

EFSA guidance on allergenicity assessment of GM plants

Antonio Fernandez-Dumont
13th December 2017

Allergenicity guidelines

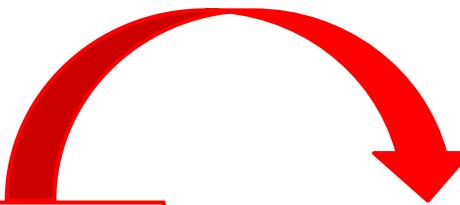
SCIENTIFIC OPINION

ADOPTED: 18 May 2017

doi: 10.2903/j.efsa.2017.4862

Guidance on allergenicity assessment of genetically modified plants

EFSA Panel on Genetically Modified Organisms (GMO),
Hanspeter Naegeli, Andrew Nicholas Birch, Josep Casacuberta, Adinda De Schrijver,
Mikolaj Antoni Gralak, Philippe Guerche, Huw Jones, Barbara Manachini, Antoine Messéan,
Elsa Ebbesen Nielsen, Fabien Nogué, Christophe Robaglia, Nils Rostoks, Jeremy Sweet,
Christoph Tebbe, Francesco Visioli, Jean-Michel Wal, Philippe Eigenmann, Michelle Epstein,
Karin Hoffmann-Sommergruber, Frits Koning, Martinus Lovik, Clare Mills,
Francisco Javier Moreno, Henk van Loveren, Regina Selb and Antonio Fernandez Dumont


Abstract

- Non-IgE-mediated adverse immune reactions
- *In vitro* protein digestibility
- Endogenous allergenicity

© 2017 European Food Safety Authority. *EFSA Journal* published by John Wiley and Sons Ltd on behalf of European Food Safety Authority.

Keywords: guidance, allergenicity assessment, newly expressed proteins, endogenous allergenicity, GMO

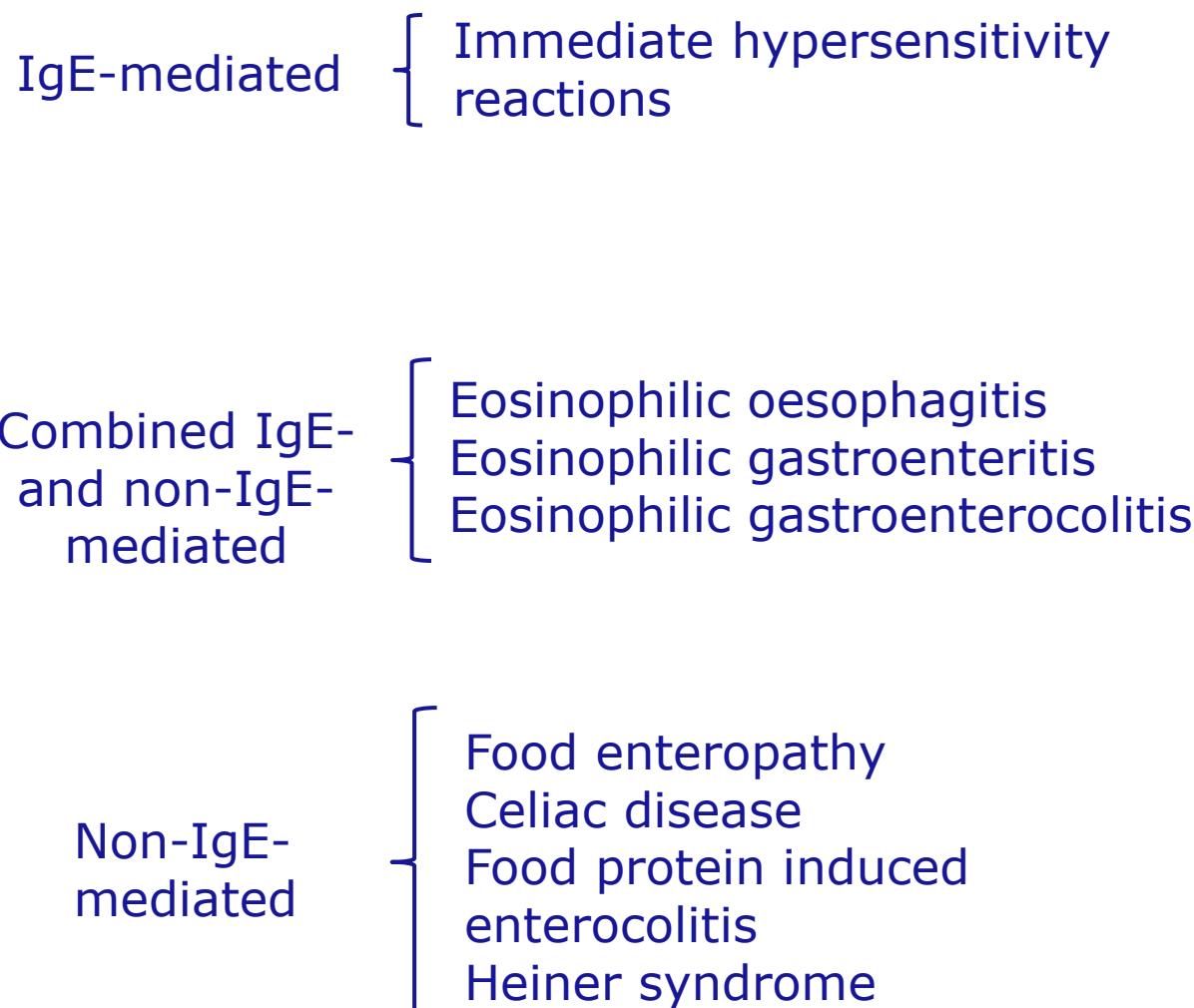
EFSA mandate: allergenicity guidelines

EFSA self
mandate

EU
Commission

EU
Parliament

Member
States


- **Why?**

- To consider new developments in the area
- To address MS/NGOs/EP/applicants comments
- To assist on practical implementation of regulatory requirements

- **Stakeholder/public engagement**

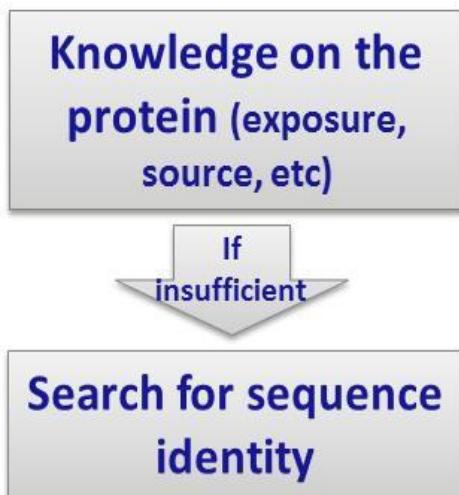
- “Focus group” consultative body
- Workshop
- Public consultation
- InfoSession

Immune-mediated adverse reactions

Adapted from: The University of Manchester, 2013. Literature review: EFSA supporting publication 2013:EN-527, 40 pp

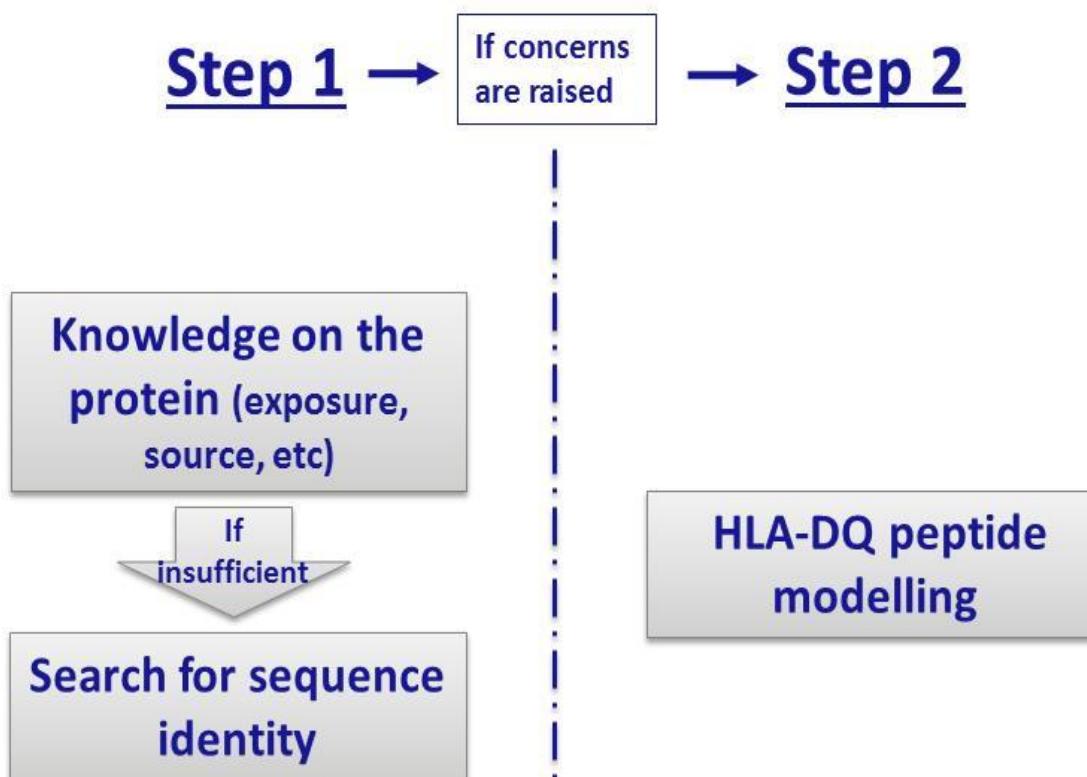
Immune-mediated adverse reactions

Celiac disease **Clear cause-effect** **relationship**


Non-IgE-
mediated

{ Food enteropathy
Celiac disease
Food protein induced
enterocolitis
Heiner syndrome

RA of (novel) proteins: celiac disease


Fig 1. Stepwise approach for risk assessment

Step 1

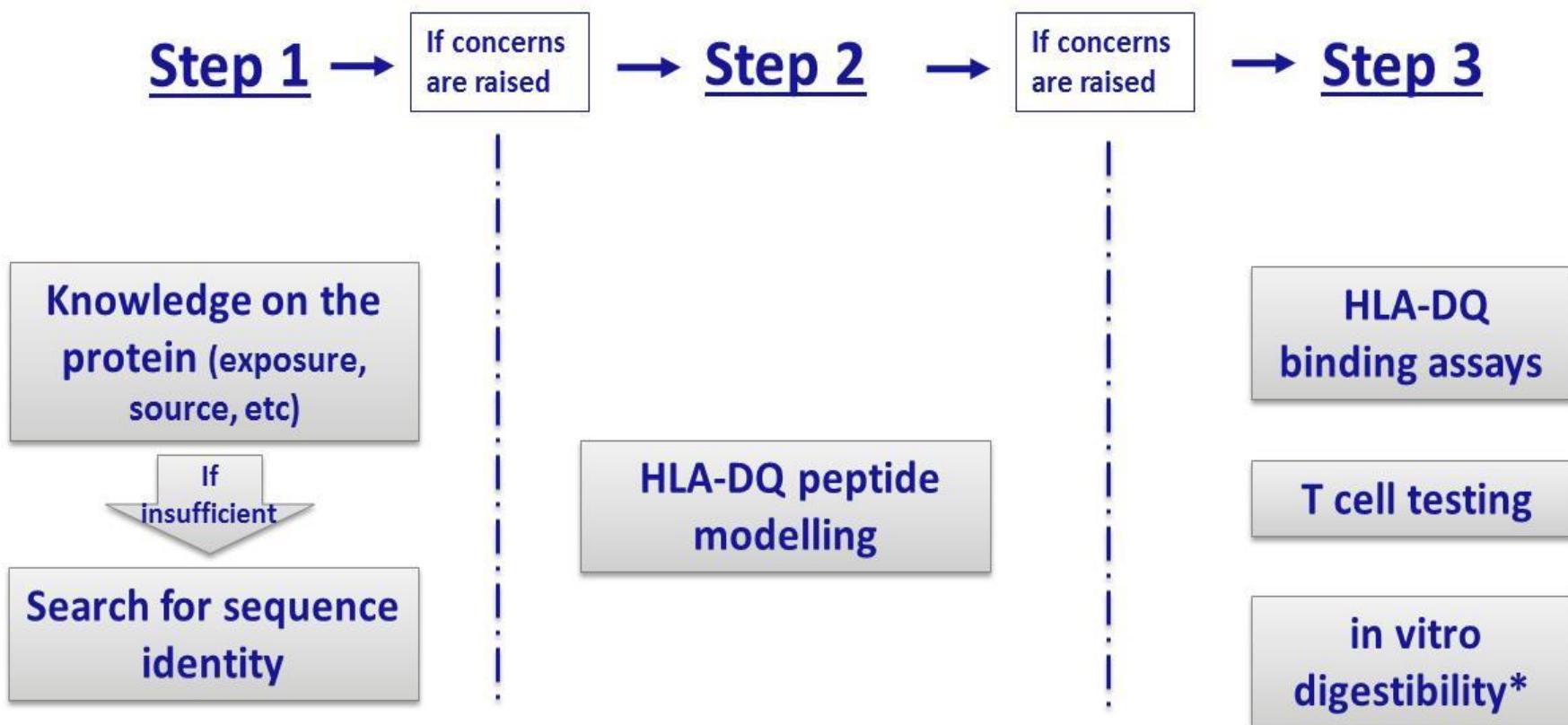
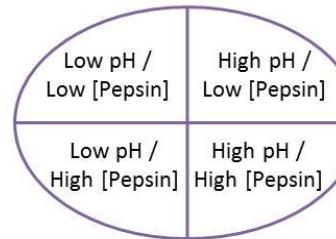

RA of (novel) proteins: celiac disease

Fig 1. Stepwise approach for risk assessment

RA of (novel) proteins: celiac disease

Fig 1. Stepwise approach for risk assessment



* for details, please see chapter on *in vitro* digestibility

RA of (novel) proteins: *in vitro* digestion

- **Risk assessment considerations**
 - No recommendation in the form of guidance
 - A refined *in vitro* digestion test proposed
An interim phase needed -> EFSA procurement
- **Annex B**
 - Additional considerations for the interim phase
 - Examples for test conditions – digestion conditions

Possible gastric conditions:

Elderly/adults in fasted state
Elderly/adults in fed state
People with impaired gastric function
People taking antacids
Infants

Proposed gastrointestinal conditions:

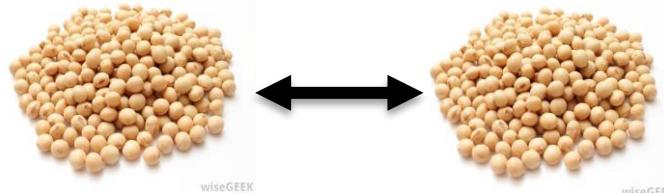
pH 5.5

[Pepsin] = $\sim 1,000$ U/mL¹
of gastric juice
(biosurfactants)²

High pH /
Low [Pepsin]

pH 1.2-2.0

[Pepsin] = Classical pepsin-
resistance test³

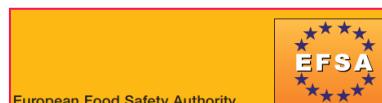

pH 6.5

[Trypsin] = $\sim 1,600$ U/mL¹
[Chymotrypsin] = ~ 800 U/mL¹
of intestinal juice
(biosurfactants)²

**Intestinal
digestion**

Endogenous allergenicity

Comparative approach


“non-GM”

“GM”

GUIDANCE DOCUMENT
OF THE SCIENTIFIC PANEL
ON GENETICALLY MODIFIED
ORGANISMS FOR THE RISK
ASSESSMENT OF GENETICALLY
MODIFIED PLANTS AND
DERIVED FOOD AND FEED

Adopted on 24 September 2004
Updated on 7 December 2005
Final, edited version of 28 April 2006

C O D E X A L I M E N T A R I U S

Foods derived from modern biotechnology

Second edition

efsa
European Food Safety Authority

EFSA Journal 2011; 9(5):2150

SCIENTIFIC OPINION

Guidance for risk assessment of food and feed from genetically modified plants¹

EFSA Panel on Genetically Modified Organisms (GMO)^{2,3}

European Food Safety Authority (EFSA), Parma, Italy

Relevant plants for analysis

- **Analysis performed on a case-by-case basis**
- **For «common allergenic foods»**
- **To date: soybean is the main crop analysed**
- **Other GM plants than soybean: whenever considered necessary**

Relevant allergens for quantification

EU Regulation 503/2013

OECD consensus soy 2012 Soy allergen list: 'potential soybean allergens'

Table 20. Potential soybean allergens

β -binding protein	Allergen nomenclature	Molecular weight (kDa)	Family
Hydrophobic protein	Gly m 1 ¹	70/75	Lipid transfer protein
Defensin	Gly m 1 ²	8.8	Storage protein
Podoflin	Gly m 3 ¹	34	Podoflin
SKM21	Gly m 4 ¹	18.8	Patellaria related protein (PR-10)
PR-10	Gly m 88/90 E	34	Protein
Takao Associated glycoprotein	Gly m 91/92 E	34	Unknown
[Kitaigojuban/soyka, 7S protein]	Gly m 5 ¹	145-170	Storage protein (rich albumin)
Glycan (soybean, 11S protein)	Gly m 6 ¹	130-160	Storage protein (rich albumin)
S album	Not assigned	11	Podoflin
Lectin	Not assigned	130	Lectin
Lipoxygenase	Not assigned	101	Enzyme
Small protein inhibitor	Not assigned	21	Protein inhibitor
Unknown	Not assigned	38	Unknown
Unknown	Not assigned	94	Homology to microtubule β -tubulin protein
PR-20	Not assigned	23-24	Unknown

Source: adapted from L'Hostis and Bégin, (2007); updated with information from WHO IUIS (2012).

¹ IUIS IUIS (2011) Allergen nomenclature recognized by WHO and IUIS

Evidence check

Evaluation of literature for all
single allergens

and

Comparison and
complementation with
databases (EFSA, 2010)
and/or
Systematic Reviews

Clinical relevance shown

Relevance for GMO risk
assessment

Example in Annex C

WHO/IUIS

Table 20. Potential soybean allergens

Considerable peer-reviewed literature

IgE-binding proteins	Allergen nomenclature	Molecular weight (kDa)	Family
Hydrophobic proteins	Gly m 1 ¹	7.0-7.5	Lipid transfer protein
Defensin	Gly m 2 ¹	8.0	Storage protein
Profilin	Gly m 3 ¹	14	Profilin
SAM22	Gly m 4 ¹	16.6	Pathogenesis related protein PR-10
P34	Gly m Bd 30 K	34	Protease
Unknown Asn-linked glycoprotein	Gly m Bd 28 K	26	Unknown
β-Conglycinin (vicilin, 7S globulin)	Gly m 5 ¹	140–170	Storage protein (with subunits)
Glycinin (legumin, 11S globulin)	Gly m 6 ¹	320–360	Storage protein (with subunits)
2S albumin	Not assigned	12	Prolamin
Lectin	Not assigned	120	Lectin
Lipoxygenase	Not assigned	102	Enzyme
Kunitz trypsin inhibitor	Not assigned	21	Protease inhibitor
Unknown	Not assigned	39	Unknown
Unknown	Not assigned	50	Homology to chlorophyll A-B binding protein
P22-25	Not assigned	22–25	Unknown

SBP proteins

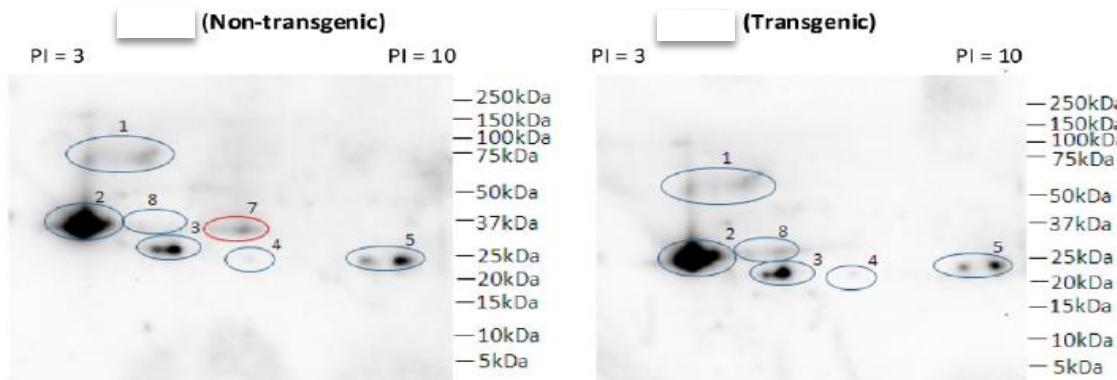
Gly m 7

Others:

Gly m CPI, Gly m EAP,...

Limited/non-existent peer-reviewed literature

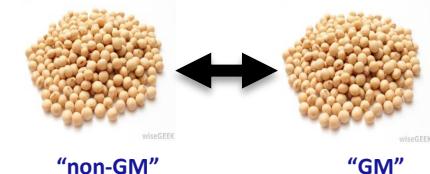
Methodology


- **Quantitative ELISA**
- **Quantitative mass spectrometry**

comparative approach

Future development of an allergen compositional database (natural variability)

Historically: human sera (IgE-binding)



Goodman et al. 2013, J. Agric. Food Chem. 2013, 61, 8317-8332

Data interpretation

- **Natural variability of allergens**

comparative approach

- **On case-by-case basis**

- Magnitude and number of changes
- Clinical relevance of the allergen(s) involved
- Exposure considerations
- Clinical evaluation (if needed):
 - DBPCFC comparison GM vs non-GM
 - Dose-distribution curves to single allergens

Allergenicity guidelines

Thank you for your attention

Main contributors:

JM Wal, P Eigenmann, M Epstein, K Hoffmann-Sommergruber,
F Koning, M Lovik, C Mills, FJ Moreno, H van Loveren, R Selb
and A Fernandez-Dumont