Outsourcing activity 2: quantitative risk characterization on *L. monocytogenes* in RTE foods

Prof. Dr Fernando Pérez-Rodríguez

University of Córdoba (Spain)

E-mail: fernando.perez@uco.es

Stakeholder meeting on draft scientific opinion on Listeria monocytogenes contamination of ready-to-eat foods and the risk for human health in the EU

Parma, 19-20 September 2017

Introduction and scope

Probabilistic risk assessment of *Listeria monocytogenes* for in RTE foods developed by EFSA in collaboration with the University of Córdoba (Spain) and IRTA (Spain)

Closing gaps for performing a risk assessment on *Listeria monocytogenes* in RTE foods: <u>Activity 2</u>, a quantitative risk characterization on *L. monocytogenes* in RTE foods; starting from the retail stage¹

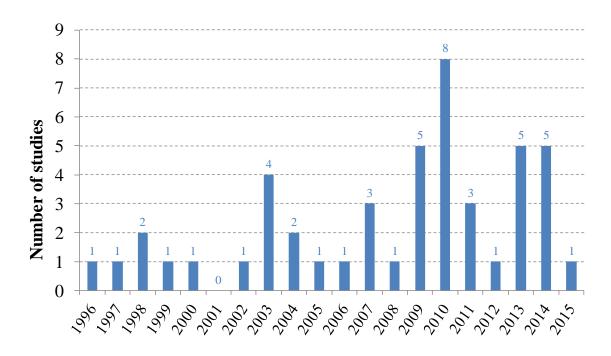
- packaged (hot, cold) smoked or gravad fish (not frozen),
- packaged heat-treated meat products (cooked meat, sausages, pâté)
- soft or semi-soft cheeses (excluding fresh cheeses)

The risk assessment covers from retail to home, considering Listeria growth up to consumption

Contract number: OC/EFSA/BIOCONTAM/2014/02CT1

□ Introduction and model scope
 □ Listeria risk assessments
 □ Selection of D-R models
 □ Exposure assessment
 □ Simulation and output
 □ An easy-to-use framework: Excel Add-in "Lis-RA"

CEIA3


Conclusions

Systematic review for Listeria risk assessments

Distribution of the selected (47 included) references by year of publication

Systematic review for Listeria risk assessments

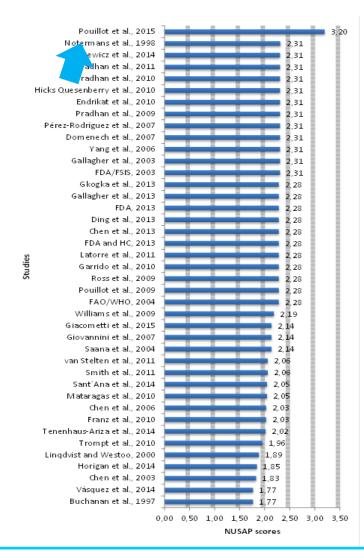
Approach & Technical aspects	Number of references	%
Approach I		
1-Qualitative	3	6%
2-Semi-quantitative	3	6%
3-Quantitative	42	89%
Approach II		
1-Stochastic (probabilistic)	41	87%
2-Deterministic (point estimate)	1	2%
Not applicable	5	11%
Variability/ uncertainty management		
1-1st order	14	30%
2-2nd order	2	4%
1,2-1st and 2nd order	25	53%
Unknown/not available/not applicable	6	13%
Peer-review level		
1-Public consultation for comments	8	17%
2-Sci referees (journal peer-reviewed article)	40	85%
3-Conference abstract	0	-

	Number of	
Relevant info about EA	references	%
Steps of the food chain		
1-Primary production	8	17%
2-Food Production	18	38%
3-Distribution	20	43%
4-Retail	47	100%
5-Consumer storage	35	74%
6-Other	3	6%
Inputs (factors)		
1.1-Retail storage temperature	23	49%
1.2-Consumer storage temperature	36	77%
2.1-Retail storage time	22	47%
2.2-Consumer storage time	35	74%
3.1-Temperature during transportation to retail	7	15%
3.2- Temperature during transportation from retail to home	14	30%
4.1- Time for transportation to retail	6	13%
4.2- Time for transportation from retail to home	15	32%
5-Food characteristics (pH, aw,)	10	21%
6-Extrinsic factors (MAP,)	3	6%
7-Processing treatments (heat, pressure,)	7	15%
8-Transfer/partitioning/mixing	10	21%
9-Lag	6	13%
10-EGR	12	26%
11-Log increase	4	9%
12-Competing microbiota	3	6%
13-Max. Density Population (MDP)	11	23%
Unknown/not available/not applicable	10	21%
Inputs data type		
1-Point estimate	3	6%
2-Distribution	20	43%
3-Both depending on the input	22	47%
Unknown/not available/not applicable	2	4%

Systematic review for Listeria risk assessments

Relevant info about RC	Number of references	%
Type of output (endpoint)		
1-Risk per (No) serving/s	21	45%
2-Risk per (No) habitant/s	6	13%
3-Risk per annum (annual risk)	27	57%
4-other	9	19%
Simulation method		
Monte Carlo	26	55%
Latin Hypercube	9	19%
Bootstrap	1	2%
Unknown/not available/not applicable	12	26%
Software used		
@Risk	23	49%
Aladin	2	4%
Analytica	2	4%
Excel	1	2%
i-Risk	1	2%
JAGS	2	4%
Matlab	1	2%
R	4	9%
Risk Ranger	1	2%
SAS	1	2%
VBA	2	4%
Unknown/not available/not applicable	12	26%
Sensitivity analysis		
1-Yes	23	49%
2-No	24	51%
Application (exploitation of results)		
Scenarios, cases, evaluation of intervention	ons,	<u> </u>
ALOP/FSO link, etc.		

Relevant info about HC-DR	Number of references	%	
DR model type			
1-Exponential	37	77%	
2-Weibull-Gamma	6	13%	
3-Logistic	2	4%	
4-Linear	1	2%	



Selection of D-R models for risk assessment

Tool to evaluate the quality of the Exponential dose-response models currently available:

Application of Numeral Unit Spread Assessment Pedigree (NUSAP) system

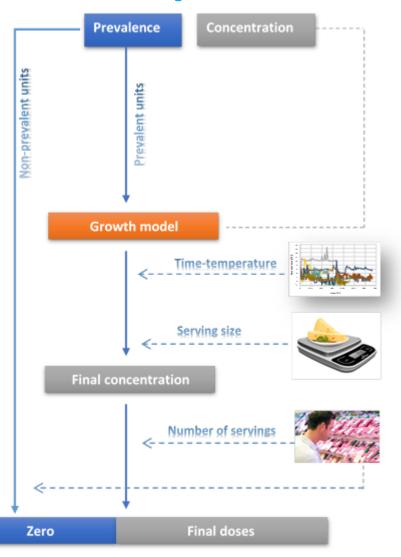
NUSAP scoring system

Use of the dose-response models by Pouillot et al. (2015)

Introduction and model scope
 Listeria risk assessments
 Selection of D-R models
 Exposure assessment
 Simulation and output
 An easy-to-use framework: Excel Add-in "Lis-

CEIA3

RA"


Conclusions

Exposure Assessment

MAIN VARIABLES:

- Prevalence/concentration distributions of L. monocytogenes
- Stochastic model for the growth of *L. monocytogenes*
- Temperature-time profiles from retail to home
- Time to consumption
- Food serving size and number of serving per year

Structure of exposure assessment

Categories

Packaged heat-treated meat products

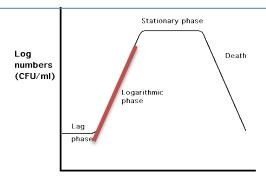
Soft or semi-soft cheese

Packaged (not Frozen) smoked and gravad fishs

Sub-Categories

Cooked meat, sausage, Pâté

-


Cold and hot smoked fish and gravad fish

Scenarios

*ROP/normal; Sliced/non-sliced

Sliced/non-sliced

ROP/normal; Sliced/non-sliced

Growth rate

Prevalence & Concentration

Defining prevalence at retail

BASELINE MODEL

Food category	Subcategory	Scenario	Fitted Beta distributions ^(a)	Mean [C.I. 95%]
RTE fish products	Cold-smoked fish	Sliced	Beta(76+1;511-76+1)	0.151
				[0.116-0.186]
		Non sliced	Beta(18+1;102-18+1)	0.183
				[0.103-0.270]
	Hot-smoked fish	Sliced	Beta(20+1;239-20+1)	0.087
				[0.049-0.130]
		Non sliced	Beta(12+1;273-12+1)	0.047
				[0.021-0.078]
	Gravad fish	Sliced	Beta(30+1;219-30+1)	0.140
				[0.091-0.194]
		Non sliced(b)	Beta(0+1;33-0+1)	0.029
				[0.005-0.103]
RTE meat products	Cooked meat	Sliced	Beta(43+1;2297-43+1)	0.019
				[0.013-0.026]
		Non sliced	Beta(3+1;193-3+1)	0.021
				[0.003-0.045]
	Sausage	Sliced	RiskBeta(11+1;548-11+1)	0.022
	_			[0.009-0.037]
		Non sliced	RiskBeta(2+1;214-2+1)	0.014
				[0.001-0.034]
	Paté	Sliced	RiskBeta(7+1;114-7+1)	0.069
				[0.023-0.125]
		Non sliced	RiskBeta(2+1;70-2+1)	0.042
				[0.003-0.010]
RTE cheese products	Soft and semi-soft	Sliced	RiskBeta(5+1;816-5+1)	0.007
- -	cheese			[0.002-0.015]
		Non sliced	RiskBeta(8+1;2298-8+1)	0.004
				[0.001-0.007]

■ Baseline study for *L. monocytogenes* in RTE products

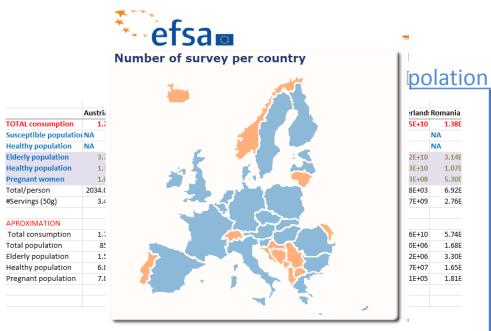
Defining concentration at retail

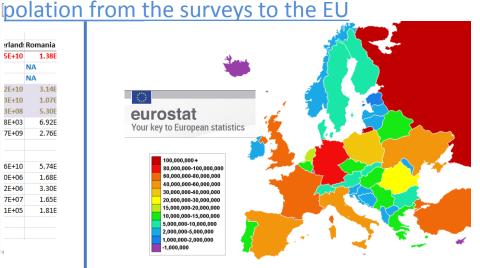
BASELINE MODEL

Food subcategory	Mean	SD	50 th	5 th	95 th	LogL	AIC	BIC
-			Perc.	Perc.	Perc.			
Cold smoked fish	0.867	1.842	1.248	0.394	4.620	-1.50x10 ³	3.12x10 ³	3.14x10 ³
Hot smoked fish	-0.271	0.943	1.318	-0.511	1.593	-1.79x10 ³	3.59×10^3	3.60×10^3
Gravad fish	1.011	1.931	1.236	0.524	4.950	-2.39x10 ²	4.83x10 ²	4.92x10 ²
Cooked meat	1.100	2.119	1.241	0.523	5.453	-7.10x10 ²	1.42x10 ³	1.44x10 ³
Sausage	2.194	4.704	1.151	1.598	7.482	-3.22x10 ¹	6.84x10 ¹	7.53x10 ¹
Pâté	1.461	2.334	1.213	0.852	6.240	-1.86x10 ³	3.73x10 ³	$3.74x10^3$
Soft and semi- soft cheese	0.909	1.917	1.252	0.389/	4.886	-3.14x10 ²	6.32x10 ²	6.46x10 ²

Higher maximum concentration

- Outsourcing activity 1
- Monitoring data
- Baseline study for *L. monocytogenes* in RTE products





Serving size and number of servings

The EFSA Comprehensive European Food Consumption Database for surveyed country and subpopulation

Demographic data per country and subpopulation

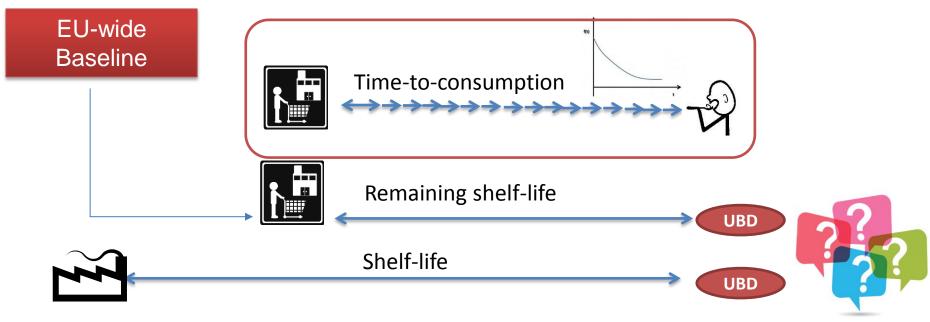
- When there are missing population groups, the available groups are used for extrapolation to the rest
- When there are missing countries, the available countries are used for extrapolation to the rest: no pattern

Time to consumption

SCIENTIFIC REPORT OF EFSA

Analysis of the baseline survey on the prevalence of *Listeria monocytogenes* in certain ready-to-eat foods in the EU, 2010-2011

Part A: *Listeria monocytogenes* prevalence estimates¹


European Food Safety Authority2.3

European Food Safety Authority (EFSA), Parma, Italy

ABSTRACT

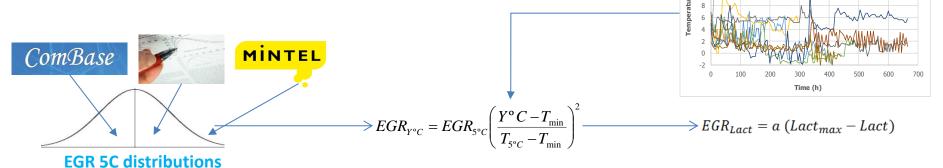
A European Union—New Societies survey on Literator intensoryrogenet was curried out in 2010 and 2011 with a distinct of intension of estimating the European Union newly prevalence of Literator intensoryagemen in certain ready-to-end foo at restal. A total of \$0.55 batches of packaged (sax frozen) hot or cold sansked or garwaf fish, \$5.50 package the estimated ment products and \$45.20 of or semi-soft cheeses were sampled from \$6.52 retail outlets in European Union Member States and one country not belonging to the European Union. The fish both sample

Scope of the model

Exponential distribution to describe TTC by means of the 99% percentile (a statistic from the remaining shelf-lives calculated) and a minimum value (uniform (0.01; 0.04) months as initial guess).

(Objective 2)

BASELINE MODEL



Growth model

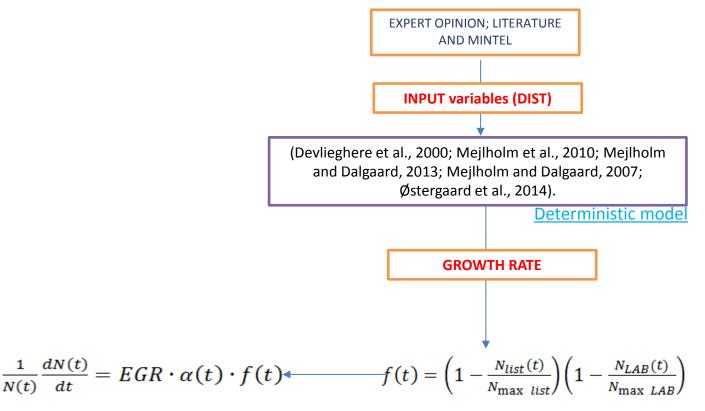
BASELINE MODEL

Cooked meat & sausage/Pate/ smoked and gravad fish/ soft and semisoft cheese

• Semi-stochastic model for listeria growth rate:

Growth model for temperature dynamic conditions:

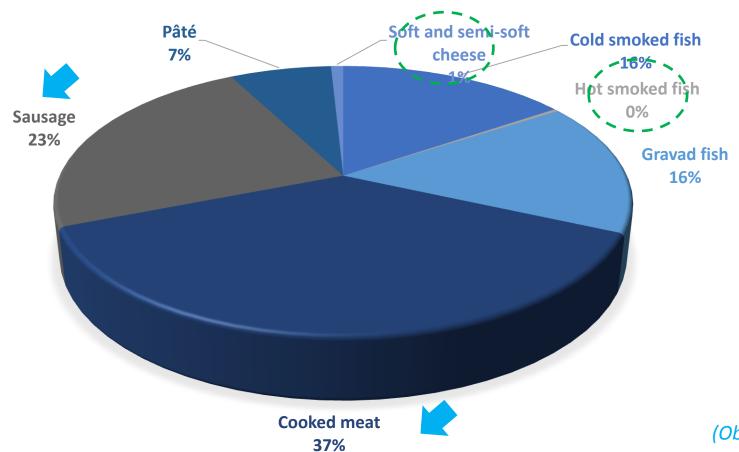
$$\frac{1}{N(t)} \frac{dN(t)}{dt} = EGR \cdot \alpha(t) \cdot f(t)$$
Distribution DB



Growth model

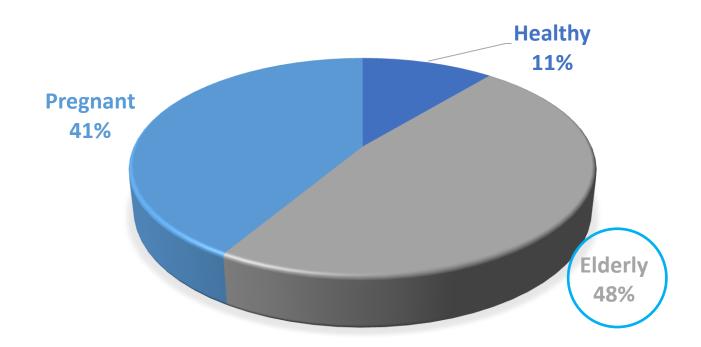
BASELINE MODEL

The effect of LAB on Maximum Population Density (MPD) of L.
 monocytogenes can be simulated <u>i) interaction term</u> and ii) using a
 probability distribution for MPD obtained from experiments in naturally
 contaminated foods.



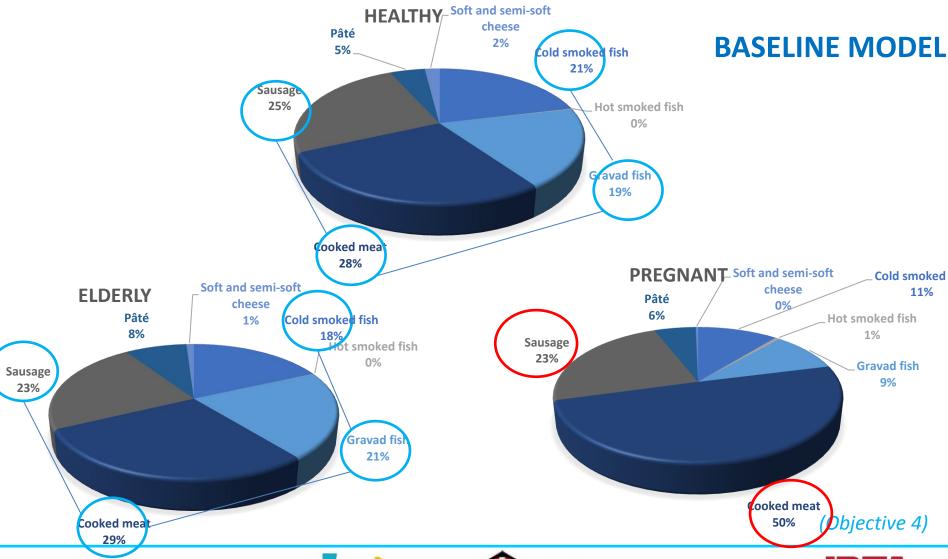
Risk characterization: cases/year

BASELINE MODEL

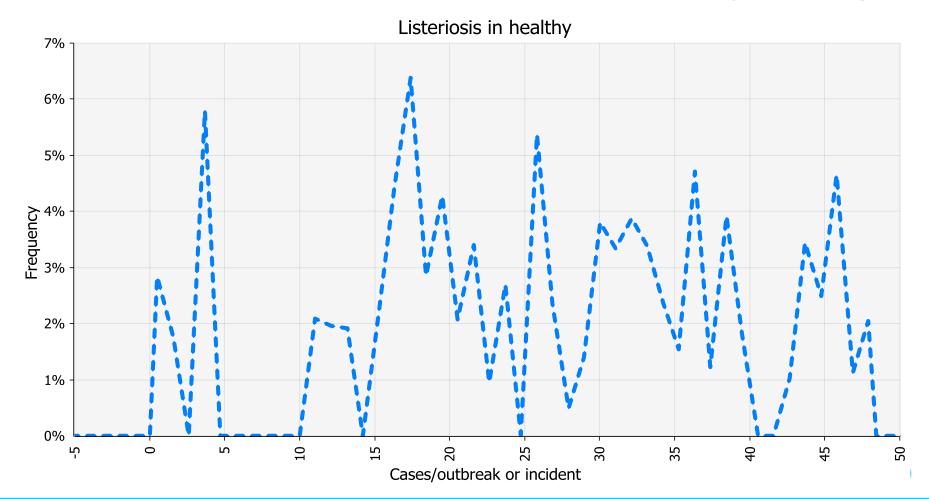


Risk characterization: cases/year

BASELINE MODEL

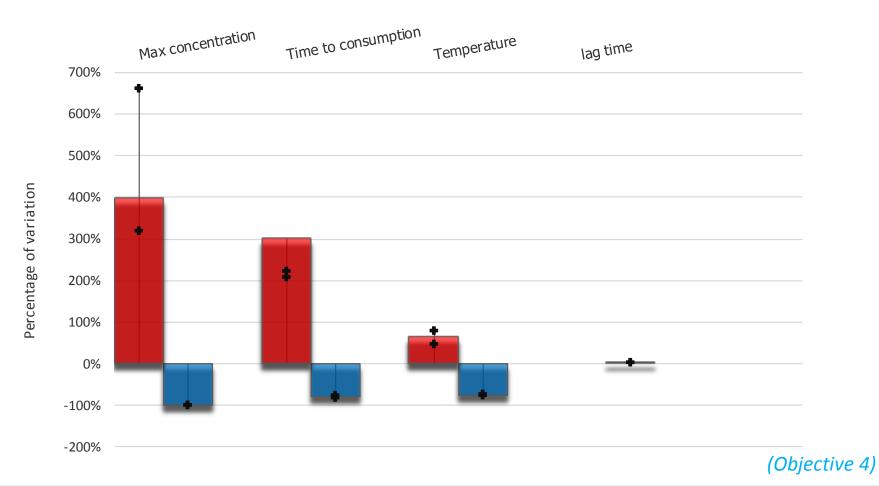


Risk characterization: cases/year



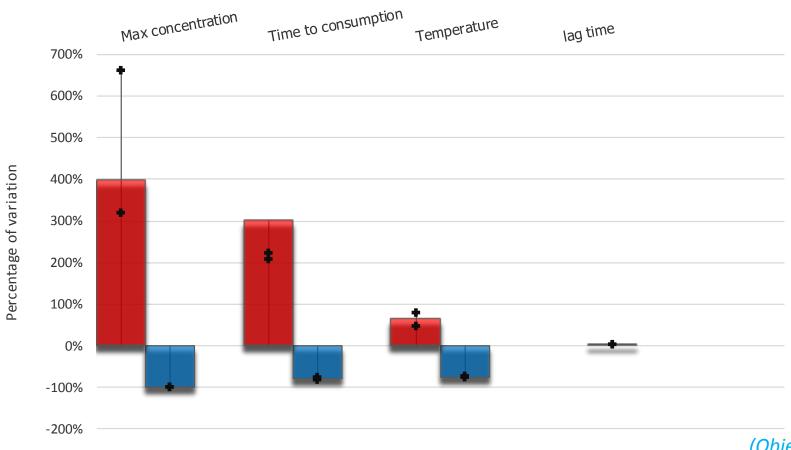
Risk characterization: cases/outbreak

BASELINE MODEL



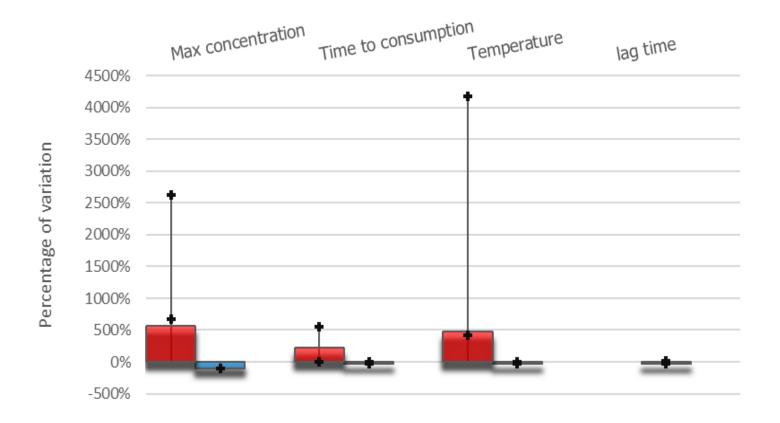
Scenario analysis

Heat-treated meat



Scenario analysis

Gravad and smoked fish

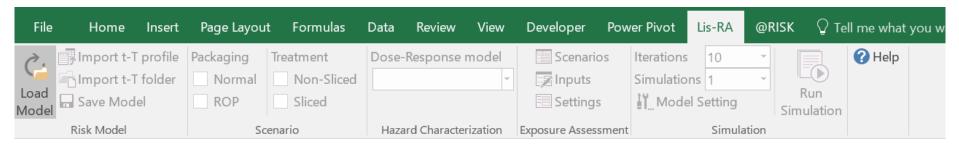


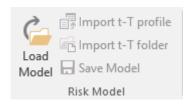
Scenario analysis

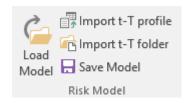
Soft and semi-soft cheese

Introduction and model scope
 Listeria risk assessments
 Selection of D-R models
 Exposure assessment
 Simulation and output
 An easy-to-use framework: Excel Add-in "Lis-RA"

Conclusions

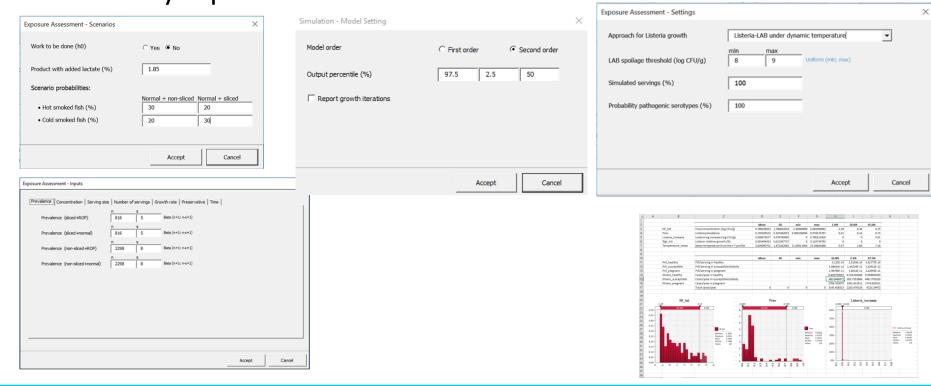





An Excel Add-in, "Lis-RA", for listeriosis risk model simulation

Lis-RA, a customized Ribbon-based system, was developed in VBA using libraries from @Risk software

Lis-RA allows users to select/upload models, time-temperature profiles sand scenarios.



An Excel Add-in, "Lis-RA", for listeriosis risk model simulation

Users can introduce scenario probabilities, input values and select the model order (first order or second order), etc. Simulation results are automatically reported.

Conclusions

Similar values to those reported by the surveillance system, <u>confirming higher</u> <u>incidence in elderly population</u>

<u>Heat treated meat</u> was the RTE product with highest overall risk of listeriosis specifically for the subcategory cooked meat, specially in <u>pregnant women</u>

<u>Semi-soft cheese and hot smoked fish</u> were the subcategories resulting in <u>the</u> lowest estimated risk

Aspects related to the <u>consumption patterns</u>, <u>shelf-life and processing</u> were key in the differences found between these subcategories

Concerning specific products, the <u>highest risk</u> was obtained for <u>normal</u> <u>packaged and sliced Pâté</u> in pregnant population. The <u>lowest risk</u> values were observed for <u>non-sliced</u> hot smoked fish and soft and semi-soft cheese.

Conclusions

Maximum concentration at retail and temperature were the most relevant variables for listeriosis risk: decreasing storage time by 25% and temperature 1–2 or 3–4°C can be effective in reducing listeria growth and finally risk for the consumer.

<u>Sources of Uncertainty</u>: maximum concentrations of *L. monocytogenes* at retail, time-temperature profiles and consumption patterns.

The developed software tool allows to simulate <u>alternative scenarios (country, lot, control measures)</u>, or <u>update model</u> inputs as new information becomes available.

<u>In-depth and specific sensitivity analyses</u> can be performed based on the developed risk models.

EXTERNAL SCIENTIFIC REPORT

APPROVED 31 May 2017 doi:10.2903/sp.efsa.2017.EN-1252

Antonio Valero Elena Carrasco Rosa Maria Garcia-Gimeno Araceli Bolivar

Sara Bover Anna Jofré Margarita Garriga

Closing gaps for performing a risk assessment on *Listeria* monocytogenes in ready-to-eat (RTE) foods: activity 2, a quantitative risk characterization on *L. monocytogenes* in RTE foods; starting from the retail stage

Fernando Pérez-Rodríguez, ¹ Elena Carrasco, ¹ Sara Bover-Cid, ² Anna Jofré, ² and Antonio Valero ¹

¹Departamento de Bromatología y Tecnología de los Alimentos, University of Cordoba (UCO), Córdoba, Spain, ²Institut de Recerca i Tecnologia Agroalimentàries (IRTA), Food Safety Programme, Monells, Spain

Abstract

A quantitative risk characterization of Listeria monocytogenes in various ready-to-eat (RTE) food categories (heat-treated meat; smoked and gravad fish; and soft and semi-soft cheeses) in the European Union (EU) was performed; starting from the retail stage. For prevalence and concentration, data from the EU-wide baseline survey was complemented with EU monitoring data and data from other sources. Food serving size and the number of servings per year were estimated from the European food consumption database. Demographical data from Eurostat were also used. Growth of L. monocytogenes considering interaction with lactic acid bacteria was modelled from retail to consumption using temperature-time profiles during transport and storage. This information was combined with the Pouillot dose-response models to estimate the number of listeriosis cases per 106 servings as well as the annual number of listeriosis cases in the EU associated with the consumption of the RTE foods. The total number of cases was estimated as 2,318 (95 confidence interval (CI): 1,450-3,612). Cooked meat and sausage presented most cases (median of 863 and 541, respectively). Sliced pâté packaged in normal atmosphere presented the highest listeriosis risk per million servings. With respect to the estimation of the total number of cases per population group, considering each food subcategory separately, the higher risk population group corresponded to elderly, followed, in most cases, by pregnant and healthy, with the exceptions of cooked meat and hot smoked fish in which pregnant presented higher risk than elderly. In the light of results, it seems necessary that educative programs and specific recommendations are specially oriented the most susceptible population groups so as to mitigate the risk. Uncertainty sources for some variables such as initial MAY prevalence should be further elucidated as well as variability in Listeria growth when types of product and populations are compared.

© European Food Safety Authority, 2017

Key words: quantitative risk characterization, *Listeria monocytogenes*, ready-to-eat food, dose-response model, growth parameter, number of listeriosis cases

Requestor: European Food Safety Authority
Question number: EFSA-Q-2014-00025
Correspondence: biocontam@efsa.europa.eu

http://onlinelibrary.wiley.com/doi/10.2903/sp.efsa.2017.EN-1252/epdf

THANK YOU FOR ATTENTION

