



# **ECPA** input

Initial Experience of applicants with the Draft Guidance Document (March, 2016)

Stephanie Melching-Kollmuss, BASF SE 27<sup>th</sup> September, 2016

## **Outline of presentation**



- Conduct of the ECPA impact assessment
- Overview of our observations
- Example case study 1 increased tox efforts
- Example case study 2 increased exposure efforts
- ECPA's key findings from the assessment
- Questions and discussion topics

## **ECPA** impact assessment



#### 14 active substances were taken through the assessment

- Anonymized datasets of:
  - 6 fungicides/4 insecticides/4 herbicides

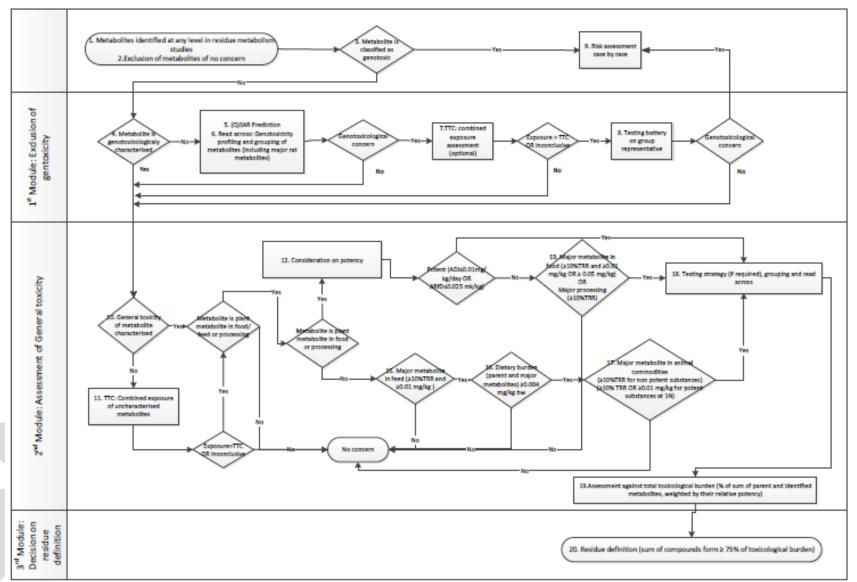
#### Who did the work?

- 6 companies evaluated 2 3 compounds (different regulatory stages)
- Limited experience and different approaches/understanding

#### Stepwise approach

- Taking account of <u>all</u> reliably identified metabolites
- Module by module
- Comparison between existing and newly proposed approaches
- Potent/non-potent AI / DART alert

## **ECPA** impact assessment




| •-q. STT-II  I-invocticido total | al number of major metabolites | Plant Metabolism Studies<br>(primary, CRC, HTH)<br>total number of major metabolitar in Feed<br>210% and 20,01 mg/kg | total number of minor metabolites | Animal Metabolism Studies<br>(hen, goat)<br>total number of metabolites≥10%<br>OR ≥0.01 mg/kg | Animal Metabolism (hen, goat) total number of metabolites \$10% or \$0.01 mg/kg (currently the GD is requesting levery identified metabolite's needing genet | Residue data<br>available for<br>how many of<br>these<br>metabolites | Comments                                                           |
|----------------------------------|--------------------------------|----------------------------------------------------------------------------------------------------------------------|-----------------------------------|-----------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------|--------------------------------------------------------------------|
| AS1                              | 15                             | 15                                                                                                                   | 5                                 | 6                                                                                             | 3                                                                                                                                                            | Crop: 5<br>Animal: 3                                                 | Please specify whether your active will be<br>considered as potent |

- Using the data from the available metabolism studies
  - Plant metabolism studies how many major/minor metabolites in food?
  - Plant metabolism studies how many major/minor metabolites in feed?
  - Livestock studies how many major/minor metabolites?
- Residue data available for how many of these metabolites?
- Rat metabolism
  - How many of the metabolites are considered covered?

## Modules in overview





## **ECPA** impact assessment



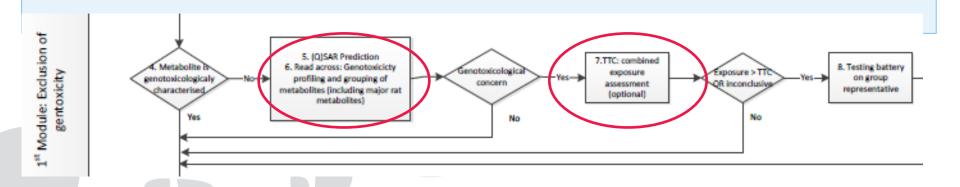
#### Stepwise approach, capturing....

#### Module 1:

number of metabolites needing assessment

## Difficult to capture the underlying uncertainties

- Assessment was conducted using the DRAFT GD
- Grouping/s
- Selection of group representative
- Read-across
- Further work needed depending on outcome


#### Module 3:

- Number of metabolites ending up in the residue definition for plant/animal
- Number of different residue definitions derived by toxicological burden approach

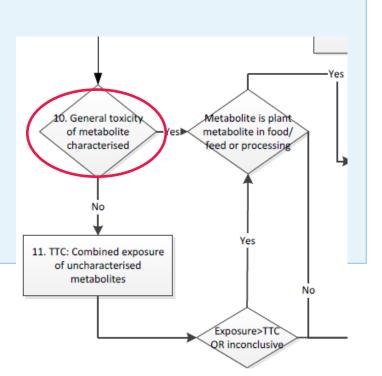


#### Module 1: Exclusion of genotoxicity: stepwise approach

- ➤ QSAR assessment (VEGA, OECD Toolbox, OASIS-Times, DEREK,...)
  - ➤ Most structures are "out of domain"
  - ➤ Use of structural alert information for grouping
  - >Applicability domains need to be enhanced
- ➤ Robustness/acceptance of read-across
- ➤ Step 7: TTC genotox trigger applicable for subgroups/individual compounds?



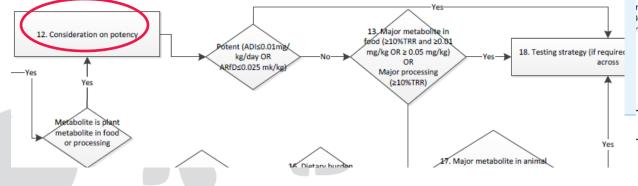
# Module 1 – main areas of concern/uncertainties

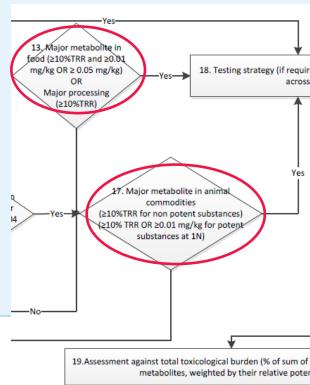



- Suitability of QSAR tools and expertise needed
- Acceptance of read-across approaches
- Reliability of structural alert information
- Huge number of additional genotox assessment/testing
  - >180 metabolites across the 14 ASs
  - Synthesis
  - Testing and potential follow-up testing



#### **Module 2: Assessment of general toxicity**


- ➤ Large number of metabolites have to be taken through assessment in Module 2
- Step 10: Which metabolites are covered by rat metabolism?
  - ➤ Occurrence in bile/feces
  - >%administered dose vs %absorbed dose
  - ➤ Take into account dosages administered in toxicological studies
  - Combined occurrence of metabolites in a pathway

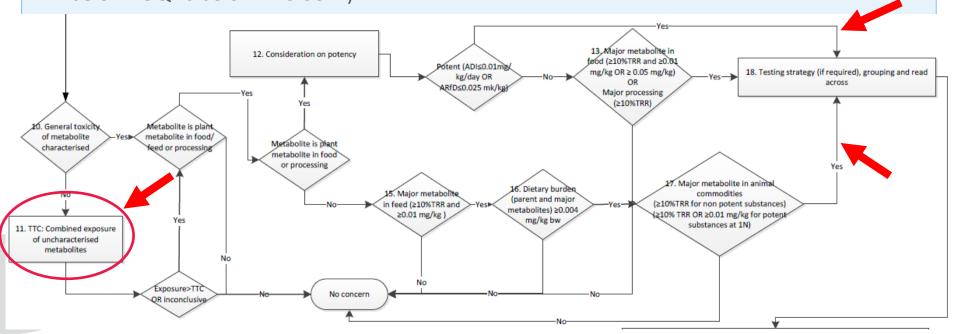





#### **Module 2: Assessment of general toxicity**

- ➤ Large number of metabolites selected as major
  - ➤ in plant up to 15 metabolites (in 10 of the 14 cases more than 5 metabolites)
  - ▶in animal up to 18 metabolites (in 12 of the 14 cases more than 5 metabolites)
- ➤ Step 12: Consideration of potency
  - For potent compounds all food metabolites need further assessment/testing
  - ➤In the candidate for substitution document the 5<sup>th</sup> percentile instead of the 25<sup>th</sup> percentile is used

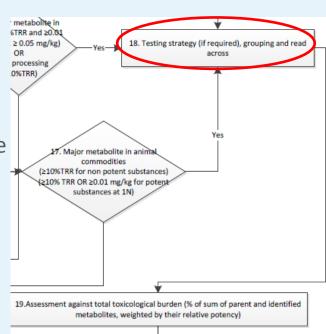







#### **Module 2: Assessment of general toxicity**

- ➤ Step 11 (combined exposure assessment against TTC Cramer thresholds): Unclear if only a rough screening or if it could lead to prioritized testing
- ➤ Should be applied for subgroups not for **all** uncharacterized metabolites
  - Consider to use molar TTC thresholds


Exposure assessment considerations before testing defines efforts for tox testing (values below LOQ vs below TTC CC III)



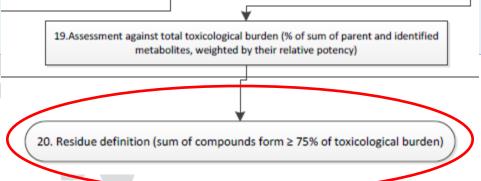


#### **Module 2: Assessment of general toxicity**

- ➤ Step 18: Testing strategy
- Further toxicological testing necessary in 8 out of 14 cases (max. 10 further metabolite testings) => More animal testing
- ➤ Huge uncertainties
  - ➤ Grouping and representative (accepted?)
  - What is considered similar toxicity?
  - ➤ DART alerts (in OECD toolbox)
  - ➤ Reproduction toxicity testing needed?
  - Uncertainty factors (extrapolation from subacute subchronic studies)
- ➤ Step 19: Accurate relative potency derivations require:
  - ➤ More animals tests
  - Mechanistic in vitro studies (robustness?)



# Module 2 – Main areas of concern/uncertainties




- TTC thresholds should be used for prioritization
  - Combined exposure of subgroups
  - Inclusion at a later stage to reduce animal testing
- What is considered covered by rat metabolism
  - Bile/feces, 10% in plasma, administered doses, combine compartments, combine pathways, consider doses
- Efforts and uncertainties in tox testing (~30 metabolites)
- Triggers for "major metabolites" (≥ 10%TRR + ≥ 0.01 mg/kg) without considering the exposure contribution are causing a high workload
- Concept of (relative) potency needs experience and further thoughts



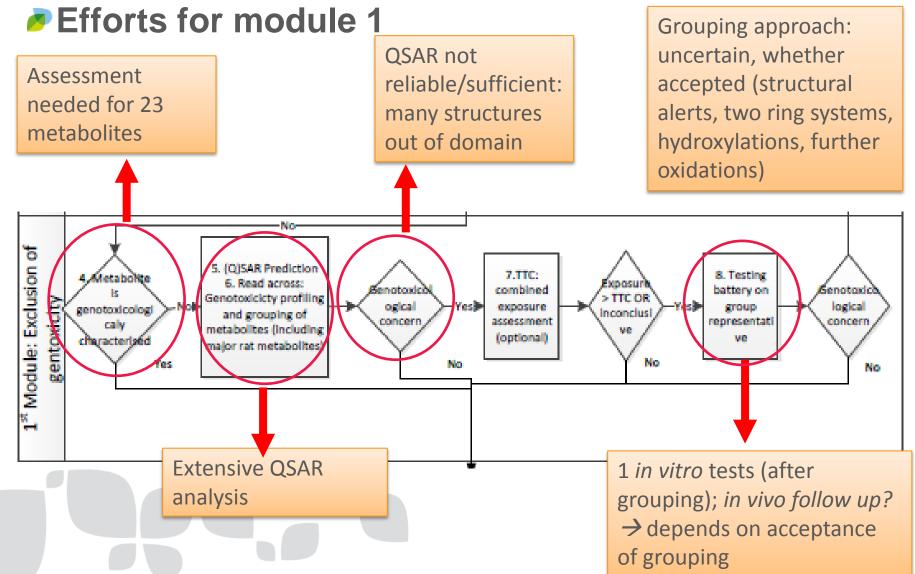
#### Module 3: Decision on residue definition (RD)

- Uncertainties in interpretation of toxicological burden approach:
  - > strict interpretation (inclusion of all major metabolites ≥ 75% toxicological burden) leads to different RDs for each crop, livestock matrix (even if metabolism is qualitatively similar)
  - > difficulties to derive a general residue definition for plant in these cases
- Increased number of metabolites in residue definition triggers high workload:
  - > new residue trial programs
  - > repetition of livestock feeding studies (?)
  - > analytical methods development (integrate many metabolites into one method!)



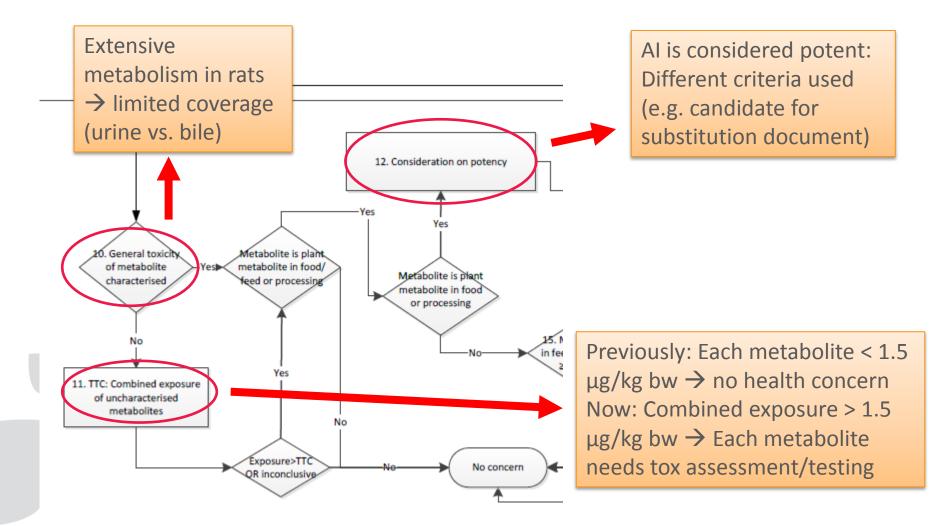





- More flexibility is needed in the 75% trigger of toxicological burden
  - More realistic consumer exposure estimates needs to be taken into account before residue definition is finalized
- Requirement of various residue definitions increases complexity of risk assessment
- Increased efforts for residue data generation (e.g. additional residue trials, feeding studies)



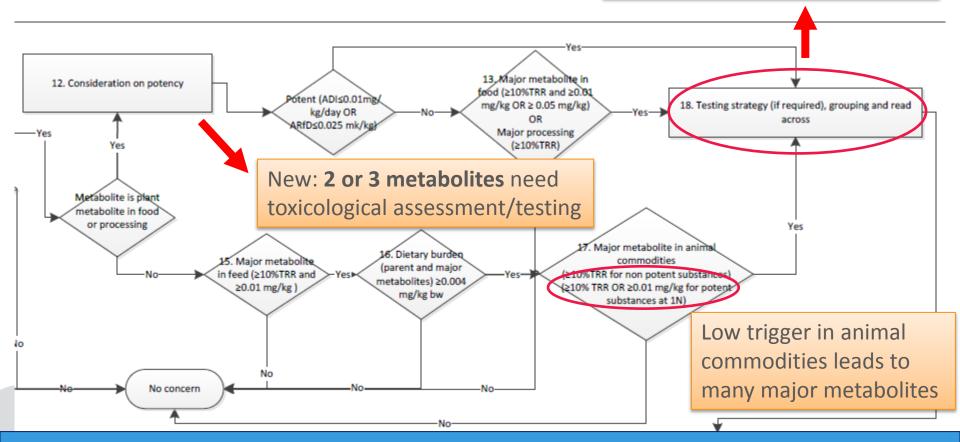
## Fungicide


- Potent (according to definition in the draft EFSA guidance)
- Classified Repr. 2
- Limited registration: 4 crops in 2 crop categories
- > Available metabolism studies:
  - > plants: in cereals and pulses/oilseeds
  - ➢ livestock: goat and hen
  - > rat: extensive metabolism; 2 metabolites were found >20% in bile
  - Similar metabolic profile
- > Available residue data: only for parent
- > 7 plant metabolites, 6 minor plant feed metabolites, 8 major livestock metabolites, 6 minor livestock metabolites





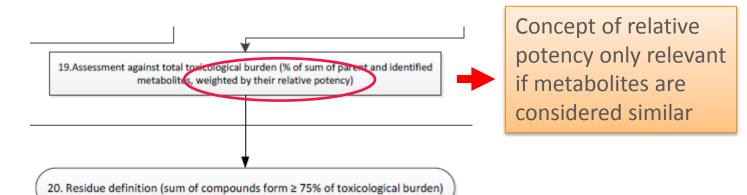



#### Efforts for module 2





Efforts for module 2


Based on outcome of 28-day studies further repro studies might be needed (UF)



Major impact: Increased animal testing!



#### Efforts for module 3



Inclusion of all metabolites in the RD does not necessarily increase consumer safety, but increases efforts and complicates risk assessment.

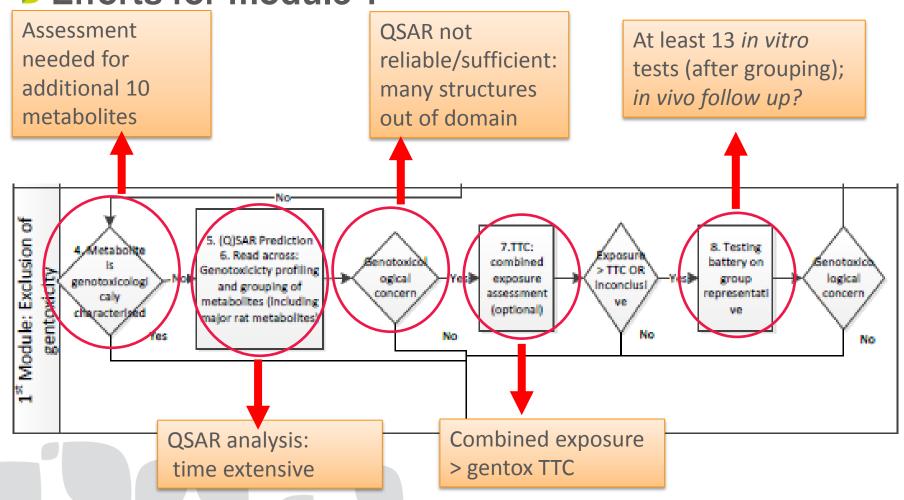
Existing residue definition (RD):

Parent + 1 metabolite

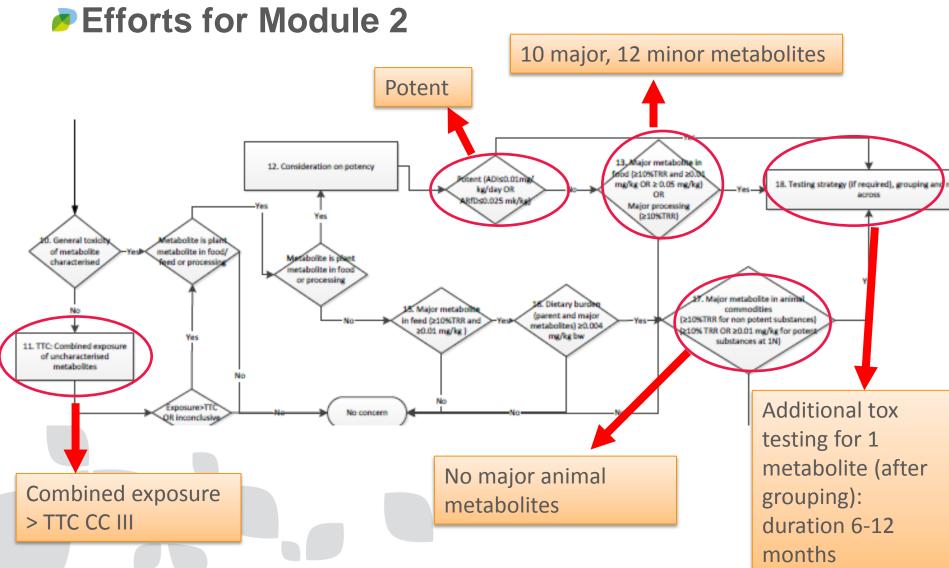
New RD:

3 RDs (to cover primary and rotational crops)

Parent + up to 4 metabolites

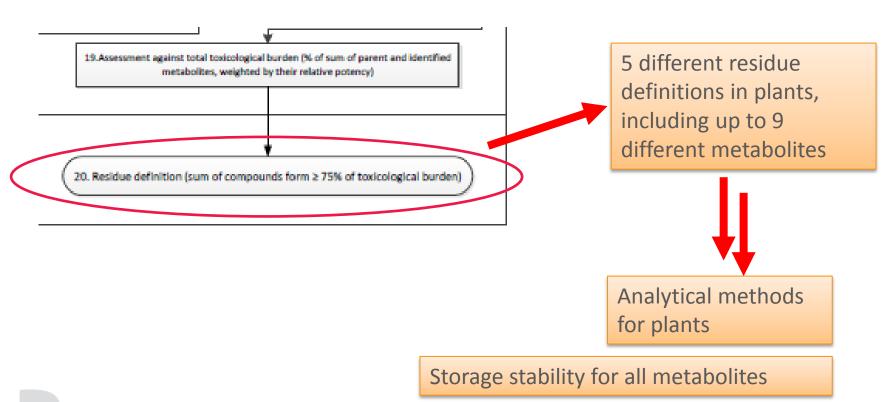



#### Herbicide


- > Potent (according to definition in the draft EFSA guidance)
- > Broad registration: EU approval in 25 crops from 5 crop categories (cereals, pulses/oilseeds, root crops, fruit crops, leafy crops)
- > Available metabolism studies:
  - → plants: in 5 crops covering 3 crop groups (cereals, pulses/oilseeds, root crops) =>common metabolic pathway, studies cover all other crop groups as well
  - > livestock: goat and hen metabolism with main feed metabolites => low residues (<0.01 mg/kg) at 1N feed burden, no need to consider animal metabolites
- > Available residue data: common moiety
- > 10 major plant metabolites, 12 minor plant metabolites














#### Efforts for Module 3



Residue trial program for up to 13 crops (limited extrapolation of metabolite levels beyond crop categories covered by metabolism studies)

## ECPA's key findings



- Increased upskilling necessary in scientific tools (QSAR, read-across) in industry and Regulatory Authorities
- More toxicological testing will be necessary (increased animal testing, big impact in terms of time and uncertainty)
- Significantly increased efforts for metabolite synthesis and analytical method development necessary
- New studies triggered e.g. toxicological studies, feeding studies, crop residue trials, storage stability



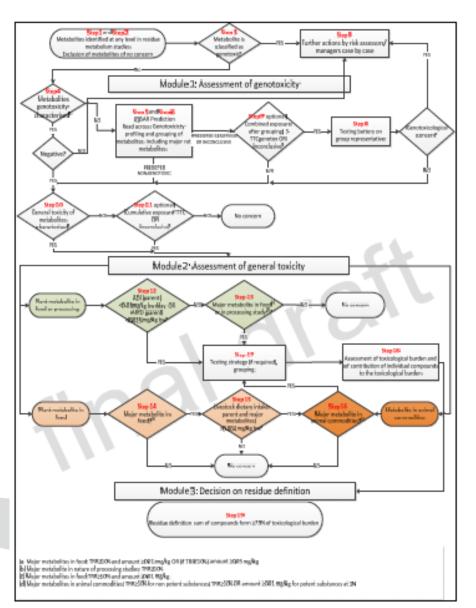
## ECPA's key findings



- Increased number of metabolites in the residue definition; may lead to exceedances of ADI/ARfD
- ► Entire approach is very complex (especially modules 2 and 3): inconsistent interpretation among companies → how will Member States do the assessment consistently?
- Low trigger values for selecting metabolites as "major" without consideration of absolute dietary exposure leads to high workload
- Strict application of 75% tox burden per crop and livestock commodity approach leads to complex residue definitions, increased complexity of risk assessments, and lack of consistency with other national and international review systems

# **Questions and discussion topics**




- It is suggested to conduct the combined TTC risk assessment (step 11) at least on subgroups
- Single compound assessment against TTC could be a prioritization step
- If metabolite toxicity is not similar to parent, additional safety factors or reproductive studies (with eventual follow-up) have to be considered
- Future experience to be gained on what is considered robust and reliable exposure estimates (e.g. needed for Step 11)

# **Questions and discussion topics**



- Clarity on "coverage by parent":
  - >10% absorbed vs administered dose
  - Combination of percentages in different biofluids
  - Inclusion of metabolites in a pathway
- Application of the toxicological burden concept for deriving the residue definition:
  - ≥75% target to be handled more flexible
  - Included metabolites to be checked for relevance to the consumer (exposure assessment)
- Guidance needed on deriving one residue definition for all crop commodities in case residue definitions differ for crop groups covered by plant metabolism (clearer from 26<sup>th</sup> September discussion)

# New final Draft GD (July 2016)





# Comparison between March and July Draft

European Crop Protection

- Bile and plasma are included as to be considered absorbed
- Clearer description, which metabolites in a metabolic pathway can be considered together
- MTD testing no longer required (rather the concept of side-by-side testing proposed)
- Flow chart improved (e.g. separation between food and feed metabolites)

# Comparison between March and July Draft



- Exposure step included before toxicological testing
  - Major metabolites can be qualified non-significant (if below LOQ in field trials) → no testing required
  - → Why not using TTC CC III trigger?
- Concept of toxicological burden is better described
  - Applicability is still open to interpretation
- ✓ Use of field residue data can be used to exclude metabolites from residue definition (→ wording in the final guidance needs clarification for livestock)

## Impact on key stakeholders



#### General

- Increased animal usage
- How can the dialogue between applicant, RMS and EFSA work in practice?
- Clear Guidance vs. a living document

#### Industry

- Increased cost (money and staff days) and duration for AI development
- Application of a new Guidance document to old datasets

#### Member States/Regulatory Authorities

- Increased time and different expertise needed for evaluation
- How will a consistent approach be achieved?

## Impact on key stakeholders



#### Minor Use Associations

 Challenges of increased number of metabolites in residue definition and associated data generation will make it difficult for this community



# This was a real team effort



- James Booth, Syngenta
- Monika Bross, BASF SE
- Leo-Waldemar Bürkle, Bayer Crop Science
- Dee Clarke, Syngenta
- Anja Hüser, Bayer Crop Science
- Frank Laporte, Bayer Crop Science
- Heike Lohmann, Adama
- Tina Mehta, Dow Agrosciences
- Janet Ruhl, DuPont Crop Protection
- Michaela Seiferlein, BASF SE

# Many thanks





# Thank you for your attention



## Fungicide

➤ Not potent, 20 major metabolites, 14 minor metabolites (BASF F1)

#### Efforts for Module 1:

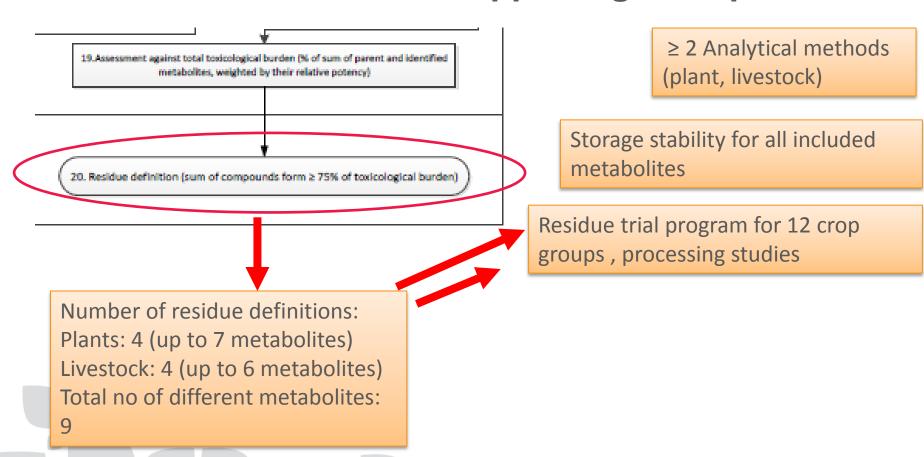
- Assessment needed for 30 metabolites
- In-silico/read-across assessments (240 working hours)
- ➤ At least 3 metabolites for *in vitro/in vivo* testing (12 18 months)

#### Efforts for Module 2:

- Tox testing for up to 4 metabolites (18 36 months)
- Synthesis, new analytical methods and storage stability studies
- New residue trials for one crop group
- New field rotational crop study
- New cow feeding study (13 cows)

#### Efforts for Module 3:

- 5 different residue definitions to cover primary crops (2). rotated crops, livestock
- Up to 7 additional metabolites in the RDs compared to current RDs




## Fungicide

- > Not potent, 14 major metabolites, 10 minor metabolites (SYT 1)
- Efforts for Module 1:
  - Assessment needed for 24 metabolites
  - In-silico/read-across assessments (160 working hours)
  - ➤ At least 13 metabolites for *in vitro testing and 5 estimated for in vivo* testing (12 18 months)
- Efforts for Module 2:
  - Tox testing for up to 2 metabolites (18 36 months)
  - Synthesis, new analytical methods and storage stability studies
  - New crop residue trials
- Efforts for Module 3:
  - Potential change to crop RD



## Efforts for Module 3 for supporting example



→ Strict tox burden approach: different residue definitions -> considerable residue work and complex risk assessment