Scientific Panel on Plant Health (PLH)
Minutes of the 70th Plenary meeting

\textit{22 and 23 November 2017, Parma, (Italy)}

(Agreed on written procedure 18 December 2017)

Participants

- Panel Members
 Claude Bragard, David Caffier, Elisavet Chatzivassiliou, Gianni Gilioli, Jean-Claude Gregoire, Josep Jaques Miret, Michael Jeger, Alan MacLeod, Maria Navajas, Björn Niere, Stephan Parnell, Roel Potting, Trond Rafoss, Vittorio Rossi, Gregor Urek, Wopke van der Werf, Jonathan West, Stephan Winter

- European Commission and/or Member States representatives:
 Maria Mirazchiyska (DG SANTE)

- EFSA:
 ALPHA Unit: Giuseppe Stancanelli, Mitesha Aukhojee, Ramona Ciubotaru, Ewelina Czwienckez, Alice Delbianco, Franco Ferilli, Ciro Gardi, Gabor Hollo, Virag Kertesz, Svetla Kozelska, Marco Pautasso, Sybren Vos,
 SCER Unit: Bernard Bottex, Stef Bronzwaer
 AMU Unit: Olaf Mosbach-Schulz

- Hearing experts:
 Muriel Suffert (EPPO)

1. \textbf{Welcome and apologies for absence}

The Chair welcomed the participants. Apologies were received from Thierry Candresse, Katharina Dehnen-Schmutz and Ariena Van Bruggen.

2. \textbf{Adoption of the agenda}

The agenda was adopted without changes.

3. \textbf{Declarations of Interest Scientific Panel Members}

In accordance with EFSA’s Policy on Independence and Scientific Decision-Making Processes1 and the Decision of the Executive Director on Declarations of Interest2, EFSA screened the Annual Declarations of Interest (ADoI) and the Specific Declarations of Interest (SDoI) filled in by the Panel Members invited for the present meeting. No additional interest was declared.

4. \textbf{Report on written procedure since the 69th Plenary meeting}

4.1. Report on the agreement in written procedure of the Plenary minutes of 69th Plenary meeting

1 http://www.efsa.europa.eu/en/keydocs/docs/independencepolicy.pdf
The minutes of the 69th Plenary meeting were agreed by written procedure by October 12th and published on EFSA web-page.

4.2. Report on written adoptions.

Written adoptions were organised in the DistillerSR platform for the following scientific opinions:

- Pest categorisation of *Oligonychus perditus*
- Pest categorisation of *Anthonomus bisignifer*
- Pest categorisation of *Anthonomus grandis*
- Pest categorisation of Naturally spreading psorosis
- Evaluation of a paper by Guarnaccia et al. (2017) on the first report of *Phyllosticta citricarpa* in Europe

All 4 pest categorisation opinions were adopted by written procedure on 10 November 2017. The opinions are being prepared for publication in the EFSA Journal. The opinion on *Phyllosticta citricarpa* was adopted on 21 November 2017. During this meeting the PLH Panel agreed to insert in the section “4. Conclusions” of the opinion more details on the clarification received by the authors of the paper explaining that: “The results by Guarnaccia et al. (2017) are based on the sampling conducted during the initial field visits. Following a request for clarifications, the corresponding author of the paper has informed EFSA that, during the second set of field visits undertaken in December 2016 and January 2017 to confirm the initial findings, no symptoms were observed and therefore no confirmatory samples were collected by the authors.” After inclusion of the clarification mentioned above the opinion is being prepared for publication in the EFSA Journal.

On an overall note, the Panel was satisfied with the use of the DistillerSR platform for written adoptions. The new approach to written adoptions saved the exchange of a large number of emails through a voting alternative. The votes are recorded in Distiller and it is easy for the Unit to monitor the status of the votes. At the end of the procedure, the votes can be easily extracted from Distiller. The procedure of written adoptions is hence more efficient and traceable. It will be checked if it is possible to send automatic reminders to vote, before the deadline.

5. Scientific outputs submitted for discussion and/or possible adoption

5.1. Pest Categorisation opinions for adoption

5.1.1. Scientific opinion on pest categorisation on "*Alternaria alternata* (non-European pathogenic isolates)" ([EFSA-Q-2017-00329](https://efsamanager.integritysoftware.com/))

The EFSA Panel on Plant Health performed a pest categorisation of small-spored Alternaria carrying the genes for the AM- or AK-toxin biosynthesis,
for the European Union (EU). The identity of the pests is clearly defined and reliable methods exist for their detection/identification. They are listed in Annex IIAI of Directive 2000/29/EC as *Alternaria alternata* (non-European pathogenic isolates). Their distribution in the EU is restricted though with some uncertainty. The AM-toxin producer *Alternaria* affect *Malus* spp. and *Pyrus communis* (European pear), whereas the AK-toxin producers affect *P. pyrifolia*, *P. bretschneideri* and *P. ussuriensis* (Asian pears). The pests could potentially enter the EU on host planting material and fruit originating in infested countries. There are no biotic/abiotic factors limiting their potential establishment and spread in the EU, as their epidemiology is similar to that of other well-established *Alternaria* spp. Apples and European pears are widespread in the EU; Japanese pears are also present but no data was found on their abundance/distribution. In the infested areas, the pests cause premature defoliation, fruit spotting and rot resulting in yield/quality losses. It is expected that the introduction and spread of the pests in the EU could impact apple and pear production, although the magnitude is unknown. Cultural practices and chemical measures may reduce the inoculum and the disease but they cannot eliminate the pests. Phytosanitary measures are available to mitigate the risk of introduction and spread of the pests. The pests do not meet all the criteria assessed by EFSA for consideration as potential Union quarantine pests, as they are not under official control in those EU restricted areas where they have been found. The pests do not meet all the criteria assessed by EFSA to consider them as Union regulated non-quarantine pests, as host plants for planting are not the main means of pest spread. This pest categorisation was adopted on 23 November 2017.

5.1.2. Scientific opinion on pest categorisation on *Elsinoe* spp. *(EFSA-Q-2017-00330)*

The EFSA Panel on Plant Health performed a pest categorisation of *Elsinoë fawcettii* and *E. australis*, the causal agents of citrus scab diseases, for the European Union (EU). The identities of the pests are well-established and reliable methods exist for their detection/identification. The pests are listed in Annex IIAI of Directive 2000/29/EC as *Elsinoë* spp. and are not known to occur in the EU. Species and hybrids of citrus (Family Rutaceae) are affected by *E. fawcettii* and *E. australis*, with the latter having a more restricted host range and geographical distribution compared to the former. The status of *Simmondsia chinensis* (jojoba) as a host of *E. australis* is uncertain. The pests could potentially enter the EU on host plants for planting and fruit originating in infested Third countries. The current distribution of the pests, climate matching and the use of irrigation in the EU citrus-growing areas suggest that the pests could establish and spread in the EU citrus-growing areas. Uncertainty exists on whether cultural practices and control methods, currently applied in the EU, would prevent the establishment of the pests. In the infested areas, the pests cause scab pustules on host leaves and fruit resulting in yield/quality
losses. It is expected that the introduction and spread of the pests in the EU could impact citrus production. Cultural practices and chemical control measures may reduce the inoculum sources and to some extent the disease incidence, but they cannot eliminate the pests. Phytosanitary measures are available to mitigate the risk of introduction and spread of the pests in the EU. *Elsinoë fawcettii* and *E. australis* meet all the criteria assessed by EFSA for consideration as potential Union quarantine pests. As those pests are not known to occur in the EU, this criterion to consider them as Union regulated non-quarantine pests is not met.

This pest categorisation was adopted on 23 November 2017.

5.1.3. **Scientific opinion on pest categorisation on Listronotus bonariensis** *(EFSA-Q-2017-00198)*

The Panel on Plant Health performed a pest categorisation of *Listronotus bonariensis* (Coleoptera: Curculionidae), the Argentine stem weevil, for the European Union (EU). *L. bonariensis* is a well-defined species, recognised as a serious pest of pasture grasses, especially *Lolium* spp. and *Poa annua*, in New Zealand, and a rare pest of cereals in Argentina, Brazil and New Zealand. Larvae feed within the tillers and stems of grasses; adults can cut emerging cotyledons although they usually graze on leaves. Larval damage is most serious. Larval feeding causes a reduction in pasture quality that impacts on the production of grazing animals. *L. bonariensis* is not known to occur in the EU and is listed in Annex II A1 of Council Directive 2000/29/EC. *L. bonariensis* established in New Zealand via imported grass seeds and has been intercepted on grass seeds entering the EU. Considering the climatic similarities of the regions where the pest occurs and the very great extent to which hosts are grown across the EU, *L. bonariensis* has the potential to establish within the EU with two or three generations possible per year. Impacts could occur in grassland pastures and perhaps occasionally in cereals. In New Zealand endophytic fungi occurring on potential hosts deter *L. bonariensis* from ovipositing on leaves and are toxic to larvae. Whether endophytic fungi on grasses in Europe could provide some resistance to *L. bonariensis* is uncertain. Phytosanitary measures are available to reduce the likelihood of introduction of this weevil. *L. bonariensis* fits all of the criteria assessed by EFSA to satisfy the definition of a Union quarantine pest. *Listronotus bonariensis* does not meet the criterion of occurring in the EU territory for it to be regarded as a Union regulated non-quarantine pest.

This pest categorisation was adopted on 23 November 2017.

5.1.4. **Scientific opinion on pest categorisation on Scrobipalpopsis solanivora** *(EFSA-Q-2017-00322)*

The Panel on Plant Health performed a pest categorisation of *Tecia solanivora* (Lepidoptera: Gelechiidae) the Guatemalan potato tuber moth,
for the European Union (EU). *T. solanivora* is a well-defined species which feeds exclusively on *Solanum tuberosum*. It was first described from Costa Rica in 1973 and has spread through Central America and into northern South America via trade of seed potatoes. It has also spread to Mexico and the Canary Islands and most recently to mainland Spain where it is under official control in Galicia and Asturias. Potatoes in the field and storage can be attacked. Some authors regard *T. solanivora* as the most important insect pest of potatoes globally. *T. solanivora* is currently regulated by Council Directive 2000/29/EC, listed in Annex II/ AI as *Scrobipalpopsis solanivora*. Larvae feed and develop within potato tubers; infested tubers therefore provide a pathway for pest introduction and spread, as does the soil accompanying potato tubers if it is infested with eggs or pupae. As evidenced by the ongoing outbreaks in Spain, the EU has suitable conditions for the development and potential establishment of *T. solanivora*. The pest could spread within the EU via movement of infested tubers; adults can fly and disperse locally. Larval feeding destroys tubers in the field and in storage. In the warmer southern EU, where development would be fastest, yield losses would be expected in potatoes. Measures are available to inhibit entry via traded commodities (e.g. prohibition on the introduction of *S. tuberosum*). *Tecia solanivora* satisfies all of the criteria assessed by EFSA to satisfy the definition of a Union quarantine pest. It does not satisfy the criteria assessed by EFSA for Union regulated non-quarantine pest because it is under official control. There are uncertainties over the effectiveness of preventing illegal imports via passenger baggage and the magnitude of potential impacts in the cool EU climate.

This pest categorisation was adopted on 23 November 2017.

5.1.5. **Scientific opinion on pest categorisation of Toxoptera citricida** ([EFSA-Q-2017-00323](https://www.efsa.europa.eu/en/efsajournal/pub/25412))

The European Commission requested EFSA to conduct a pest categorization of *Toxoptera citricida* (Hemiptera: Aphididae), an oligophagous aphid developing and reproducing parthenogenetically on tender leaf and flower flush of citrus (Rutaceae). *T. citricida* is a taxonomic entity with reliable methods available for detection and identification. It is regulated in the European Union (EU) by Council Directive 2000/29/EC where it is listed in Annex IIAI as a harmful organism whose introduction and spread into the EU shall be banned. *T. citricida* is native to tropical regions of SE Asia and has spread to most citrus-growing areas worldwide, except California and the Mediterranean basin, causing significant damage to citrus as it is the most efficient vector of the *Citrus tristeza closterovirus* (CTV). *Toxoptera citricida* occurs in Madeira and, with a restricted distribution, in the Northwest of the Iberian Peninsula, mostly on backyard citrus trees. This may have hindered the effectiveness of the official control measures in these areas. where no commercial citrus orchards exist, and is under official control (surveillance and eradication
There are further phytosanitary measures in place in the EU in order to limit entry via traded commodities. Citrus plants for planting are regulated and are a closed pathway. However, there is uncertainty regarding host status of some plant species of non-rutaceous plants on which this aphid has been recorded and so other plant genera may provide additional pathways. The EFSA Plant Health Panel concludes that the establishment of *T. citricida* in the main EU citrus growing areas around the Mediterranean would have significant impacts because of its ability to vector CTV. Considering the criteria within the remit of EFSA to assess the status as a potential Union quarantine pest, as a potential protected zone quarantine pest, or as a potential regulated non-quarantine pest *T. citricida* meets with no uncertainties the criteria assessed by EFSA for consideration as a potential Union quarantine pest.

This pest categorisation was adopted on 23 November 2017.

5.1.6. Scientific opinion on pest categorisation of *Davidsoniella virescens* (EFSA-Q-2017-00324)

Following a request from the European Commission, the EFSA Plant Health Panel performed a pest categorisation of *Davidsoniella virescens*, a well-defined and distinguishable fungal species of the family Ceratocystidaceae. The species was moved from the genus *Ceratocystis* to the genus *Davidsoniella* following a revision of the family. The former species name *Ceratocystis virescens* is used in the Council Directive 2000/29/EC. The pathogen is regulated in Annex IIAI as a harmful organism whose introduction into the EU is banned on plants (other than fruit and seeds) and wood (including wood which has not kept its natural round surface) of *Acer saccharum*, originating in the USA and Canada. The fungus is native to Eastern North America and causes symptoms mainly on *A. saccharum*, but also on *Liriodendron tulipifera*. The fungus is also reported as a saprotroph on various hardwood species. The pest could enter the EU via wood, plants for planting and cut branches. Hosts and favourable climatic conditions are widespread in the EU. The pest would be able to spread following establishment through sap-feeding insects, root grafts and movement of infected wood and plants for planting. The pest introduction could have impacts on *Acer* spp. and *L. tulipifera* trees in the EU, by causing wilting, yellowing and the development of small leaves, as well as dieback of branches and, eventually, the death of trees. Avoiding damaging trees (as wounding facilitates infection of the fungus) and maintaining healthy trees (as tree stress facilitates the disease) are available measures to reduce impacts. The main knowledge gaps concern (i) the biology and epidemiology of the pathogen (including the saprotrophic form), (ii) the role of insect vectors for entry and spread, and (iii) the susceptibility of *Acer* spp. either native to or more recently established in Europe. The criteria assessed by the Panel for consideration as potential quarantine pest are met. For the criteria assessed for
regulated non-quarantine pests, the criterion on the pest presence in the EU is not met.

This pest categorisation was adopted on 23 November 2017.

5.1.7. Scientific opinion on pest categorisation of Stegophora ulmea (EFSA-Q-2017-00326)

Following a request from the European Commission, the EFSA Plant Health Panel performed a pest categorisation of Stegophora ulmea, a well-defined and distinguishable fungal species of the family Sydowiellaceae. S. ulmea causes a tree disease known as black spot of elm (Ulmus spp.). The pathogen is reported from North America (native range) and Asia (far-east Russia and China), but not from the EU. S. ulmea is regulated in Council Directive 2000/29/EC (Annex IIAI) as a harmful organism whose introduction into the EU is banned on plants of Ulmus L. and Zelkova L., intended for planting, other than seeds. The pathogen has been occasionally intercepted on imported bonsai plants (and then destroyed) in the Netherlands and the UK. It could enter the EU and spread within it via plants for planting (including bonsai) and cut branches. Hosts and favourable climatic conditions are common in the EU. The European native elm species U. glabra and U. laevis were found to be more susceptible to the disease than North American elm species, but information is lacking on U. minor. The disease is rarely fatal, but S. ulmea can cause considerable damage, particularly in wet summers. Reduction of inoculum by the removal of leaf debris and avoiding overhead watering in nurseries can reduce the risk of spread of the pathogen. The main knowledge gaps concern (i) the distribution of the pest in Asian countries, (ii) the relative role of the means of entry/spread, and (iii) the potential consequences in mature tree plantations and native woodland. The criteria assessed by the Panel for consideration as potential quarantine pest are met. For regulated non-quarantine pests, the criterion on the pest presence in the EU is not met.

This pest categorisation was adopted on 23 November 2017.

5.1.8. Scientific opinion on pest categorisation of Cephalcia lariciphila (EFSA-Q-2017-00334)

The Panel on Plant health performed a pest categorization of the larch web-spinning sawfly Cephalcia lariciphila (Hymenoptera: Pamphiliidae) for the European Union (EU). The insect has been reported in 11 EU Member States (MS). It is a quarantine pest listed in Annex IIB of Council Directive 2000/29/EC. Protected zones are in place in Ireland and the UK (Northern Ireland, Isle of Man and Jersey). C. lariciphila can feed on all species of the genus Larix. There have been reported outbreaks in the Czech Republic, Germany, the Netherlands and the UK (England and Wales) in plantations of European larch (Larix decidua) and Japanese larch (L.
kaempferi = L. leptolepis). C. lariciphila is absent in the protected zones. The pest can enter the protected zones by human assisted spread or by natural spread from EU areas where the pest is present. Plants for planting are considered the most important pathway for the pest. The pest can establish in the protected zones because the climatic conditions are similar to those of the 11 MS where C. lariciphila is established, and the pest's main host plants are present. The prepupae overwinter in the litter, the adults emerge in May-June, and each female lays 30-40 eggs in slits in mature needles. The larvae feed on the needles through 4 instars. There is one generation per year; some of the prepupae undergo prolonged diapause for more than one year. The impact where the pest occurs is mainly related to the loss of tree growth following defoliation, while tree mortality was locally observed only after repeated defoliation. However, impact is likely to be mitigated by local biological control agents. All criteria assessed by EFSA above for consideration as a potential protected zone quarantine pest, and as a potential regulated non-quarantine pest were met.

This pest categorisation was adopted on 23 November 2017.

5.1.9. Scientific opinion on pest categorisation of Gonipterus scutellatus (EFSA-Q-2017-00317)

The Panel on Plant health performed a pest categorization of the Australian Eucalyptus snout-beetle Gonipterus scutellatus (Coleoptera: Curculionidae), for the European Union (EU). G. scutellatus should be referred as the G. scutellatus species complex because it includes several cryptic species. A complete nomenclature of the species present in the EU is still pending. It is a quarantine pest listed in Annex IIB of Council Directive 2000/29/EC. Protected zones are in place in Greece and Portugal (Azores). In the EU it has been found in Italy, France, Spain and Portugal. It only consumes Eucalyptus species leaves. The main pathways of spread are the trade of Eucalyptus timber, hitchhiking in various commodities, trade of apple fruit as well as of plants for planting or plant parts. Spread by flight is also possible. The climate of the EU protected zones is similar to that of the MS where the G. scutellatus complex is established, and the pest's main host plants are present. The damaged trees suffer die-back and the development of epicormics shoots. Severe attacks may provoke massive amounts of tree death. Biological control by using the egg parasitoid wasp Anaphes nitens is the most effective control measure. Some species within the G. scutellatus complex are not yet present in the EU (including G. scutellatus sensu stricto) and might therefore be considered as potential union quarantine pests for the EU territory. At least two species within the G. scutellatus complex (most likely G. platensis and Gonipterus species no. 2) meet the criteria assessed by EFSA for consideration as potential protected zone quarantine pests for the territory of the protected zones: Greece and Portugal (Azores). The criteria for considering the G. scutellatus complex as a potential regulated
non-quarantine pest for the EU are not met since plants for planting are not the main pathway.

This pest categorisation was adopted on 23 November 2017.

5.1.10. Scientific opinion on pest categorisation of *Gilpinia hercyniae* (EFSA-Q-2017-00334)

The Panel on Plant Health performed a pest categorisation of the Diprionid sawfly, *Gilpinia hercyniae* Hartig (Hymenoptera: Diprionidae), for the European Union (EU). *G. hercyniae* is a well-defined and distinguishable species, native to Europe but also present in North America, Japan, Mongolia, Korea and Pakistan, and recognised as a pest of spruce (*Picea* spp.). The pest is distributed in 19 Member States (MS) of the EU. It is a quarantine pest listed in Annex IIB of Council Directive 2000/29/EC. Protected zones are in place in Greece, Ireland and the United Kingdom (Northern Ireland, Isle of Man and Jersey). Plants for planting of *Picea* spp. and soil and litter associated with *Picea* spp. are considered as pathways for this pest, which is also able to disperse by flight. The prepupae overwinter inside cocoons in the litter or in the foliage. In spring, the adults, mostly females emerge and lay 35-60 eggs per female in mature needles. The larvae feed on the mature needles through 5 instars. There are one to three generations per year; some of the prepupae undergo prolonged diapause for more than one year. The impact on *P. abies* (= *excelsa*) is minimal, because only the needles of the previous years are attacked; however, outbreaks have occurred on non-native spruce, *P. glauca* and *P. sitchensis*. The pest is controlled everywhere by natural enemies, including nuclear polyhedrosis viruses. The insects spread on plants for planting of *Picea* spp., with soil and litter associated with *Picea* spp., and by flight. The EU protected zones have a similar climate and similar host plants as the MS where *G. hercyniae* is established. All criteria assessed by EFSA for consideration as potential protected zone quarantine pest, and as a potential regulated non-quarantine pest were met.

This pest categorisation was adopted on 23 November 2017.

5.1.11. Scientific opinion on pest categorisation of *Xanthomonas campestris pv. oryzae* (EFSA-Q-2017-00426)

The EFSA Panel on Plant Health performed a pest categorization for *Xanthomonas oryzae* pathovars *oryzae* (Xoo) and *oryzicola* (Xoc), the causal agents of the bacterial blight and the bacterial leaf streak of rice, respectively. These pathovars are widely distributed in Asia, Africa and Australia. Xoo is also reported in some States of the USA and in some other countries of America. The identity of both pathovars is well established and efficient identification methods are available. The major host is cultivated rice (*Oryza sativa*), but different *Oryza* spp. as well as *Poaceae* weeds are reported as alternative hosts, with some uncertainty
concerning the actual host range. Both pathovars are seed-associated, despite the fact that seed transmission is still controversial for Xoo. Both pathovars are already regulated in Directives 2000/29/EC, on harmful organisms for plants, and 66/402/EEC, on the marketing of cereal seeds. The main pathway for entry is seed. Should these pathovars enter into EU, they may establish and spread, and they may have an impact on the rice crops, with uncertainties. The knowledge gaps identified are (1) the quantity of EU importation of rice seeds, (2) the risk of introduction through unprocessed rice for consumption, (3) the suitability of the EU growing-climate conditions for the bacteria to establish and spread and (4) Role of seed transmission (Xoo); (5) the role of weeds in the epidemiology and especially in seed transmission and dispersal, (6) host range of weeds. As none of the pathovars is known to occur in the EU, they do not meet one of the criteria for being considered as Union regulated non-quarantine pests. Nevertheless, both pathovars meet the criteria assessed by EFSA for consideration as Union quarantine pest.

This pest categorisation was adopted on 23 November 2017.

5.1.12. Scientific opinion on pest categorisation of Leprosis (EFSA-Q-2017-00311)

The EFSA Panel on Plant Health performed a pest categorisation of the Citrus Leprosis viruses for the European Union (EU) territory and identified 5 distinct viruses, *Citrus leprosis virus C* (CiLV-C), *Citrus leprosis virus C2* (CiLV-C2), *Hibiscus green spot virus 2* (HGSV-2), the Citrus strain of *Orchid fleck virus* (OFV) and *Citrus leprosis virus N sensu novo* (CiLV-N) as causing this severe disease, most significantly in sweet orange and mandarin. These viruses have in common that they do not cause systemic infections in their hosts and that they all are transmitted by *Brevipalpus* spp. mites (likely but not confirmed for HGSV-2). Mites represent the most important means of virus spread, while plants for planting of Citrus are only considered of minor significance. These well characterized viruses occur in South and Central America. Leprosis is currently regulated in directive 2000/29 EC and, together with its associated viruses, has never been recorded in the EU. All five viruses have the potential to enter into, establish in and spread within the EU territory, with plants for planting of non-regulated hosts, fruits of Citrus and hitch-hiking of viruliferous mites identified as the most significant pathways. Given the severity of the Leprosis disease, the introduction and spread of the various viruses would have negative consequences on the EU citrus industry, the magnitude of which is difficult to evaluate given the uncertainties affecting the *Brevipalpus* spp. vectors (identity, distribution, density, transmission specificity and efficiency). Overall, Leprosis and its five associated viruses meet all the criteria evaluated by EFSA to qualify as Union quarantine pests, but do not fulfil those of being
present in the EU or of plants for planting being the main spread mechanism to qualify as Union regulated non-quarantine pests. The main uncertainties affecting this categorisation concern the *Brevipalpus* spp. mite vectors.

This pest categorisation was adopted on 23 November 2017.

5.1.13. Scientific opinion on pest categorisation of *Xiphinema californicum* (EFSA-Q-2017-00568)

The EFSA Panel on Plant Health performed a pest categorisation for *Xiphinema californicum* (Nematoda: Longidoridae) for the European Union (EU). The nematode is a well-defined taxon belonging to a group of morphologically similar species called *X. americanum* (sensu lato). The nematode was described from the USA and is present in some North and South American countries. The nematode is not present in the EU and is regulated by Council Directive 2000/29/EC, listed in Annex I A I as *Xiphinema californicum* Lamberti and Bleve-Zacheo. It is a polyphagous pest found in soil associated with a number of plant species. As a migratory ectoparasitic species, it punctures the cells of plant roots. *Xiphinema californicum* is in principle able to cause direct damage to plants but its main damage is caused by vectoring the American nepoviruses: *Tobacco ringspot virus* (TRSV), *Tomato ringspot virus* (ToRSV) and *Cherry rasp leaf virus* (CRLV). Soil is a potential pathway for this nematode for entry into the EU. Moist soil, such as soil attached to plants for planting, increases survival of the nematode. The viruses may persist over prolonged periods inside the nematode and viruliferous nematodes may introduce American nepoviruses. Climatic conditions in the EU are similar to those found in the areas where the pest is currently present. Hosts of the nematode (and of associated viruses) are, e.g., grapes, apples and plums, which are also widely cultivated in the EU. The nematode only moves short distances (around 1 m) but may be spread with soil moving activities. Measures are available to inhibit entry via soil as such. Entry of the nematode with soil attached to plants for planting that are not regulated is possible. *Xiphinema californicum* does satisfy all the criteria that are within the remit of EFSA to assess to be regarded as a Union quarantine pest.

This pest categorisation was adopted on 23 November 2017.

The EFSA Panel on Plant Health performed a pest categorisation for *Longidorus diadecturus* (Nematoda: Longidoridae) for the European Union (EU). The nematode is a well-defined taxon and was described from Ontario, Canada and later reported from some states in the USA. The
nematode is not present in the EU. It is regulated by Council Directive 2000/29/EC, listed in Annex I A I as *Longidorus diadecturus* Eveleigh and Allen. It is a migratory ectoparasitic nematode species puncturing cells of plant roots thereby able to transmit the nepovirus *Peach rosette mosaic virus* (PRMV). The pest is found in soil associated with plant species belonging to different families. *Longidorus diadecturus* is able to cause direct damage to plants but its main damage is caused by vectoring PRMV. Soil is a potential pathway for this nematode for entry into the EU. The nematode is able to survive adverse conditions but the virus may not persist inside the nematode for extended periods. Climatic conditions in the EU are similar to those found in the countries where the pest is currently present. Hosts of the nematode (and the associated virus) are, e.g., peaches and grapes; those crops are also widely cultivated in the EU. The nematode only moves short distances (around 1 m) but may be spread with soil moving activities. Measures are available to inhibit entry via soil as such. Entry of the nematode with soil attached to plants for planting that are not regulated is possible. *Longidorus diadecturus* does satisfy all the criteria that are within the remit of EFSA to assess to be regarded as a potential Union quarantine pest.

This pest categorisation was adopted on 23 November 2017.

5.2. Discussion and possible endorsement of the draft guidance on quantitative pest risk assessment methodologies for public consultation ([EFSA-Q-2014-00351](https://efsa.zenodo.org))

The working group chair presented in detail the draft guidance on quantitative pest risk assessment including the comments received from the PLH Panel members during a commenting phase before the PLH Panel plenary meeting. The draft guidance follows the previously agreed skeleton and provides advice on all aspects of quantitative pest risk assessment. The participants acknowledged the progress done by the working group and the follow-up discussion specifically focused on

(i) the importance of risk assessment planning phase, i.e. applying the proposed two tiers approach;

(ii) the need to develop further a common frame for impact development for all types of impact;

(iii) the importance of making available the knowledge produced during a pest risk assessment, e.g. by publishing additional information on zenodo platform;

(iv) the need to specify and describe the software proposed by the guidance;

(v) the need to develop further the section of the draft guidance describing the justification of the distribution; to put more
focus on the overall distribution than on specific quantile estimates;

(vi) the need to perform a general consistency check of the guidance.

The Panel decided to postpone the endorsement of the guidance for the public consultation to the next PLH Panel plenary meeting to give more time to the PLH panel members for providing additional comments and to the working group to address them. The next steps were agreed as follows:

(i) to provide comments on the current version by deadline of 11 December 2017;

(ii) to discuss and possibly endorse for public consultation an updated version of the guidance during the next PLH Panel plenary meeting;

(iii) to launch public consultation on the new guidance early February 2018 and

(iv) to adopt the guidance document in June 2018.

6. New Mandates

6.1. Request to provide a scientific opinion on the request from Japan regarding export of black pine bonsais to the EU

EFSA is requested to prepare a scientific opinion on the risk analysis on a dossier submitted to the Commission by the Ministry of Agriculture, Forestry and Fisheries (MAFF) of the Government of Japan in support of their request for a temporary derogation from Council Directive 2000/29/EC for export of black pine bonsai (*Pinus thunbergii* L). Specifically, EFSA is requested, pursuant to Article 29 of Regulation (EC) No 178/2002, to provide a scientific opinion. Taking into account the available scientific information, including the technical information provided by Japan, EFSA is requested to consider how far the existing requirements for the bonsai pine species subject to derogation in Decision 2002/887/EC would cover all plant health risks from black pine bonsai *Pinus thunbergii* L. imported from Japan. EFSA is requested to deliver an opinion by the end by March 2018. To develop the requested opinion a PLH Panel working group will be established. The Panel chair nominated Roel Potting as chair of this working group.

6.2. Request for scientific and technical assistance on a pilot project for gathering information on pests of apple fruit (*Malus domestica*) in the EU territory
As a follow-up to the previous mandate (M-2014-0016), EFSA was asked to test the suitability of the revised apple pest database to support risk assessors to carry out pest risk assessment. This test should be done with cooperating Third countries (Canada and New Zealand, following previous interactions on this project) using the dataset collected for 12 pests in the frames of the first mandate. As the feedback from the cooperating Third countries is expected on the pilot 12-pests dataset already collected, it is also requested that prior to this new exercise the 12-pests dataset is migrated by EFSA into the newly revised database structure. Furthermore, EFSA should, when applicable, further improve the structure and metadata of the database and make then the revised 12-EU apple pests database available to Commission and Members States.

7. Feedback from the Scientific Committee/Scientific Panels, EFSA

7.1. PLH Scientific Panel including its Working Groups

7.1.1. Request to provide a scientific opinion on the risk to plant health of 133 regulated harmful organisms, for the EU territory (M-2017-0055)

A proposal was presented and agreed to modify the section on mitigation measures in the template. A dedicated subsection will be inserted to address phytosanitary measures in order to clearly separate them from pest control measures. Furthermore, a footnote will be inserted in the subsection on pest control measures to note that the active ingredients presented in the opinion are those cited in the literature.

The Panel gave feedback on how they find the workload provided by the large number of pest categorisations at each plenary meeting. The experts expressed that they appreciate when the draft opinions are circulated for review well ahead of the plenary meeting and in a stepwise manner, even if one by one. Though the draft opinions are uploaded on DMS, circulating them by email is still the preferred way by most experts. It was agreed that the unit would investigate if the use of online collaboration/co-authoring tools, such as Office 365, could support the review process of the draft opinions, enabling more people to edit the documents at the same time.

The Panel was updated on the progress of the WG since the last Panel plenary meeting. The two pest categorisations put forward for adoption during this plenary meeting (Alternaria alternata and Elsinoë spp.) were drafted by the working group and revised in the light of the comments.
received from the Panel members. A web conference will be held on 1 December 2017 to finalise the two documents and agree on future work and timeframe.

- PLH Panel Working Group on forest fungal pathogens pest categorisation

The Panel was updated on the progress of the WG since the last Panel plenary meeting. During the last WG meeting, the two opinions to be put forward for adoption during this plenary meeting (on Davidsoniella virescens and Stegophora ulmea) were revised in the light of the comments received from the Panel members. In addition, the WG revised the drafts of the two opinions planned for possible adoption at the January 2018 plenary meeting (on Anisogramma anomala and Bretziella fagacearum).

- PLH Panel Working Group on forestry insects pest categorisation

The WG chair updated the Panel on the progress made since the September plenary meeting. The Pest categorisation on Oligonychus perditus was adopted by written procedure and it will be published in the coming weeks. The WG is finalising the pest categorisation on Aschistonyx eppoi which will be circulated to the Panel soon for review. For the upcoming categorisations in early 2018 (Dendrolimus sibiricus, Pissodes spp) external expertise will need to be identified.

- PLH Panel Working Group on agriculture insects pest categorisation

The WG chair updated the Panel on the progress made since the September plenary meeting. The Pest categorisations on Anthonomus garndis and Anthonomus bisignifer were adopted by written procedure and both will be published in the coming weeks. The WG is working at the pest categorisations on Scirtothrips aurantii, Scirtothrips citri and Unaspis citri which will be circulated to the Panel soon for review.

- PLH Panel Working Group on plant on nematodes

The WG chair updated the Panel on the progress made since the September plenary meeting. The pest categorisation on Xiphinema californicum and Longidorus diadecturus were adopted and will be published in coming weeks. The work on categorisation on Nacobbus aberrans will start in November and will be finished before Panel meeting in January.

- PLH Panel Working Group on plant viruses pest categorisation
A WG member updated the Panel on the progress made since the September PLH Plenary. The Naturally Spreading Psorosis opinion was adopted by written procedure and it will be published in the coming weeks. The work on the pest categorisation on Blight and Blight like will start in December. According to the plans the opinion will be presented for adoption at the January meeting of the Panel however he also noted that questions remained concerning the situation of the pest. According to this a possible early termination of the opinion was also indicated.

- PLH Panel Working Group on plant on bacterial plant pathogens
The WG chair updated the Panel on the progress made since September. The work on *Curtobacterium flaccumfaciens pv flaccumfaciens* opinion has almost finished. Work on *Pantoea stewartii* subsp. *stewartii* is to start at the beginning of 2018. The chair also highlighted that further decision is needed concerning the WG coordination from the end of January. According to plans the opinion will be presented for adoption at the March meeting of the Panel.

- PLH Panel Working Group on *Xylella fastidiosa* pest categorisation
The WG Chair updated the Panel about the first WG meeting of *Xylella fastidiosa* pest categorisation (EFSA-Q-2017-00351), which took place on 16 and 17 November in Mallorca. General planning for the future work was done and the interpretation of the terms of reference was discussed.

7.2. Scientific Committee and its Working Groups
The PLH Panel chair updated the participants with regard to the work and of the WG on Uncertainty in risk assessment. The Uncertainty guidance and the Textbook on uncertainty were adopted by the Scientific Committee. The Report on the EFSA Uncertainty workshop and the Communication guidance on uncertainty are under development.

7.3. EFSA including its Working Groups/Task Forces
7.3.1. Update on the EFSA Workshop on Prometheus on 9-10 October 2017.
The outcome of the Workshop on Prometheus held in EFSA Parma on 9-10 October 2017 was presented to the Panel. This workshop was an opportunity to discuss and exchange the experience in the implementation in different case studies across EFSA of the principles for evidence management described in the PROMETHEUS project. The plant health pilot study was the pest risk assessment on Eotetranychus lewisi that was recently published. The evidence based approach for risk assessment as proposed by the PROMETHEUS project was integrated in
the current Panel’s draft guidance on quantitative pest risk assessment mainly with regards to the problem formulation part of the risk assessment process.

7.3.2. Update on the request from the European Commission to provide scientific and technical assistance on a horizon scanning exercise in view to crisis preparedness on plant health for the EU territory (EFSA-Q-2017-00037)

The on-going work on the Horizon Scanning project was presented: building the framework for the literature monitoring and template improvement. The request of pest ranking included in the EC mandate will be addressed in 2018 in the framework of a tasking grant that will start in January with the objective of developing an ad-hoc methodology to rank pests identified in the project. The main issues included in the 7th and 8th editions of the EFSA Plant Health Newsletter were presented together with the last development in MediSys showing in real time the localisation on the World map of articles screened by the system.

7.3.3. Update on Xylella fastidiosa database and on Xylella fastidiosa conference November 13-15 Palma de Mallorca

The participants were informed about the new Xylella host plants database. The finalization of the database is on-going and preliminary results were showed. Informative data have been already extracted from about 80% of the selected papers.

The participants were also informed about the positive outcome of the European conference on Xylella fastidiosa which was held in Palma de Mallorca from 13th to 15th November. More than 250 people from all over the world participated in Mallorca and ca. 1200 by webstreaming to the conference sharing new results and knowledge on Xylella fastidiosa.

8. Other scientific topics for information and/or discussion

9. Any other business

9.1. Open Plenary 2018 January 31st – February 1st

9.1.1. Presentation on the guidelines for Observers

With respect to the next open plenary meeting in January/February 2018 the guidelines for observers were presented in details and explained, including the rules on confidentiality.

9.2. Presentation on the second instalment of the EUFORA
The participants were informed about the first cohort of EU-FORA Fellowship Programme currently running - three weeks induction training in EFSA in 2017 and three one week trainings in hosting organisations in 2018 focusing on risk assessment. Calls for applications from Hosting sites and Fellows for second cohort of EU-FORA Fellowship Programme are currently published on EFSA web-page.

The participants were also informed about and invited to register for Risk Assessment Research Assembly, which will take place in Utrecht on 07 February 2018 focusing on networking of public funding.

9.3. Update on Oslo Symposium ERA and protection goals

The symposium on environmental risk assessment and protection goal held in Oslo on 26 and 27 October 2017 was briefly presented. The experiences from three different fields (i.e. Pesticides, GMOs and Invasive Alien Species) in defining protection goals were presented shared and discussed. The first day the symposium focussed on the experience across continents and from an EU perspective. The second day was mainly addressing the Northern European Zone (Norway, Sweden, Finland, Denmark). From the presentations and discussions it was clear that the interaction between the risk assessors and the risk managers is crucial in the problem formulation and the identification of the protection goals to assess in the risk analyses process. The way to approach the protection goals was really different from one field to another as they are linked to very specific legislative frameworks. However the impact assessments could converge if using the ecosystem services assessment approach and using the measurement of the ecosystem service provision as a common currency. The importance of assessing not only negative impacts but also benefits for human well-being of an environmental change was highlighted and was identified as really relevant for informing the risk managers in the decision-taking process.