factor (1000/100/50/10)

Predicted No Effect Concentration (PNEC)


Why a safety factor?

- Variation intra- and inter-species
- Variation intra- and inter-laboratory
- Extrapolation short-term to long-term
- Extrapolation laboratory to field
 - bioavailability, ageing
 - competition, food web interaction
 - adaptation, recovery

Acute toxicity tests

Laboratory defined & controlled conditions

- Range of test concentrations, doses, rates + control(s) or limit test
- Covers range 100 to 0 % effect (often, but not always mortality)
- Endpoints: LC/EC_{50} LD_{50} LR/ER_{50} (Conc which is expected to produce an effect in 50% of the test population)

Terrestrial environment

Study	Toxicity endpoint	AF	Remark
Nitrogen Transformation (28 days) – OECD 216	≤25% of control	1	Exposure 1X and 10X PEC _{max}
Terrestrial plants (14-21 d) OECD 208	EC ₅₀	100	The most sensitive endpoint (emergence, biomass or height of sprout) of all plant species tested
Earthworm acute (14 d) OECD 207	LC ₅₀	1,000	-

OECD 207 – Earthworms

LC₅₀ mg/kg dry weight soil

Test duration: 14 days

One concentration resulting in no mortality and one resulting in total mortality should be used

Validity criteria: mortality in the controls ≤10 %

OECD 208 – Terrestrial plants

- 6 species (at least two monocot and two dicot species)
- Duration: 14-21 days after 50% control plants emerged
- ❖ Validity criteria: control seedling emergence ≥ 70%, no visible phytotoxic effects mean survival of emerged seedlings ≥ 90%
- Endpoints: emergence, mortality, growth (weight, height), visual <u>phytotoxicity</u>

OECD 216 - Nitrogen Transformation

Decisive parameter: the magnitude of effects compared to the untreated control, and the time-course of recovery.

The critical level is ≤25% difference from control <u>after 28</u> days.

Larger deviation will require further refinement.

It is recommended to compare directly the test concentrations to the PEC values before to conclude on potential risk.

Freshwater compartment (including sediment)

Study	Toxicity endpoint	AF	Remark
Algal growth	72h E _r C ₅₀ **	1,000	E _y C ₅₀ *** may be used
inhibition*			if E _r C ₅₀ not reported
OECD 201			
Daphnia	48-h EC ₅₀	1,000	-
immobilization			
OECD 202			
Fish acute toxicity	96-h LC ₅₀	1,000	-
OECD 203	30		

- * In case problems arise with coloured additives, *Lemna* (OECD 221) can be used
- ** E_rC_{50} : the concentration of test substance which results in a 50 percent reduction in growth rate;
- *** $E_y C_{50}$: the concentration of the test substance with results in a 50% reduction of yield.

OECD 201: Freshwater alga

- At least 5 tested concentration plus control, 3 replicates per treatment
- ❖Duration 72 h
- ❖Endpoint: growth rate inhibition E_rC₅₀
- Validity criteria:
- Exponential growth of biomass in control (at least 16 × in 72-h
- Coefficient of variation of control groth rate <7%
- Analytical measurements mandatory (pH, oxygen, test substance)

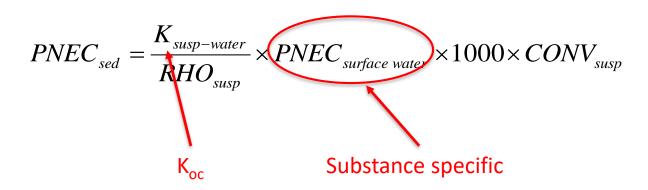
OECD 202: Daphnia magna acute

At least 5 tested concentration plus control, 4 replicates for tested level, 5 daphnids for replicate.

- ❖Duration: 48 h
- Validity criteria:
- mortality in control ≤ 10%
- dissolved oxygen ≥ 3 mg/L in control and test vessel
- ♦Considered observations: immobilisation (EC₅₀).
- Analytical measurements mandatory (pH, oxygen, test substance)

OECD 203 – Fish acute toxicity test

- At least 5 tested concentration plus control, 7 fish for tested level.
- Validity criteria:
- mortality in control ≤ 10%
- constant conditions maintained
- dissolved oxygen at least 60%
- Endpoint: mortality (LC₅₀)
- Analytical measurements mandatory (pH, oxygen, test substance)



Sediments

log K_{oc} or log $K_{ow} \ge 3$ for an organic chemical: **trigger** value for sediment effect assessment.

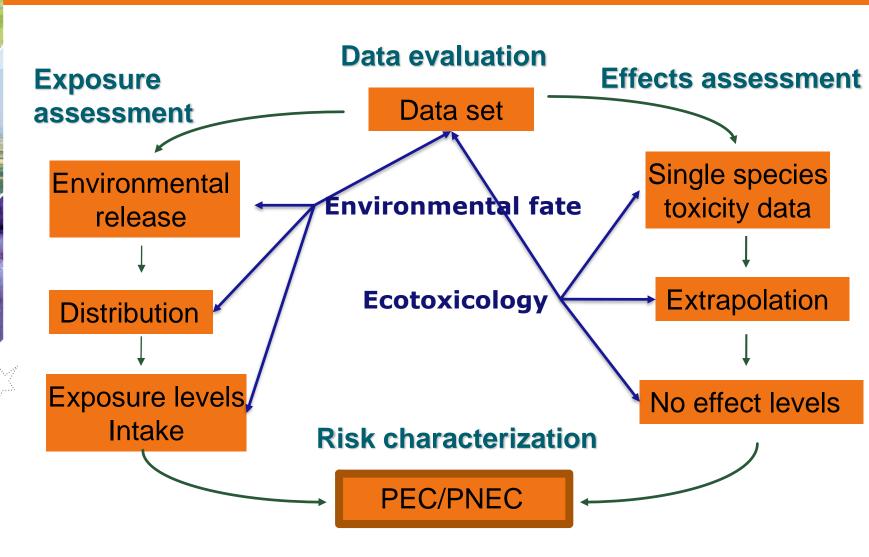
PNEC₁ for freshwater sediment-dwelling organisms derived on basis of the Phase IIA PNEC₁ for aquatic organisms and through Equilibrium Partitioning (EqP) concept

Invertebrates in marine environment

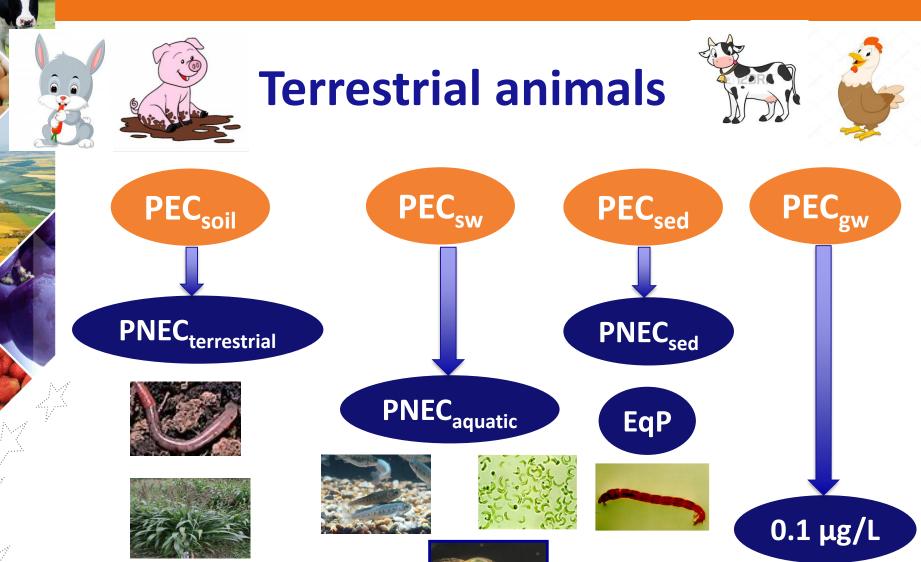
Study	Toxicity endpoint	AF	Remark
Corophium volutator (ISO 16712)	10-d LC ₅₀	1,000	Recommended marine species
Second marine/estuarine benthic species (Table 8)*	10-d LC ₅₀	1,000	At least another taxonomic group than Crustacea is required in the data set
Third benthic marine/estuarine or freshwater species (Table 8 and 9)*	10-d LC ₅₀	1,000	At least another taxonomic group than Crustacea is required in the data set

^{*}If in the near future ISO and/or OECD guidelines for short-term toxicity tests with marine/estuarine bentic species become available, these protocol tests are preferred.

10 days duration, 3 replicates


Validity criteria: control survival (mean)≥85%

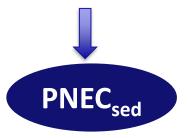
Endpoint: mortality (LC₅₀)



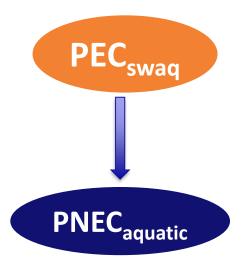
ENVIRONMENTAL RISK ASSESSMENT

WHICH PEC? WHICH PNEC?

WHICH PEC? WHICH PNEC?



Aquaculture


Sea cages

PEC_{marine sed}

Land-based aquaculture

WHICH PEC? WHICH PNEC?

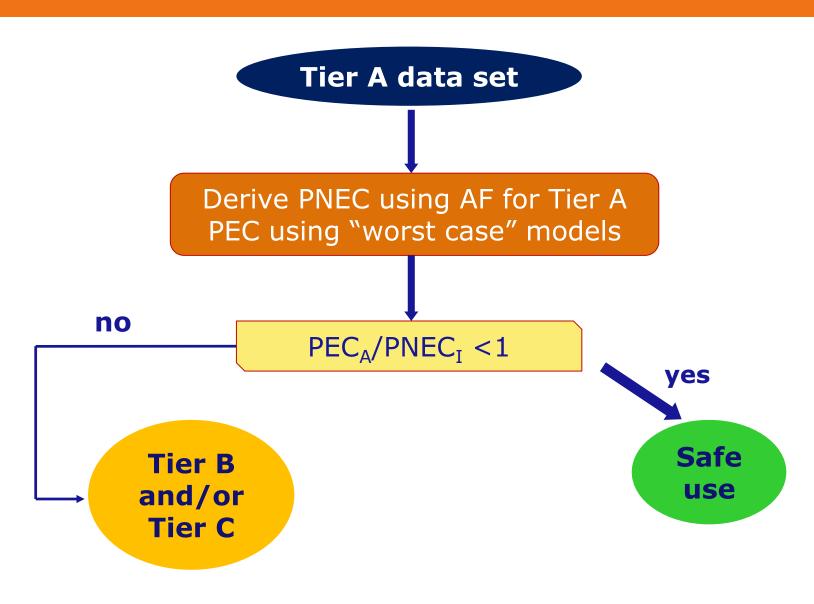
Proper comparison between the PEC_{soil} and /or PEC_{sed} and relative PNEC

Correction for soil properties: the toxicity tests underlying the PNEC need to be normalised to the OC content used to derive the PEC soil

Correction for sediment OC content: properties the toxicity tests underlying the PNEC need to be normalised to the OC content of suspended solids used to derive the PEC sediment

PHASE II A

Risk assessment for secondary poisoning


If a substance has a log Kow \geq 3 the risk for secondary poisoning (food web transfer) has to be assessed.

QSAR evaluation for BCF

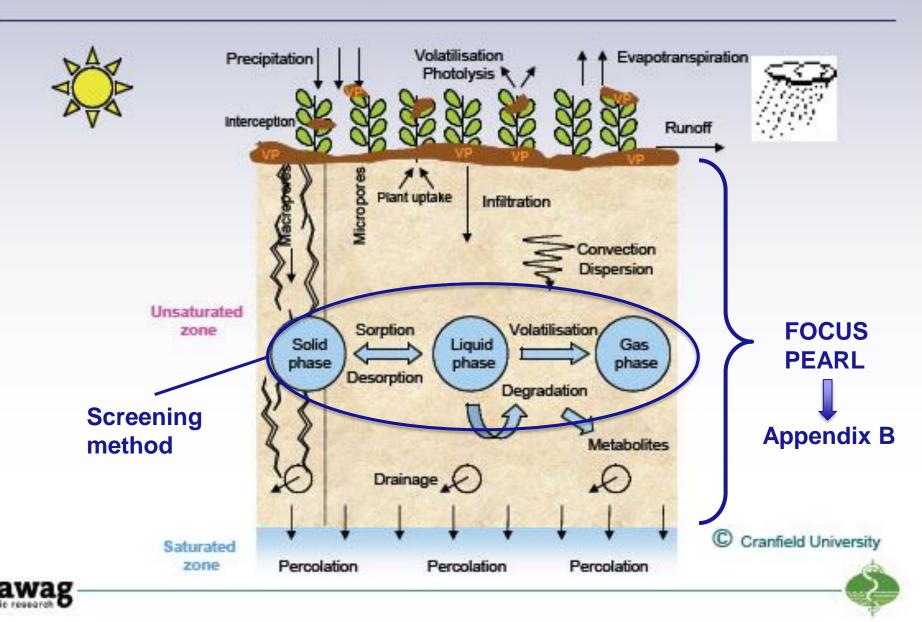
Guideline on environmental impact assessment for veterinary medicinal products in support of the VICH guidelines GL6 and GL38, Rev. 1

PHASE II A: RISK CHARACTERISATION

PHASE II B: EXPOSURE REFINEMENT

PEC_B refinement for soil

Refinement based on degradation in manure (EMA Guideline 2011)


PEC_{manure} to be calculated for a storage time similar to one animal production cycle

PEC_B refinement for groundwater

C _{FOCUS} (µg L ⁻¹)	Requirement for the K _{OM}
<0.001 - 0.01	$K_{OM} > -5.9 + 9.1 DT_{50}$
0.01 - < 0.1	$K_{OM} > -5.9 + 6.5 DT_{50}$
≥0.1 – 1	$K_{OM} > -5.9 + 3.8 DT_{50}$
1 – 10	$K_{OM} > -5.9 + 1.2 DT_{50}$

Higher PEC_B refinement for GW/SW FOCUS modelling

Fate and transport processes in soil

FOCUS GW

https://esdac.jrc.ec.europa.eu/projects/ground-water

Privacy statement | Legal notice | Cookies | Sea

Atlases

JOINT RESEARCH CENTRE

DOCUMENTATION

Related Content

EUROPEAN SOIL DATA CENTRE (ESDAC)

EUROPEAN COMMISSION > JRC > ESDAC > PROJECTS > FOCUS DG SANTE > GROUND WATER

Ground Water

The FOCUS groundwater scenarios became available around 1 January 2001. They are used to assess the potential movement of active substances and metabolites of plant protection products to groundwater. They form a part of the review process for active substances in the EU in the context of Directive 91/414/EEC.

Overview

MACRO PEARL PELMO PRZM_GW Model Correspondence

FOCUS DG SANTE

Go Back To

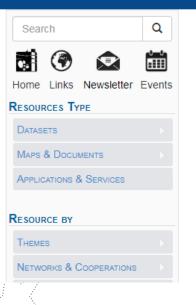
European

FOCUS GW

https://esdac.jrc.ec.europa.eu/projects/ground-water

Privacy statement | Legal notice | Cookies | Sea

JOINT RESEARCH CENTRE


Privacy statement | Legal notice | Cookies

Atlases

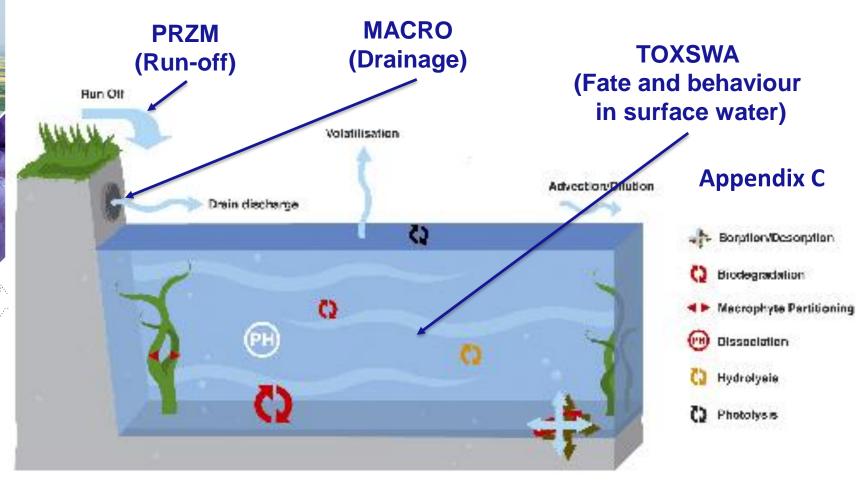
JOINT RESEARCH CENTRE

EUROPEAN SOIL DATA CENTRE (ESDAC)

EUROPEAN COMMISSION > JRC > ESDAC > PROJECTS > FOCUS DG SANTE > GROUND WATER > PEARL

About PEARL

Download PEARL


About PEARL

PHASE II B: EXPOSURE REFINEMENT

FOCUS surface water models

FOCUS MODELS

https://esdac.jrc.ec.europa.eu/projects/surface-water

Privacy statement | Legal notice | Cookies | 5

JOINT RESEARCH CENTRE

EUROPEAN SOIL DATA CENTRE (ESDAC)

SUROPEAN COMMISSION > JRC > ESDAC > PROJECTS > FOCUS DG SANTE > SURFACE WATER

Surface Water

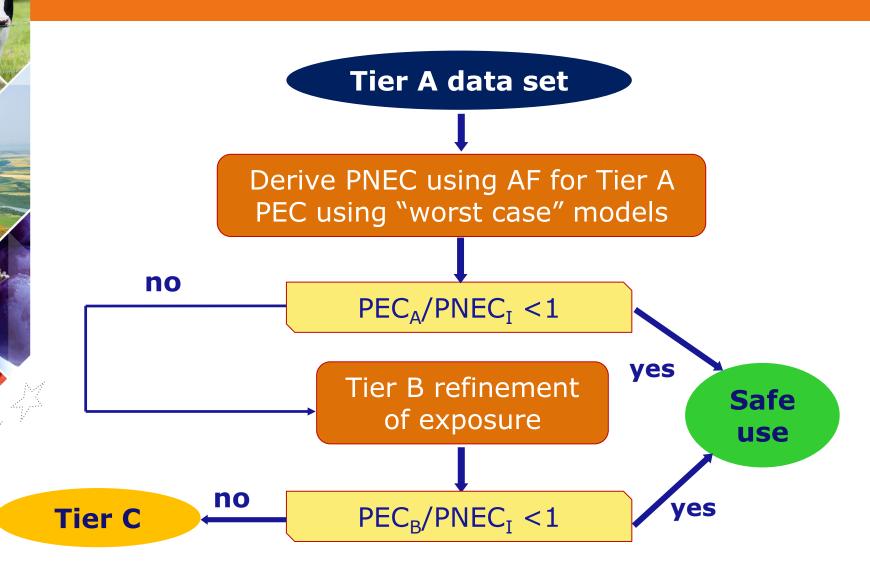
Surface water is the second environmental compartment covered by the activities of FOCUS.

The possibilities of contamination of surface waters by the application of plant protection products (PPP) are already recognised for a long time. Main processes involved in the loading of surface waters with plant protection products are e.g. drift, drainage and run-off. The estimation of the concentration of the active substance of PPP is therefore required in the registration process in the European Union according to Directive 91/414/EEC.

The activities to determine the Predicted Environmental Concentration (PEC) in surface waters were distinguished into two parts. Firstly, the inventory of possible mathematical models suitable for this task and secondly, the development of a tiered approach to estimate these PECs for the benefit of the registration. The first part has been carried out from 1995 through 1996 and the second part from 1997 through 2002 (see Documentation of FOCUS Surface water).

Overview

Documentation


Related Content Go Back To

STEPS_ONE_TWO SPIN SWASH MACRO PRZM_SW TOXSWA Drift Calculator

Model Correspondence

FOCUS DG SANTE

ERA - Chronic Toxicity Testing

Chronic – long-term lab studies

- Range of test concentrations (rates/doses) + control, maybe chosen by range finding or acute toxicity data, rarely done as limit tests
- Endpoints: EC₁₀/NOEC/LOEC based on survival, growth, development, reproduction (ecologically relevant parameters)

PHASE II C: EFFECT REFINEME Duration 56 days

EC₁₀/NOEC

28 days (growth and mortality),
56 days reproduction

PNEC_R derivation for 56 days reproduction

Study	Toxicity endpoint	AF	Remark
Terrestrial plants	14-21d EC ₁₀ (or NOEC)	10	Most sensitive end point of all tested species
Eart nworm subacute/reproduction OECD 220/222	56-d EC ₁₀ (or NOEC)	10	
Collembolan reproduction test (OECD 232) or Predatory mite reproduction test (OECD 226)	28-d EC ₁₀ (or NOEC) 14-d EC ₁₀ (or NOEC)	10	not required if the EC ₁₀ /NOEC of most sensitive plant is at least 10 times lower than that of the earthworm
Nitrogen Transformation (100 days)	≤25% of control	1	Exposure 1x and 10x PEC _{max} Section 3.5.1.3

Same study of Phase IIA, different endpoint (EC₁₀)

Same study of Phase IIA, longest period

Recommended

Hypoaspis aculeifer

14 days

Mortality, reproduction
(EC₁₀/NOEC)

Recommended
Folsomia candida
28 days
Mortality, reproduction
(EC₁₀/NOEC)

PNEC_R derivation: fresh water compartment

Study	Toxicity endpoint	Remark
Algal growth	72-96 h E _r C ₁₀ or	E_vC_{10} or NOE_vC may be used
inhibition	NOE _r C	if E _r C ₁₀ or NOE _r C not
OECD 201		reported
Dap nia reproduction	21-d EC ₁₀ or NOEC	
OECD 211	-	
Fish early life-cycle	EC ₁₀ or NOEC	Duration of test dependent
test		on test species
OECD 210		

Same study of Phase IIA, different endpoint (E_rC₁₀) Duration: 21 days Number of offspring per parent at the end of test $(EC_{10}/NOEC)$

Duration: variable Success in hatching and survival; growth (lenght/weight) behaviour and development $(EC_{10}/NOEC)$

PNEC_R derivation: fresh water compartment

Available data	AF	Remark
One long-term	100	An AF of 100 to the EC_{10} (NOEC) of the algae can
EC ₁₀ /NOEC algae		only be applied if based on acute L(E)C ₅₀ data
		there is evidence that algae are at least one order
		of magnitude more sensitive than Daphnia and fish.
Two long-term	50	Species tested should cover the most sensitive
EC ₁₀ /NOECs (algae		from the acute data set (Section 3.3.6.2). The
and <i>Daphnia</i> or fish)		lowest value should be used to derive the PNEC
Three long-term	10	The lowest value should be used to derive the
EC ₁₀ /NOECs		PNEC

PNEC_{R;sed} for freshwater sediment-dwelling organisms

EqP approach based on the PNEC for freshwater pelagic organisms revised based on the Phase IIC $PNEC_{R;sw}$

When a risk is triggered

Experimental studies

$\begin{array}{c} \textbf{PNEC}_{R;sed} \text{ for freshwater sediment-} \\ \textbf{dwelling organisms} \end{array}$

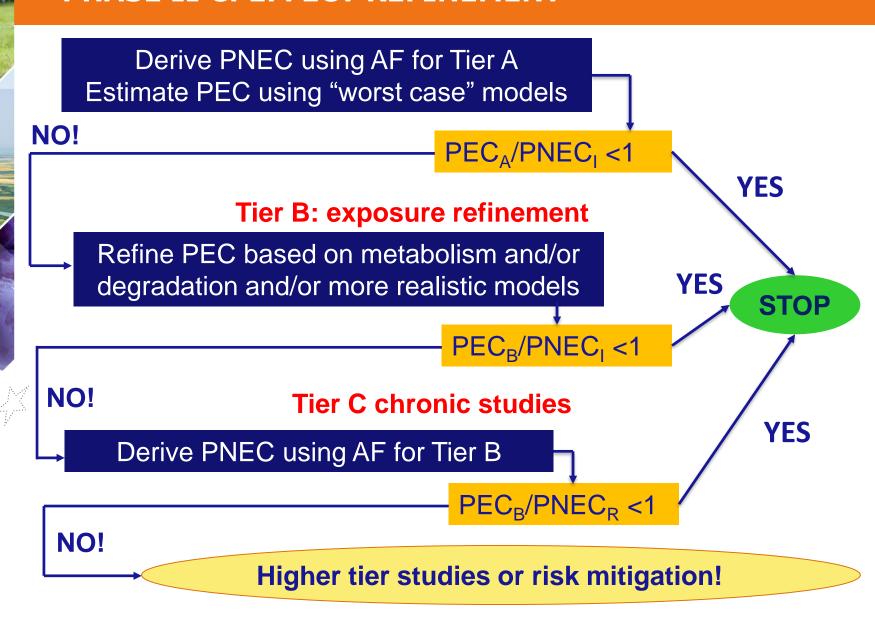
Study	Toxici ⁻	ty endpoint	Remark
Sediment-Water	28-d E	C ₁₀ or NOEC	<u>OECD 218</u>
Chironomid Toxicity Test			
Sediment-Water	28-d E	C ₁₀ or NOEC	OECD 225
Lumbriculus Toxicity Test		-	
Chronic test with other	EC ₁₀ OI	r NOEC	Table 19
benthic freshwater or			
marine/ estuarine species			
Accellated a data	A E	Damanla	

Available data	AF	Remark
One long-term EC ₁₀ /NOEC (Chironomus)	100	Sediment-Water Chironomid Toxicity Test currently is a data requirement
Two long-term EC ₁₀ /NOEC (Chironomus and Lumbriculus)	50	-
Three long-term EC ₁₀ /NOECs (Table 19 of the guidance)	10	Overview of freshwater and estuarine or marine benthic test species for which protocol tests are available

PNEC_{Rsed} derivation: Marine compartment

Study	Toxicity endpoint	Remark
Marine/estuarine crustacean	EC ₁₀ or NOEC	
Second marine/estuarine benthic invertebrate	EC ₁₀ or NOEC	At least another taxonomic group than Crustacea is required in the data set
Third benthic marine/estuarine or freshwater invertebrate	EC ₁₀ or NOEC	At least another taxonomic group than Crustacea is required in the data set

Available data	AF	Remark
One long-term EC ₁₀ /NOEC	100	Species tested should cover the most sensitive species from the acute data set (Section 3.3.6.3)
Two long-term EC ₁₀ /NOEC values (different taxonomic groups)	50	Species tested should cover the most sensitive species from the acute data set (Section 3.3.6.3).
Three long-term EC ₁₀ /NOECs	10	Table 20



PHASE II C: REFINEMENT

Risk assessment for secondary poisoning

The QSAR estimate of the BCF value can be replaced by an experimental value determined in a study conducted according the OECD TG 305 to further refine the assessment of secondary poisoning when in phase IIB still a risk has been identified

EXCEL TOOL

Same model, same results

