GENOTOXIC SUBSTANCES IN PRINTED PAPER AND BOARD FOOD CONTACT MATERIALS

A prioritisation strategy based on non-animal methods

Melissa Van Bossuyt

Promoters:
Prof. Dr. Vera Rogiers
Prof. Dr. Tamara Vanhaecke

Dr. Birgit Mertens
Dr. Els Van Hoeck

EFSA, Parma, 10-11 July 2018
Printed paper and board

Widely & Frequently used

Major cause of contamination by FCM

Thousands of non (recently) safety-evaluated substances
Printed paper and board

Widely & Frequently used

Major cause of contamination by FCM

Thousands of non (recently) safety-evaluated substances

AIM:
PRIORITY ISATION STRATEGY
METHODOLOGY

Step 1: Database compilation
Step 2: *In silico* prediction
Step 3: Literature review
Step 4: *In vitro* testing

NON-ANIMAL METHODS
STEP 1: DATABASE COMPILATION

Van Bossuyt M, Van Hoeck E, Vanhaecke T, Rogiers V* & Mertens B* (2016)
Printed paper and board food contact materials as a potential source of food contamination.
\[\sum = 6073 \]

- Evaluated: 77%
- Non-evaluated: 23%
- Single substances: #1723
- Other (polymers, mixtures, metals, etc.): 28%
STEP 2: *IN SILICO PREDICTION*

 Food and Chemical Toxicology 102: 109-119.

 Toxicological Sciences 163(2): 632-638

Equal contribution
Step 1: Toxtree
Step 2: VEGA
Step 3: Nexus
Step 4: Nexus

QUALITATIVE

QUANTITATIVE
Combination of gene mutation prediction results

- **Step 1**: Database
- **Step 2**: Computer
- **Step 3**: Books
- **Step 4**: Petri dish

NO ALERT IN ANY TOOL

- **POSITIVE IN 1**
 - #106
 - #128
 - #94
 - #204

- **POSITIVE IN 2**
 - #1191
Step 1: Sulphonic acid alkyl ester

Step 2: Aromatic nitro group

Step 3: Aromatic azo group

Step 4: Aromatic alkyl amino group

Step 5: Alkyl hydrazine

Step 6: Aziridinyl derivative

Step 7: Epoxide

Ashby-Tennant polycarcinogen
STEP 3: LITERATURE REVIEW

Van Bossuyt M, Van Hoeck E, Vanhaecke T, Rogiers V * & Mertens B*
Prioritising substances of emerging concern for in-depth safety evaluation based on their genotoxic potential: the example of printed paper and board food contact materials.
Submitted to Toxicology Letters.
PRIORITY SUBSTANCES (#106)

Step 2

Official evaluation available

Genotoxic *in vivo*

Inconclusive

Not genotoxic *in vivo*

NO official evaluation available

Data collection from existing databases
Gene mutation data are lacking!
STEP 4: *IN VITRO TESTING*

Van Bossuyt M, Van Hoeck E, Vanhaecke T, Rogiers V & *Mertens B*

Prioritising substances of emerging concern for in-depth safety evaluation based on their genotoxic potential: the example of printed paper and board food contact materials.

Submitted to Toxicology Letters.
Gene mutation data are lacking!
Step 1: Exogenous metabolism system OR buffer
Step 2: Genetically modified Salmonella typhimurium
Step 3: Test substance
Step 4: Overlay agar

Suspension containing:
- Exogenous metabolism system OR buffer
- Genetically modified Salmonella typhimurium
- Test substance
- Overlay agar

Immediate plating
Minimal agar

Incubation at 37°C for 48-72 hours

Revertant colonies
Negative
Positive

Aromatic (di)azo

1. ≠ Metabolisation system
2. Additional cofactors
3. Pre-incubation 30'
Negative in NON-OFFICALLY VERIFIED gene mutation test
CONCLUSION

Step 1: Database compilation

Step 2: *In silico* prediction

Step 3: Literature review

Step 4: *In vitro* testing

#123

#106
Future perspectives

• For a full safety evaluation, **additional aspects** need to be investigated

 - **FCM-related**
 - Actual use
 - Type of food
 - Conditions of use
 - ...

 - **TOX-related**
 - Other genotoxic endpoint
 - Other toxicological endpoints
 - ...

• This prioritisation strategy can be extended to **other substance types/groups**
THANK YOU FOR YOUR ATTENTION!