

### **WEBINAR:**

Learn more about the risk assessment of phthalates used in plastic food contact materials

#### DRAFT SCIENTIFIC OPINION

ENDORSED FOR PUBLIC CONSULTATION: 06 February 2019 doi:10.2903/j.efsa.20<mark>YY.NNNN</mark>

Draft update of the risk assessment of di-butylphthalate (DBP), butyl-benzyl-phthalate (BBP), bis(2-ethylhexyl)phthalate (DEHP), di-isononylphthalate (DINP) and di-isodecylphthalate (DIDP) for use in food contact materials

EFSA Panel on Food Contact Materials, Enzymes and Processing Aids (CEP),





**Chat box: For technical** 

issues related questions

## Webinar guide for attendees

- This webinar is being recorded!
- The webinar is in English and questions should be submitted in English through the platform (see hereunder).
- You are automatically connected to the audio broadcast. One-way audio (listen only mode).



Q&A box: For any questi ons related to the topic





# Webinar agenda



| TIME        | ITEM                                                                     |
|-------------|--------------------------------------------------------------------------|
| 10:30-10:35 | Objective and outline of the webinar, introduction of the two presenters |
| 10:35-10:45 | Introduction to the mandate                                              |
| 10:45-10:55 | Exposure assessment                                                      |
| 10:55-11:00 | Live Q&A window                                                          |
| 11:00-11:15 | Hazard identification, hazard characterisation, risk analysis            |
| 11:15-11:25 | Live Q&A window                                                          |
| 11:25-11:30 | Closure of the webinar and take home messages                            |

# What are phthalates?



- → additives that are used in plastics as plasticisers (e.g. for gaskets) and as technical support agents
- migration from plastics→ human exposure



• different exposure routes and sources (environment, food, food contact materials, medical devices, ...)



# Mandate July 2017 - background



#### **2005**:

publication of **EFSA**'s opinions

- DBP
- Di-butylphthalate
  - BBP
- Butyl-benzyl-phthalate
  - DEHP
- Bis(2-ethylhexyl)phthalate
  - DINP
  - Diisononyl phthalate
    - DIDP
  - Diisodecyl phthalate

 Not authorised for use in FCM

2017: Publication of ECHA RAC's opinion

- DBP
- BBP

DEHP

DIBP

NEW assessment by ECHA including also data from after 2005

Committee for Risk Assessment (RAC) Committee for Socio-economic Analysis (SEAC)

Opinion

on an Annex XV dossier proposing restrictions on

FOUR PHTHALATES (DEHP, BBP, DBP, DIBP)

Authorised for use as plasticisers and technical support agents in plastic Food Contact Materials (FCM) (Regulation (EU) No 10/2011)

# Mandate from European Commission



• Update the EFSA's 2005 risk assessments of five phthalates, based on:

All information available to the ECHA RAC (2017)

- DBP
- BBP
- DEHP

Recent **exposure** and **toxicity** data (focus on <u>reproductive</u> toxicity)

- DINP
- DIDP

# Mandate from European Commission



Assessing also



- contribution of plastic FCM
- potential health risks from consumer exposure to these phthalates from plastic FCMs

- DBP
- BBP
- DEHP
- DINP
- DIDP



Deadline: 31 July 2019

### Interpretation of the mandate



### DBP, BBP, DEHP

 Review of toxicological data used by ECHA (2017), mainly on reproductive toxicity

### DINP, DIDP

- Recent data on <u>reproductive toxicity</u>, including:
  - ECHA RAC assessment of DINP and DIDP (2013)
  - ECHA RAC opinion on a proposal for harmonised classification and labelling of DINP (2018)

### Interpretation of the mandate



- analyse the possibility of setting a group health based guidance value
- refine the assessment of dietary exposure

#### **HOWEVER:**

recognising the limitations of this approach

uncertainty analysis and

recommendations for future assessments



# Dietary exposure assessment

### Phthalates occurrence in food





- From EFSA Chemical Occurrence Database
   Several limitations, e.g.
  - limited number of samples per food category
  - high LOD/LOQs
  - high percentage of left-censored data
- Alternative approach: literature data (after 2008)
  - Lower Bound approach → values < LOD/Q set to 0</li>
  - When several values available for one food category
    - → highest value chosen

### Estimation of dietary exposure





### Literature occurrence data

(pooled European sample)

X

### Food **consumption data** from

EFSA Comprehensive Database



using FoodEx classification (food descriptor for each category)

### Estimation of dietary exposure



### Estimation of chronic dietary exposure:

- at <u>individual level</u> per dietary survey and age class (eight population groups)
- by combining the <u>mean/median occurrence</u> value with the <u>average daily consumption</u> for each food type
- → estimates for mean and high (P95) consumers

### Dietary exposure scenarios



### **Scenario 1**

Dietary exposure to the five **individual** phthalates

### **Scenario 2**

Potency-adjusted
aggregated dietary
exposure to four
phthalates included in
the group-TDI

(expressed as DEHP equivalents)

# Dietary exposure - results



| Compound        | Mean exposure<br>(min-max)<br>(µg/kg bw per day) | P95 exposure<br>(min-max)<br>(µg/kg bw per day) |
|-----------------|--------------------------------------------------|-------------------------------------------------|
| DBP             | 0.042 - 0.769                                    | 0.099 - 1.503                                   |
| BBP             | 0.009 - 0.207                                    | 0.021 - 0.442                                   |
| DEHP            | 0.446 - 3.459                                    | 0.902 - 6.148                                   |
| DINP            | 0.232 - 4.270                                    | 0.446 - 7.071                                   |
| DIDP            | 0.001 - 0.057                                    | 0.008 - 0.095                                   |
| GroupPhthalates | 0.865 - 7.205                                    | 1.640 - 11.738                                  |

## Comparing exposure estimates



 EFSA estimates for dietary exposure in good agreement with

Exposure estimates reported in <u>Total Diet</u>
 <u>Studies</u> from UK, Ireland and France

 Human biomonitoring data and exposure modelling data from ECHA (2017)

# Contribution from plastic FCM to dietary exposure



Review of papers
 investigating source of phthalates in food and possible contribution

 from FCM



→ did not allow to conclude on plastic FCM contribution to dietary exposure



# •Q&A session 1

### Hazard assessment



- ECHA (2017): DEHP, DBP, BBP (and DIBP)
  - focus on reproductive toxicity (most robust dataset)
  - assessment of other endpoints:
     neuro metabolic immune
- →Indications for **more sensitive endpoints** than reproductive toxicity, <u>BUT</u>: <u>no quantitative</u> risk assessment

### → **EFSA** agreement with ECHA

Consideration of the other effects in uncertainty analysis and recommendations of EFSA draft opinion

### Hazard assessment – critical effects



 Confirmation of <u>critical effects</u> and identified <u>NOAELs/LOAEL</u> from EFSA's **2005 assessments** (also in agreement with ECHA RAC)



## Considerations on grouping



 In 2005: EFSA concluded on <u>insufficient</u> evidence for grouping the five phthalates

- Now: new evidence on
  - dose-additivity and mode of action underlying the reproductive toxicity (reduction of fetal testosterone production)

→ Considerations on the plausibility of deriving a group-TDI based on reproductive toxicity

## Inclusion in the group-TDI



 Robust evidence for DBP, BBP and DEHP

 Also considering their harmonised classification as reprotoxicants 1B

(CLH - Harmonised Classification and Labelling)

## Inclusion in the group-TDI



- DINP main considerations:
  - 1) CLH opinion (ECHA RAC, 2018):
  - No gross-structural <u>malformations</u>,
     no permantent decreases of <u>anogenital distance</u>,
     no permanent <u>nipple retention</u>
  - Reversible histological changes in foetal testes and effects on testosterone production
     → not considered <u>sufficient for classification</u>
  - ECHA conclusion: "No classification for DINP for either effects on sexual function and fertility, or for developmental toxicity is warranted"

# Inclusion in the group-TDI



- DINP main considerations:
  - 2) reduction in fetal testosterone (NOAEL 50 mg/kg bw per day)
- → <u>lower potency</u> compared to DBP, BBP and DEHP and <u>transient</u> nature of the effect
- → BUT: indications for common mode of action and co-exposure

Conclusion: INCLUDE DINP in the group-TDI

## No inclusion in the group-TDI



### DIDP

- No CLH classification as reprotoxicant
- No reduction in fetal testosterone levels

→ **NOT** INCLUDED in the group-TDI

# **Group-TDI**



EFSA SC Draft guidance on mixtures

 Index compound with most robust underlying data set → DEHP

→ group-TDI: 0.05 mg/kg bw per day

Derivation of Relative Potency Factors

$$RPF = \frac{HBGV \ index \ compound}{HBGV \ substance}$$

### **Group-TDI**



### How to derive a RPF for **DINP**?

Pivotal endpoint **liver toxicity**NOAEL: 15 mg/kg bw per day

But: **group-TDI** based on **reproductive toxicity** 

NOAEL of DINP: 50 mg/kg bw

per day

### **Hybrid-approach:**

additional assessment factor of 3.3 to cover also the more sensitive liver effects

# Calculation of RPFs



|                              | DEHP | ВВР | DBP  | <b>DINP</b> (reproductive effects) |
|------------------------------|------|-----|------|------------------------------------|
| N(L)OAEL                     | 4.8  | 50  | 2    | 50                                 |
| Uncertainty factors          | 100  | 100 | 200  | 100                                |
| Additional assessment factor | n/a  | n/a | n/a  | 3.3                                |
| HBGV                         | 0.05 | 0.5 | 0.01 | 0.15                               |
| RPF                          | 1    | 0.1 | 5.0  | 0.3                                |

## RPFs in the exposure assessment



### aggregated dietary exposure

based on potency-adjusted occurrence data, expressed as DEHP equivalents

GroupPhthalates (
$$\mu$$
g/kg food) = DEHP\*1 + BBP\*0.1 + DBP\*5 + DINP\*0.3

| Compound        | Mean exposure | P95 exposure   |
|-----------------|---------------|----------------|
| DBP             | 0.042 - 0.769 | 0.099 - 1.503  |
| BBP             | 0.009 - 0.207 | 0.021 - 0.442  |
| DEHP            | 0.446 - 3.459 | 0.902 - 6.148  |
| DINP            | 0.232 - 4.270 | 0.446 - 7.071  |
| DIDP            | 0.001 - 0.057 | 0.008 - 0.095  |
| GroupPhthalates | 0.865 - 7.205 | 1.640 - 11.738 |

### Risk characterisation



|                 | Dietary exposure<br>(µg/kg bw per day) | <b>Group-TDI</b> (μg/kg bw per day) |
|-----------------|----------------------------------------|-------------------------------------|
| GroupPhthalates | <b>Mean</b> : 0.865–7.205              | 50                                  |
|                 | <b>P95</b> : 1.640–11.738              |                                     |

→ GroupPhthalates: Contribution up to 23% of group-TDI

|      | Dietary exposure<br>(µg/kg bw per day) | <b>TDI</b> (μg/kg bw per day) |
|------|----------------------------------------|-------------------------------|
| DIDP | <b>Mean</b> : 0.001 – 0.057            | 150                           |
|      | <b>P95</b> : 0.008 – 0.095             |                               |

→DIDP: Contribution **far below TDI** (1,500-fold)

# Uncertainty analysis



- Qualitative approach
- Main sources of uncertainty:



- Focus on reproductive toxicity and lack of review of other endpoints (possibly more sensitive)
- Co-exposure to other phthalates with similar effects, e.g. DIBP



### Recommendations



- Call for data
  - occurrence of phthalates in food
  - contribution from (plastic) FCM
- Investigation of other, possibly more sensitive effects (immunotoxic, metabolic, neurotoxic)
- Application of Benchmark
   Dose Modelling approach
- Assessment of co-exposure to other phthalates with similar effects, e.g. DIBP



### Where do we stand in the process?



6 February
endorsement
of draft
opinion

**TODAY** 

15 March

Webinar

**adoption** of opinion

**July** 

**Planned** 

21 February

Launch of public consultation

14 April
Closure of
public
consultation

http://www.efsa.europa.eu/en/ consultations/call/190221



# •Q&A session 2



# Thank you for attending our webinar!

In case we did not manage to answer all your questions, please feel free to re-submit them via e-mail at:fip@efsa.europa.eu

Please take 5 more minutes to <u>fill out the evaluation form</u> that you will receive shortly in your inbox. Your feedback will help us improve our service!