WEBINAR:
Learn more about the risk assessment of phthalates used in plastic food contact materials

ENDORSED FOR PUBLIC CONSULTATION: 06 February 2019
doi:10.2903/j.efsajnl.vyy.nnnn

Draft update of the risk assessment of di-butylphthalate (DBP), butyl-benzyl-phthalate (BBP), bis(2-ethylhexyl)phthalate (DEHP), di-isononylphthalate (DINP) and di-isodecylphthalate (DIDP) for use in food contact materials

EFSA Panel on Food Contact Materials, Enzymes and Processing Aids (CEP),
Webinar guide for attendees

- This webinar is being recorded!
- The webinar is in English and questions should be submitted in English through the platform (see hereunder).
- You are automatically connected to the audio broadcast. One-way audio (listen only mode).

Presentation window

Q&A box: For any questions related to the topic

Chat box: For technical issues related questions

Trusted science for safe food

European Food Safety Authority
Webinar agenda

<table>
<thead>
<tr>
<th>TIME</th>
<th>ITEM</th>
</tr>
</thead>
<tbody>
<tr>
<td>10:30-10:35</td>
<td>Objective and outline of the webinar, introduction of the two presenters</td>
</tr>
<tr>
<td>10:35-10:45</td>
<td>Introduction to the mandate</td>
</tr>
<tr>
<td>10:45-10:55</td>
<td>Exposure assessment</td>
</tr>
<tr>
<td>10:55-11:00</td>
<td>Live Q&A window</td>
</tr>
<tr>
<td>11:00-11:15</td>
<td>Hazard identification, hazard characterisation, risk analysis</td>
</tr>
<tr>
<td>11:15-11:25</td>
<td>Live Q&A window</td>
</tr>
<tr>
<td>11:25-11:30</td>
<td>Closure of the webinar and take home messages</td>
</tr>
</tbody>
</table>
What are phthalates?

→ **additives** that are used in **plastics** as plasticisers (e.g. for gaskets) and as technical support agents

- **migration** from plastics
 → human exposure

- **different exposure routes and sources**
 (environment, food, food contact materials, medical devices, ...)

![Dibutyl phthalate (DBP)](image-url)
2005: Publication of EFSA’s opinions

- DBP
 - Di-butylphthalate
- BBP
 - Butyl-benzyl-phthalate
- DEHP
 - Bis(2-ethylhexyl)phthalate
- DINP
 - Diisononyl phthalate
- DIDP
 - Diisodecyl phthalate

Authorized for use as plasticisers and technical support agents in **plastic Food Contact Materials (FCM)** (Regulation (EU) No 10/2011)

2017: Publication of ECHA RAC’s opinion

- DBP
- BBP
- DEHP
- DIBP
 - Not authorised for use in FCM

NEW assessment by ECHA including also data from after 2005

Committee for Risk Assessment (RAC)

Committee for Socio-economic Analysis (SEAC)

Opinion on an Annex XV dossier proposing restrictions on **FOUR PHTHALATES (DEHP, BBP, DBP, DIBP)**
Update the EFSA’s 2005 risk assessments of five phthalates, based on:

- All information available to the ECHA RAC (2017)
- Recent exposure and toxicity data (focus on reproductive toxicity)

- DBP
- BBP
- DEHP
- DINP
- DIDP
Mandate from European Commission

- Assessing also

 - contribution of plastic FCM

 - potential health risks from consumer exposure to these phthalates from plastic FCMs

 - DBP
 - BBP
 - DEHP
 - DINP
 - DIDP

 Deadline: 31 July 2019
Interpretation of the mandate

DBP, BBP, DEHP

- Review of toxicological data used by ECHA (2017), mainly on reproductive toxicity

DINP, DIDP

- Recent data on reproductive toxicity, including:
 - ECHA RAC assessment of DINP and DIDP (2013)
 - ECHA RAC opinion on a proposal for harmonised classification and labelling of DINP (2018)
Interpretation of the mandate

- analyse the **possibility** of setting a **group health based guidance value**

- **refine** the assessment of **dietary exposure**

HOWEVER:
recognising the limitations of this approach

➔ **uncertainty** analysis and **recommendations** for future assessments
Dietary exposure assessment
From EFSA Chemical Occurrence Database

Several limitations, e.g.
• limited number of samples per food category
• high LOD/LOQs
• high percentage of left-censored data

Alternative approach: literature data (after 2008)

- **Lower Bound** approach → values < LOD/Q set to 0
- When several values available for one food category → highest value chosen
Estimation of dietary exposure

Literature **occurrence** data
(pooled European sample)

\(\times \)

Food **consumption data** from
EFSA Comprehensive Database

using FoodEx classification (food descriptor for each category)
Estimation of chronic dietary exposure:

- at individual level per dietary survey and age class (eight population groups)

- by combining the mean/median occurrence value with the average daily consumption for each food type

→ estimates for mean and high (P95) consumers
Scenario 1

Dietary exposure to the five individual phthalates

Scenario 2

Potency-adjusted aggregated dietary exposure to four phthalates included in the group-TDI

(expressed as DEHP equivalents)
Dietary exposure - results

<table>
<thead>
<tr>
<th>Compound</th>
<th>Mean exposure (min-max) (μg/kg bw per day)</th>
<th>P95 exposure (min-max) (μg/kg bw per day)</th>
</tr>
</thead>
<tbody>
<tr>
<td>DBP</td>
<td>0.042 – 0.769</td>
<td>0.099 – 1.503</td>
</tr>
<tr>
<td>BBP</td>
<td>0.009 – 0.207</td>
<td>0.021 – 0.442</td>
</tr>
<tr>
<td>DEHP</td>
<td>0.446 – 3.459</td>
<td>0.902 – 6.148</td>
</tr>
<tr>
<td>DINP</td>
<td>0.232 – 4.270</td>
<td>0.446 – 7.071</td>
</tr>
<tr>
<td>DIDP</td>
<td>0.001 – 0.057</td>
<td>0.008 – 0.095</td>
</tr>
<tr>
<td>Group Phthalates</td>
<td>0.865 – 7.205</td>
<td>1.640 – 11.738</td>
</tr>
</tbody>
</table>
EFSA estimates for dietary exposure in **good agreement** with

- Exposure estimates reported in *Total Diet Studies* from UK, Ireland and France

- **Human biomonitoring** data and **exposure modelling** data from ECHA (2017)
Review of papers investigating source of phthalates in food and possible contribution from FCM

→ **did not allow** to conclude on plastic FCM contribution to dietary exposure
Q&A session 1
ECHA (2017): DEHP, DBP, BBP (and DIBP)

- focus on reproductive toxicity (most robust dataset)
- assessment of other endpoints: neuro - metabolic – immune

→ Indications for more sensitive endpoints than reproductive toxicity, BUT: no quantitative risk assessment

→ EFSA agreement with ECHA

Consideration of the other effects in uncertainty analysis and recommendations of EFSA draft opinion
Confirmation of critical effects and identified NOAELs/LOAEL from EFSA’s 2005 assessments (also in agreement with ECHA RAC)

- **Reproductive toxicity**
 - DBP 0.01 (Lee et al., 2004)
 - BBP 0.5 (Tyl et al., 2001, 2004)
 - DEHP 0.05 (Wolfe and Layton, 2003)

- **Liver toxicity**
 - DINP 0.15 (Exxon, 1986/Lington, 1997)
 - DIDP 0.15 (Exxon, 1997, 2000/Hushka et al., 2001)

Individual TDI (mg/kg bw per day)
In **2005**: EFSA concluded on **insufficient evidence** for grouping the five phthalates

Now: **new evidence** on

- **dose-additivity** and **mode of action** underlying the **reproductive toxicity**
 (reduction of fetal testosterone production)

→ Considerations on the **plausibility** of deriving a **group-TDI based** on **reproductive toxicity**
Robust evidence for DBP, BBP and DEHP

Also considering their harmonised classification as **reprotoxicants 1B**

(CLH - Harmonised Classification and Labelling)
DINP – main considerations:

1) CLH opinion (ECHA RAC, 2018):

- No gross-structural malformations,
 no permanent decreases of anogenital distance,
 no permanent nipple retention

- Reversible histological changes in foetal testes and effects on testosterone production
 → not considered sufficient for classification

- ECHA conclusion: „No classification for DINP for either effects on sexual function and fertility, or for developmental toxicity is warranted“
DINP – main considerations:

2) **reduction in fetal testosterone**
(NOAEL 50 mg/kg bw per day)

- **lower potency** compared to DBP, BBP and DEHP and **transient** nature of the effect

- **BUT:** indications for **common mode of action** and **co-exposure**

Conclusion: **INCLUDE** DINP in the group-TDI
No inclusion in the group-TDI

- **DIDP**
 - No CLH classification as reprotoxicant
 - No reduction in fetal testosterone levels

→ **NOT INCLUDED** in the group-TDI
EFSA SC Draft guidance on mixtures

- **Index compound** with most robust underlying data set → DEHP

→ group-TDI: 0.05 mg/kg bw per day

- Derivation of **Relative Potency Factors**

\[RPF = \frac{HBGV \text{ index compound}}{HBGV \text{ substance}} \]
How to derive a RPF for **DINP**?

<table>
<thead>
<tr>
<th>Pivotal endpoint</th>
<th>But: group-TDI based on reproductive toxicity</th>
</tr>
</thead>
<tbody>
<tr>
<td>liver toxicity
NOAEL: 15 mg/kg bw per day</td>
<td>NOAEL of DINP: 50 mg/kg bw per day</td>
</tr>
</tbody>
</table>

Hybrid-approach:
additional assessment factor of **3.3** to cover also the more sensitive liver effects
Calculation of RPFs

<table>
<thead>
<tr>
<th></th>
<th>DEHP</th>
<th>BBP</th>
<th>DBP</th>
<th>DINP (reproductive effects)</th>
</tr>
</thead>
<tbody>
<tr>
<td>N(L)OAEL</td>
<td>4.8</td>
<td>50</td>
<td>2</td>
<td>50</td>
</tr>
<tr>
<td>Uncertainty factors</td>
<td>100</td>
<td>100</td>
<td>200</td>
<td>100</td>
</tr>
<tr>
<td>Additional assessment factor</td>
<td>n/a</td>
<td>n/a</td>
<td>n/a</td>
<td>3.3</td>
</tr>
<tr>
<td>HBGV</td>
<td>0.05</td>
<td>0.5</td>
<td>0.01</td>
<td>0.15</td>
</tr>
<tr>
<td>RPF</td>
<td>1</td>
<td>0.1</td>
<td>5.0</td>
<td>0.3</td>
</tr>
</tbody>
</table>
aggregated dietary exposure

based on potency-adjusted occurrence data, expressed as DEHP equivalents

GroupPhthalates (µg/kg food) = DEHP*1 + BBP*0.1 + DBP*5 + DINP*0.3

<table>
<thead>
<tr>
<th>Compound</th>
<th>Mean exposure</th>
<th>P95 exposure</th>
</tr>
</thead>
<tbody>
<tr>
<td>DBP</td>
<td>0.042 – 0.769</td>
<td>0.099 – 1.503</td>
</tr>
<tr>
<td>BBP</td>
<td>0.009 – 0.207</td>
<td>0.021 – 0.442</td>
</tr>
<tr>
<td>DEHP</td>
<td>0.446 – 3.459</td>
<td>0.902 – 6.148</td>
</tr>
<tr>
<td>DINP</td>
<td>0.232 – 4.270</td>
<td>0.446 – 7.071</td>
</tr>
<tr>
<td>DIDP</td>
<td>0.001 – 0.057</td>
<td>0.008 – 0.095</td>
</tr>
<tr>
<td>GroupPhthalates</td>
<td>0.865 – 7.205</td>
<td>1.640 – 11.738</td>
</tr>
</tbody>
</table>
Risk characterisation

<table>
<thead>
<tr>
<th></th>
<th>Dietary exposure (µg/kg bw per day)</th>
<th>Group-TDI (µg/kg bw per day)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Group Phthalates</td>
<td>Mean: 0.865 – 7.205</td>
<td>50</td>
</tr>
<tr>
<td></td>
<td>P95: 1.640 – 11.738</td>
<td></td>
</tr>
</tbody>
</table>

→ **Group Phthalates**: Contribution **up to 23%** of group-TDI

<table>
<thead>
<tr>
<th></th>
<th>Dietary exposure (µg/kg bw per day)</th>
<th>TDI (µg/kg bw per day)</th>
</tr>
</thead>
<tbody>
<tr>
<td>DIDP</td>
<td>Mean: 0.001 – 0.057</td>
<td>150</td>
</tr>
<tr>
<td></td>
<td>P95: 0.008 – 0.095</td>
<td></td>
</tr>
</tbody>
</table>

→ **DIDP**: Contribution **far below** TDI (1,500-fold)
Uncertainty analysis

- **Qualitative** approach

- **Main sources of uncertainty:**
 - Focus on reproductive toxicity and **lack of review of other endpoints** (possibly more sensitive)
 - **Co-exposure to other phthalates** with similar effects, e.g. DIBP
Recommendations

- Call for data
 - occurrence of phthalates in food
 - contribution from (plastic) FCM

- Investigation of other, possibly more sensitive effects (immunotoxic, metabolic, neurotoxic)

- Application of Benchmark Dose Modelling approach

- Assessment of co-exposure to other phthalates with similar effects, e.g. DIBP
Where do we stand in the process?

- **6 February**: Endorsement of draft opinion
- **21 February**: Launch of public consultation
- **15 March**: Webinar
- **14 April**: Closure of public consultation
- **July**: Planned adoption of opinion

Q&A session 2
Thank you for attending our webinar!

In case we did not manage to answer all your questions, please feel free to re-submit them via e-mail at: fip@efsaeuropa.eu

Please take 5 more minutes to fill out the evaluation form that you will receive shortly in your inbox. Your feedback will help us improve our service!