

STUDIES IN EXPERIMENTAL ANIMALS

CONTAM Opinion on PCDD/Fs and DL-PCBs in food and feed

Ron Hoogenboom

Chair WG Dioxins in food

WHO (1998)

- Focus on effects TCDD in animals
 - Applying body burden concept
 - Evaluate at which body burden adverse effects occur
- Effects observed at low dose
 - Endometriosis in monkeys
 - Neurobehavioral effects in monkeys
 - Immune suppression in offspring rats
 - Decreased sperm count in male offspring of rats
- Effects in animals at body burdens of 30-70 ng/kg bw
- TDI of 1-4 pg/kg bw/day

Effects in male offspring (Mably et al. 1992)

- Reduced sperm production in male offspring of treated dams (single dose GD 15)
- Also decreased weights testis, epididymis and cauda epididymis
- Results imply prenatal or early postnatal effects

SCF (2001) Selected studies

Study	Endpoint	NOAEL	LOAEL	Estimated maternal steady state body burden ^(a) (ng/kg bw)	Associated EHDI ^(d) (pg/kg bw per day)
Mably et al. (1992a)	Holzman rats: Decreased sperm count in male offspring	-	64 ng/kg bw single bolus dose by gavage	100 ^(b)	50
Gray et al. (1997a)	Long Evans rats: Accelerated eye opening and decreased sperm count in male offspring	-	50 ng/kg bw single bolus dose by gavage	80 ^(b)	40
Faqi et al. (1998)	Wistar rats: Decreased sperm production and altered sexual behaviour in male offspring	-	Maintenance of 25 ng/kg bw by s.c. injections	40 ^(b)	20*
Ohsako et al. (2001)	Holzman rats: Decreased anogenital distance in male offspring	12.5 ng/kg bw single bolus dose by gavage	-	20 (c)	10
		-	50 ng/kg bw single bolus dose by gavage	80 (c)	40

SCF (2001)

- Also applying body burden concept
- Two studies selected
 - Decreased anogenital distance in male offspring, implying effects on external genital organs (Ohsako et al., 2001)
 - Decreased sperm concentrations (Faqi et al. 1998)
- TWI of 14 pg/kg bw/week based on EDHI of 20 pg/kg bw/week and UFs of 3 x 3.2
- JECFA (2001): TMI of 70 pg/kg bw/month
 - Same critical studies

EFSA 2018: selection of new animal studies

- Comprehensive review of animal studies
- Focus on studies with effects at TCDD body burdens lower than used by SCF (2001)
 - Body burden estimated or preferentially measured
 - Initially selection of studies including BB <100 ng/kg bw
 - Estimate LOAEL/NOAEL BB; if lower than Faqi/Ohsako:
 - Appraise study
- At later stage decision to focus on TCDD only
 - Effect at lower TEQ for other congener would question TEF
- Most sensitive endpoint: sperm effects observed by Faqi et al. (1998)

Faqi et al. 1998 (critical study SCF, 2001)

- Mother dams injected s.c. with:
 - 0, 25, 60 or 300 ng TCDD/kg bw, 2 weeks prior to mating
 - followed by weekly maintenance bolus doses of, respectively, 5, 12 or 60 ng/kg bw
 - Estimated BB mothers: 0, 25, 41 and 137 ng/kg bw
- Effects on sperm in offspring at PND 70 and 170
 - Lowest dose shows effect: LOAEL BB 25 ng/kg bw
 - BMD modelling not successful

Faqi et al. (1998) BMD modelling (Appendix C)

version: 65.7 loglik 19.66 AIC -31.32 var- 0.03581 a- 34.17 CED- 1.892 d- 0.3622 CES -0.1 CEDL 0.148 CEDU 10.9 b: 816 conv: 1 scaling factor on x: 1 dtype: 10

PND 70

subgroup	bmdl.lowest	bmdu.highest
all	0.148	10.9

PND 170

subgroup	bmdl.lowest	bmdu.highest
all	0.00135	14.3

AIC -8.6 var- 0.0464 a- 45.18 CED- 2.8 c- 0.5036 d- 0.9386 CES -0.1 CEDL 0.00135 CEDU 14.3 b: 0.08559 conv: 1 scaling factor on x: 1 dtype: 10

version: 65.7 loglik 8.52 AIC -9.04 var- 0.04731 a- 44.88 CED- 0.01714 d- 0.25 CES -0.1 CEDL 0.00791 CEDU 0.169 b: 112.4 conv: 1 scaling factor on x: 1 dtype: 10

Bell et al. (2007)

- Sperm effects not observed by Bell et al. (2007), but delayed balano-preputial separation (implying delayed puberty onset)
- BMDL₅ of 3.5 ng/kg bw/d on GD16/21, corresponding to BBs of 51/61 ng/kg bw

version: 65.7 loglik 483.95 AIC -959.9 var- 0.003891 a- 45.4 CED- 9.113 d- 0.298 CES 0.05 CEDL 3.7 CEDU 20.6 b: -249100 conv : 1 scaling factor on x : 1 dtype : 10

subgroup	bmdl.lowest	bmdu.highest
all	3.5	20.6

Bone effects (Jämsä et al. 2001)

- Female Long-Evans rats, treated for 20 weeks with loading and maintenance dose
 - BB of 0, 28, 171 and 904 ng/kg bw
 - Various effects on bones
- Most sensitive effect: tibial cross-sectional area of cortex (CSA): BMDL₅ of 13.8 ng/kg bw

version: 65.7 loglik 34.33 AIC -60.66 var- 0.00189 a- 4.6 CED- 118.5 d- 0.527 CES -0.05 CEDL 14.2 CEDU 451 b: 31630 conv: 1 scaling factor on x: 1 dtype: 10

subgroup	bmdl.lowest	bmdu.highest
all	13.8	455

MODE OF ACTION

- The molecular initiating event behind most if not all effects of PCDD/Fs and DL-PCBs considered to be the activation of the arylhydrocarbon receptor (AHR) pathway
- This is followed by the expression of a selected number of genes (AHR battery of genes), many involved in the metabolism of endogenous compounds but also xenobiotics
- Less clear how this evolves into the various effects observed in animals and humans
- Natural ligand (hormone) not yet identified

Effects in mice constitutively expressing AHR

- Mouse show effects like:
 - Hepatomegaly
 - thymus atrophy
 - decreased bone stiffness in female mice
 - altered size of B lymphocyte subpopulations

But also:

- Reduced weight of testis and ventral prostate (by 12% and 33%)
- Reduced epididymal sperm count, by 45% (Brunberg et al. 2011)

CONCLUSIONS

- Various effects in animals
 - Effects on sperm, delayed puberty onset (balanopreputial separation), bone development
- Most sensitive effect on sperm concentrations,
 - Faqi et al. (1998) with LOAEL BB of 25 ng/kg bw
 - Supports effects observed in humans