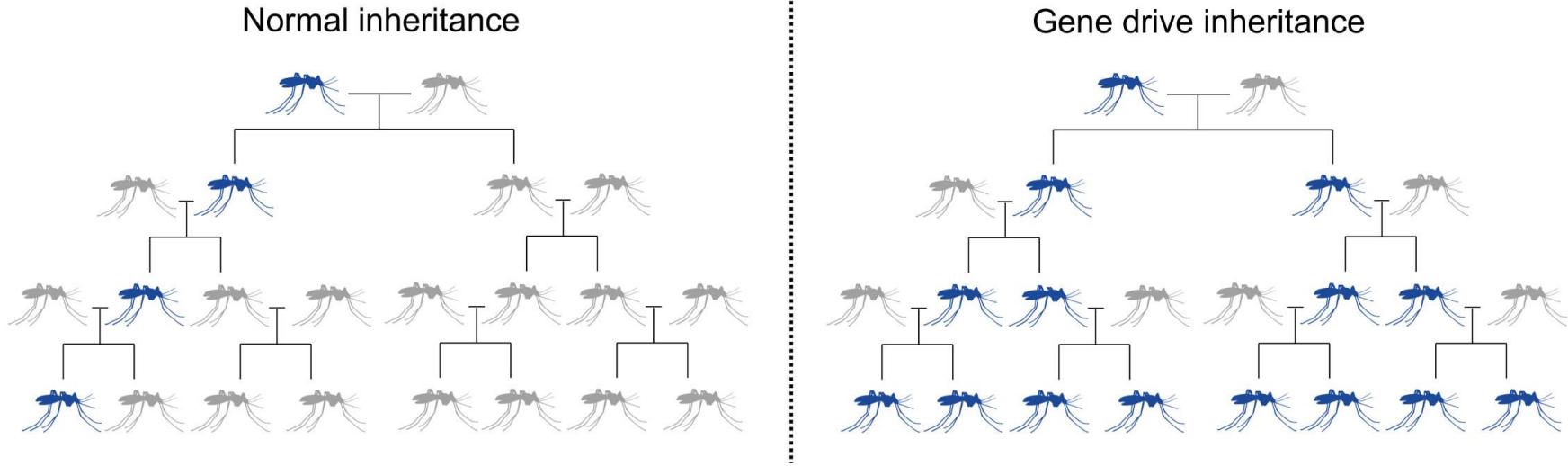


Experiences with gene drives
and risk assessment implications
Opinion of the Netherlands
Commission on Genetic Modification (COGEM)


EFSA Workshop

Brussels, Belgium – 15 May 2019
Marjan Bovers, Greet Smets & Patrick Rüdelsheim

We support organisations
realizing the potential of biologicals
by implementing biorisk management
and complying with legal obligations
in an efficient and affordable way

- Study commissioned by the Netherlands Commission on Genetic Modification (COGEM)
- To map experience with gene drive systems, both natural and synthetic
- To inform the risk assessment

Different gene drive mechanisms have different features

Wolbachia

- restricted to merely arthropods
- high drive efficiency (no true gene drive)
- natural, cannot be engineered
- low drive efficiency, high fitness cost

Transposable elements

- high introduction frequency, high fitness cost
- locally confined, removable

Underdominance

- moderate drive efficiency

Meiotic drive

- moderate drive efficiency
- natural, synthetic versions are explored

MEDEA

- high drive efficiency, low release threshold
- susceptible to resistance development
- synthetic (by design!)

Homing-based drives

Intended use:

- Population suppression
- Population replacement

Two separate factors:

- Gene drive: mechanism to spread beyond Mendelian laws
- Effector: element that induces an effect on the host organism;
may be:
 - Gene drive itself (e.g. CRISPR/Cas inserting in an essential gene)
 - Payload gene (e.g. gene interfering with embryo development)

Considerations:

Effects on the gene drive host organism

- Off-target modifications (e.g. CRISPR/Cas inserting in non-target sequence)
- Interaction with host genome (e.g. *Wolbachia* in previously uninfected *Aedes aegypti*)
- Modified susceptibility (e.g. vectoring another disease)
- Stability of the gene drive system (e.g. unlinking driver from payload gene)
- Horizontal gene transfer (e.g. *Wolbachia* genome fragments to their insect host)

Considerations:

Effects on biodiversity

- (Non)-target organisms (e.g. elimination of the gene drive host organism with effect on e.g. predators, competitors, ...; niche replacement; transfer to related species, ...)

Resistance development

- To the gene drive system (e.g. variation/mutation of cleavage site of the CRISPR/Cas system)
- To the effector

Effects beyond the target area

- Dispersal (potential for low threshold drives)
- Options to limit dispersal (e.g. high threshold drive, reversal drive, 'daisy chain' CRISPR/Cas gene drive, ...)

- **Natural and synthetic** gene drives have been explored
- Field (cage) experiments and releases are almost exclusively with **mosquitoes**
- The most advanced programme is the release of *Wolbachia*-infected *Aedes aegypti* in several parts of the world to fight mosquito-vectored human diseases
- RA case-by-case as **different systems** have different characteristics

- **Two elements:** gene drive as such and “load” or gene of interest
- Success of the system depends on:
 - the biology and population dynamics of the host organism,
 - the drive’s efficacy,
 - the fitness cost of the gene drive to the host,
 - the fitness cost of the load to the host,
 - environmental circumstances,
 - the potential for resistance development/presence in the target population.

These elements determine the speed and **limits of dispersal**

- **Mitigating measures** are being proposed/developed to limit and/or reverse the impact
- **No harmful effects** to human health or the environment have been observed so far
- Gene drives are **delicate constructs** and safeguards can be designed e.g. when working with CRISPR/Cas systems to avoid that they are created by chance
- **Concerns that the release of organisms with gene drives will inevitably lead to the suppression or replacement of all wild-type individuals should be nuanced**

Kortrijksesteenweg 127
B-9830 Sint-Martens-Latem
Belgium
M +32 475 45 72 04
F +32 9 321 07 05
info@perseus.eu
www.perseus.eu

CGM 2018-03
ONDERZOEKSRAPPORT

www.cogem.net