

CEP Panel Guidance Characterisation of microorganisms used for the production of food enzymes

Pier Sandro Cocconcelli CEP Panel - EFSA

Università Cattolica del Sacro Cuore Italy

CEP Panel Guidance

STATEMENT

ADOPTED: 23 May 2019

doi: 10.2903/j.efsa.2019.5741

Characterisation of microorganisms used for the production of food enzymes

EFSA Panel on Food Contact Materials, Enzymes and Processing Aids (CEP)*,
Vittorio Silano, José Manuel Barat Baviera, Claudia Bolognesi, Beat Johannes Brüschweiler,
Pier Sandro Cocconcelli, Riccardo Crebelli, David Michael Gott, Konrad Grob, Evgenia Lampi,
Alicja Mortensen, Gilles Rivière, Inger-Lise Steffensen, Christina Tlustos, Henk Van Loveren,
Laurence Vernis, Holger Zorn, Boet Glandorf, Lieve Herman, Jaime Aguilera and
Andrew Chesson

Background

- 2018: FEEDAP Guidance on the characterisation of microorganisms used as feed additives or as production organisms
 - Up-to-date information requests for production strains
 - FIP participation with staff and experts
- Inconvenient to use document from another Panel
- Different purposes
- Applicants' requests for clarity

Self-task: CEP Statement on the characterisation of production strains

Assessent of microbial producurs from FEED additive to FOOD enzyme

	Section	Feed additives containing viable microorganisms		Fermentation products	
		Bacteria	Fungi – yeasts	Bacteria	Fungi – yeasts
Identification	2.1		~	V	V
Antimicrobial susceptibility	2.2	1		1	
Antimicrobial production	2.3	~	~	V	V
Toxigenicity and pathogenicity	2.4	1	~	1	
Genetic modification	2.5			For GMMs only	For GMMs only
Absence of the production strain	3.1			1	
Presence of DNA from the production strain	3.2			Where relevant	Where relevant
Compatibility with other authorised additives	4.2	Where relevant	Where relevant		

SCOPE

- to assist in the preparation and presentation of applications to market food enzymes produced with microorganisms by fermentation
- the term **microorganism** includes archaea, bacteria, yeasts and filamentous fungi.
- only aspects linked to the production organism, including the safety aspects of any genetic modifications, are considered.
- for other elements of the assessment refer to the other relevant CEF Panel documents
- the characterisation of microorganisms used in the production of food enzymes should be made at the **production strain level**.

The Structure

1. Characterisation of the microorganism

- 1.1 Identification
- 1.2 Use of whole genome sequence for characterisation
- 1.3 Antimicrobial susceptibility
- 1.4 Toxigenicity and pathogenicity
 - 1.4.1 QPS
 - 1.4.2 Non-QPS
- 1.5 Genetic modifications
 - 1.5.1 Purpose of the genetic modification
 - 1.5.2 Characteristics of the modified sequences
 - 1.5.3 Structure of the genetic modification

2. Viable cells and DNA of the production strain

- 2.1 Viable cells of the production strain
- 2.2 DNA from the production strain

1.1 IDENTIFICATION

Unambiguous identification at the species level

Bacteria

- Computational approach using WGS
 - (e.g. ANI or dDNA hybridisation).
- Target sequence comparison (16S rRNA or housekeeping genes) may be acceptable
- If the species cannot be identified—> phylogenetic position
- New names —> No consequences. EFSA opinion will mention: "New name (formerly known as Old name)"

1.1 IDENTIFICATIONUnambiguous identification at the species level

Yeast

- Computational approach using WGS
- This should be done by phylogenomic analysis (e.g. using a concatenation of several conserved genes to produce a phylogeny against available related genomes).
- New names —> No consequences. EFSA opinion will mention:
 "New name (formerly known as Old name)"

1.1 IDENTIFICATIONUnambiguous identification at the species level

Filamentous Fungi

• When WGS is available, identification should be made by a phylogenomic analysis comparing the genome against available related genomes.

 Alternatively, identification may be made by comparing the 18S rRNA gene and/or internal transcribed spacer (ITS) regions and other characteristic genes (e.g. tubulin) with sequences deposited in databases.

1.2 WGS analysis

- Species identification
- Search for antimicrobial resistance genes
- Search for genes involved in toxins/virulence factors
- Characterisation of genetic modifications

1.2 WGS data

- DNA extraction method
- sequencing strategy and instrumentation used
- assembly method applied
- statistical measure of sequence quality
- -700,000 FASTA file(s) of the WGS
 - total length of contigs relative to the expected genome size
 - annotation protocol used
 - for fungi: information on the quality of the annotations obtained from relevant databases

1.3 ANTIMICROBIAL SUSCEPTIBILITY

- Applicable to all bacteria
- Relevant antimicrobials: CIAs or HIAs (WHO)
- Mainly based on WGS Search for genes encoding resistance
- Phenotypic analysis (MIC determination) in case of uncertainty
 - incomplete coding sequences
 - low percentage of identity

OUTCOME

Strain with acquired resistance genes —> absence of DNA

Cut-Off VALUES

Table 1: Microbiological cut-off values $(mg/L)^7$

	Bacillus	Corynebacterium and other Gram-positive	Pseudomonas	Enterobacteriaceae
Ampicillin	n.r.	1	n.r.	8
Piperacillin	n.r.	n.r.	16	n.r.
Vancomycin	4	4	n.r.	n.r.
Gentamicin	4	4	8	2
Kanamycin	8	16	n.r.	8
Streptomycin	8	8	n.r.	16
Erythromycin	4	1	n.r.	n.r.
Clindamycin	4	4	n.r.	n.r.
Tetracycline	8	2	n.r.	8
Chloramphenicol	8	4	n.r.	n.r.
Tylosine	n.r.	n.r.	n.r.	n.r.
Ciprofloxacin	n.r.	n.r.	0.5	0.06
Colistine	n.r.	n.r.	4	2
Fosfomycin	n.r.	n.r.	n.r.	8

n.r. not required.

1.3 ANTIMICROBIAL SUSCEPTIBILITY

outcome:

Strain with AMR genes —> absence of DNA

1.4 TOXIGENICITY AND PATHOGENICITY

QPS strains: considered toxicologically safe

For GMMs: QPS parental = QPS concept applicable to the GM

1.4 TOXIGENICITY AND PATHOGENICITY Non-QPS strains

- Bacteria: WGS analysis —> Search for sequences coding for known virulence factors:
 - matches to be assessed on a case-by-case basis
 - may trigger further phenotypic testing
- Eukaryotes: Data from literature searches
 - If WGS available: targeted searches against known sequences encoding toxin production pathways

Possible production of toxic compounds

By analysis

By tox studies

1.5 GENETIC MODIFICATIONS - WGS

100,000

bacteria and yeasts (optional for fungi) —> WGS

- Map/graphic of all genomic regions harboring genetic modifications (ORFs and non-coding sequence/s)
- sequences/databases and the methodology used for

1.5 GENETIC MODIFICATIONS

Inserted sequences from defined organisms

- nucleotide sequence of all inserted elements including a functional annotation and the physical map of all the functional elements
- name, derived amino acid sequence(s) and function(s) of the encoded protein(s).
- Inserted sequences designed.
 - rationale and strategy for the design
 - DNA sequence and a physical map of the functional elements
 - identify the functional domains of the recombinant protein;
- Deletion
- Base pair substitutions and frameshift mutations

1.5 GENETIC MODIFICATIONS – Structure of the GM without WGS data

- •all the steps should be described.
- identification of all genetic material potentially introduced into the recipient/parental microorganism.
 - Characteristics of the vector(s)
 - Information relating to the genetic modification process
 - Structure of any vector and/or donor nucleic acid remaining in the GMM
 - Genes of concern

2.1 Absence of viable production strain

- Required for all cases except QPS
- Culture-based method
 - Molecular methods less sensitive
- Production strain ≠ contaminating microbiota
- Recovery of possible stressed cells
- ≥ 1 g or ml of product
- 9 samples from at least 3 batches
- Positive control

2.2 Absence of DNA from the production strain

Requested for:

- GM production strains
- non-GM production strains with acquired AMR genes

PCR-based methodology. Indications on:

- Target sequence (<1kb) or the smallest gene of concern (e.g AMR)
- Amount of sample (≥ 1 g or 1 ml)
- Number of batches 9 replicates (3 x 3)
- Controls

Threshold: 10 ng control DNA per g or mL of product

PCR controls and sensitivity tests DNA extraction

- DNA from the production strain
- DNA from the production strain, added to the product sample before the DNA extraction, known quantity and dilutions until DNA extinction,
- DNA from the production strain, added to the DNA extracted from each of the three batches of the product tested, to check for any factors causing PCR failure
- negative control without sample
- extraction using a methodology suitable for all cellular forms in (e.g., vegetative cells, spores)
- PCR failure is encountered, the causes should be investigated

CONCLUSIONS

AMR LOW vs HIGH identity

AMR LOW vs HIGH identity

European Food Saf

BLAST	T Alignment	mecC
uery		DDIEKTISSIEKGNYNEVYKNSSEKSKLAYGEEEI DDIEKTISSIEKGNYNEVYKNSSEKSKLAYGEEEI
ARD	MKKIYISVLVLLLIMIIITWLFKD	DDIEKTISSIEKGNYNEVYKNSSEKSKLAYGEEEIV
uery		TGKDKKQVDVKYNIYTKYGTIRRNTQLNFIYEDKHW TGKDKKQVDVKYNIYTKYGTIRRNTQLNFIYEDKHW
ARD	DRNKKIYKDLSVNNLKITNHEIKK	TGKDKKQVDVKYNIYTKYGTIRRNTQLNFIYEDKHW
uery		KSERGKIKDRNGIELAKTGNTYEIGIVPNKTPKEKY KSERGKIKDRNGIELAKTGNTYEIGIVPNKTPKEKY
ARD	•	KSERGKIKDRNGIELAKTGNTYEIGIVPNKTPKEKY
uery		PDSFVPIKKINKQDEYIDKLIKSYNLQINTIKSRVY PDSFVPIKKINKQDEYIDKLIKSYNLQINTIKSRVY
ARD		PDSFVPIKKINKQDEYIDKLIKSYNLQINTIKSRVY
uery		QFRNYSKNTVIGKKGLERLYDKQLQNTDGFKVSIAN QFRNYSKNTVIGKKGLERLYDKQLQNTDGFKVSIAN
ARD		QFRNYSKNTVIGKKGLERLYDKQLQNTDGFKVSIAN
uery		IDARVQESIYKHMKNDDGSGTALQPKTGEILALVST IDARVQESIYKHMKNDDGSGTALQPKTGEILALVST
ARD	TYDNKPLDTLLEKKAENGKDLHLT	IDARVQESIYKHMKNDDGSGTALQPKTGEILALVST
uery		KEPLLNKFQITTSPGSTQKILTSIIALKENKLDKNT KEPLLNKFQITTSPGSTQKILTSIIALKENKLDKNT
ARD		KEPLLNKFQITTSPGSTQKILTSIIALKENKLDKNT
uery		VVDGNIDLKQAIESSDNIFFARIALALGAKKFEQGM VVDGNIDLKQAIESSDNIFFARIALALGAKKFEQGM
ARD		VVDGNIDLKQAIESSDNIFFARIALALGAKKFEQGN
uerv	ODLGIGENIPSDYPFYKAOISNSN	LKNEILLADSGYGOGEILVNPIOILSIYSALENNGN

QDLGIGENIPSDYPFYKAQISNSNLKNEILLADSGYGQGEILVNPIQILSIYSALENNGN QDLGIGENIPSDYPFYKAQISNSNLKNEILLADSGYGQGEILVNPIQILSIYSALENNGN

IQNPHVLRKTKSQIWKKDIIPKKDIDILTNGMERVVNKTHRDDIYKNYARIIGKSGTAEL IQNPHVLRKTKSQIWKKDIIPKKDIDILTNGMERVVNKTHRDDIYKNYARIIGKSGTAEL

Query IQNPHVLRKTKSQIWKKDIIPKKDIDILTNGMERVVNKTHRDDIYKNYARIIGKSGTAEL

AMR LOW vs HIGH identity


```
Query ATGITKKFGTKTAVKQIDLTVQTGQLVAFLGPNGAGKSTTINLLTGTIAPTAGTIEMTGF
A G+ K FG AV +DL V+TG + LGPNGAGK+TTI +L + P AG+ + G
CARD AYGLIKTFGDNRAVDGVDLNVRTGTIYGVLGPNGAGKTTTIRMLATLLRPDAGSARIFGH

Query --KPDNRQYQKQIGVVFQKSVLDNQLTVWQNL---KSRADMYQGVTLTPESELITAFGLT
+ +++ + + IGV Q + +D L+ +NL + + EL+ FGL+
CARD DVQAESQIVRQLIGVTGQYASVDESLSATENLIIFSRLLGLGRKEARRKAEELLEEFGLS

Query SILKQTYGTLSGGQRRRVDIARALIHQPKLLFLDEPSTGLDIQTRTVIWQTLNQLRQQQG
K+ SGG RRR+D+A +LI QP L+FLDEP+TGLD +TR+ +W T+ +L G
CARD EAAKRPLKNFSGGMRRRLDLAASLIAQPPLIFLDEPTTGLDPRTRSQMWDTIRRL-VNTG

Query LTIILTTPYLEEAAE-ADFVYVIDHGQIIAADTVEQLQATYAQSQLMIETD
T++LTT YLEEA + AD + VID+G+++A T ++L+ + S L + +
CARD STVLLTTQYLEEADQLADRIAVIDYGRVVAEGTADELKMSVGTSSLHLTVE
```

34% identity