Titanium dioxide nanoparticle ingestion alters nutrient absorption in an in vitro model of the small intestine

Zhongyuan Guo¹, Nicole J. Martucci¹, Fabiola Moreno Olivas¹, Elad Tako⁴, and Gretchen J. Mahler¹

¹Department of Biomedical Engineering, Binghamton University, Binghamton, NY, USA
²Plant, Soil and Nutrition Laboratory, Agricultural Research Services, U.S. Department of Agriculture, Ithaca, NY, USA
• A Western diet includes $10^{12} - 10^{14}$ engineered nanoparticles per day
 • Primarily metal oxide NP used in processed foods and food packaging
 • More recent studies estimated that daily adult intake of nano TiO$_2$ is 0.2 – 1 mg/kg
 • Pediatric intake is likely even higher

Research goal: Determine if and how ingested metal oxide (TiO$_2$) NP alter intestinal function.

1. Cell culture model of the intestinal epithelium
2. Effects of pristine NP exposure on GI function *in vitro*
Nanoparticle dose

- Efforts made to recreate physiologically realistic doses
 - Dose calculated as the mass per unit area from published estimates
 - Density and size of 30 nm TiO$_2$ (anatase) nanoparticles converted to physiological doses
 - Also studied doses two orders of magnitude higher and lower than the physiological dose
 - Total ingested material/surface area of the human small intestine (2x106 cm2)
In vitro experimental design

Caco-2/HT29-MTX

- Add TiO$_2$ nanoparticles (30 nm in low mineral MEM)
- Add 10 mM 58Fe(II)-ascorbate
- Collect apical and basolateral medium for ICP-MS
- Wash and collect cells for molecular (RNA, protein) or structural (microvilli) analysis

2 weeks

4 hours or 5 days

2 hours

Medium dose: ~2.5 mg per day divided by the total intestinal surface area (2×10^6 cm2)

Low, high: two orders of magnitude lower or higher
- 1.4×10^{-4} mg/mL
- 1.4×10^{-6} mg/mL
- 1.4×10^{-8} mg/mL
Barrier function

- The effects TiO$_2$ NP on tight junctions evaluated
 - TER
- ROS is produced in response to 58Fe, 67Zn, and acute or chronic exposure to TiO$_2$
Nutrient Transport & Uptake

- Fe and Zn transport and uptake are sensitive to particle exposure at realistic doses.
- In general, NP decrease transport and uptake following acute and chronic exposure.
Nutrient Transport & Uptake

- Fatty acid uptake affected at high doses
- Intestinal alkaline phosphatase (IAP) increases in response to NP exposure
 - IAP concentrated in the BBM, cells and plays a critical role in barrier function and stress responses
Gene expression

- Nutrient transporter, pro-inflammatory genes analyzed
- Most significant increases seen in pro-inflammatory genes, likely related to ROS signaling
Microvilli density

- Acute and chronic high doses have ~25% less surface area covered by microvilli
- Similar results have been found by other groups

Yang et al. Sci Tot Environ. 2016 (565) 902–912
Conclusions

- Metal oxide nanoparticles significantly affect Fe, Zn, and fatty acid nutrient transport and BBM enzyme activity
- Gene expression and ROS formation analysis showed NP changed the expression levels of nutrient transport proteins and induced ROS and pro-inflammatory signaling
- Metal oxide NP exposure decreased the number of intestinal microvilli, which decreased the surface area available for nutrient absorption
- Overall, the results from this study indicate that the intestinal epithelium is affected at a functional level by physiologically relevant exposure NP commonly ingested from food
Acknowledgements

- Students: Zhongyuan Guo, PhD; Fabiola Moreno, Alba Garcia Rodriguez, Mridu Malik, Jonathan Richter, John Fountain, Gabriella Shull, Nicole Martucci

- Funding: The National Institutes of Health (1R15ES022828), the Research Foundation of the State University of New York, and the CONACyT fellowship (FMO)