

Pier Sandro Cocconcelli- EFSA FEEDAP Panel

MICROORGANISMS INTENTIONALLY USED IN THE FOOD CHAIN

- More than 100 bacterial species
 Arthrobacter globiformis Streptococcus thermophilus
- Filamentous fungi

 Fusarium solani Trichothecium domesticum
- ■Yeasts

 Candida famataWilliopsis mrakii
- ■Virus

 Bacteriophages Baculovirus -Potovirus

OUTLINE

Characterisation of production strains of additives obtained by microbial fermentation:

- options for change
- future challenges
- Opportunities
- General principles
 - Regulatory Frameworks
 - Focus on risks
 - Most updated Risk Assessment approaches

Taxonomical identification

- Key aspect of the safety assessment
 - QPS or non-QPS
 - Virulence/Toxigenic potential
- Accurate and update identification
 - Molecular Taxonomy (e.g. 16S rRNA gene ITS)
 - Species dependent approach
 - Whole Genome Sequence (phylogenomics)
- Re-classifications, synonymous and new names

Strain Identification

- Unique identification of microbial products
 - Viable strains
 - Additive producers
- Essential for the safety assessment
- Critical for a safe lineage assessment (e.g. *E. coli* K12 derivatives)
- DNA based methods
 - PFGE PCR based (e.g. RAPD, REP, ERIC, AFLP)
 - Sequenced based (e.g. MLST)
 - Whole Genome Sequence (e.g. SNPs)

Toxigenic potential/Virulence

- QPS:
 - waive for tox studies for consumer safety
 - no tolerance studies with target animal species
- Qualifications
 - Absence of toxigenic potential
 - Lack of acquired AMR genes
 - End use (viable vs production purposes)
- QPS + genetic modification:
 - Genetic modification = no safety concern
 - Alignment with food enzymes

Toxigenic potential/Virulence

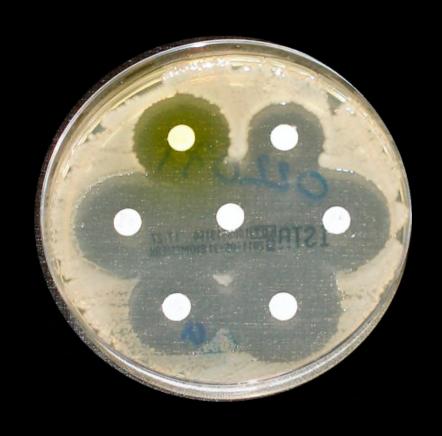
- QPS:
 - waive for tox studies for consumer safety
 - no tolerance studies with target animal species
- **Qualifications**
 - Absence of toxigenic potential
 - Lack of acquired AMR genes
 - End use (viable vs production purposes)
- **QPS + genetic modification:**
 - **Genetic modification = no safety concern**
 - Alignment with food enzymes

Non-QPS:

- History of safe use:
 - Limitations
 - Scientific substantiation
- Criteria
 - Known toxigenic potential
 - Literature searches
 - Whole Genome Sequence
 - Annotation
 - Analysis

Metabolite	Organism
Aspergillomarasmine	A. oryzae
Cyclopiazonic acid	A. oryzae
Kojic acid	A. oryzae
Malformins	A. niger
Malformin A	
Malformin C	
Maltoryzine	A. oryzae
Naphtho-r-pyrones	A. niger
Aurasperone D	
Nigerazine B	A. niger
Nigragillin	A. niger
3-Nitropropionic acid	A. oryzae
Ochratoxin A	A. $niger$
Oxalic acid	A. niger
Trichodermin	T. reesei
Violacetin	A. oryzae

Blumenthal, 2004. Reg. Toxicol. Pharmacol. 39: 214-228


Safe Strain Lineage

- On-going procurement on safe strain lineages
 - 36 Bacterial species
 - 42 fungal species
- Extended Literature Review
- Genomic Data

283318-2015: Italy-Parma: OC/EFSA/FEED/2015/01 — Database on the taxonomical identification and potential toxigenic capacities of non-QPS production strains of industrially produced food and feed additives

Publication date:	12-08-2015	Deadline:	15-10-2015
Document:	Contract notice		
Authority name:	European Food Safety Authority (EFSA)		

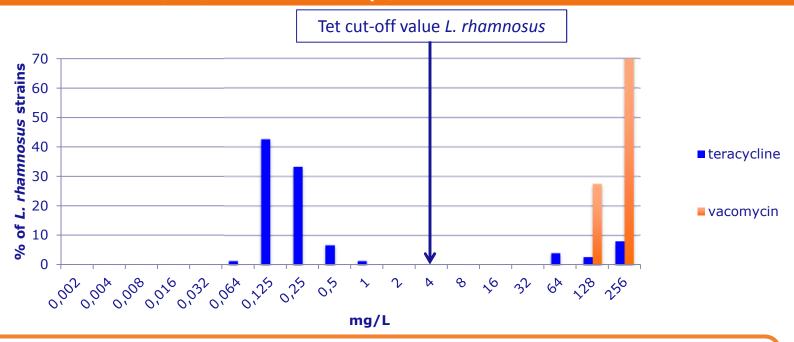
Antimicrobial susceptibility

Antimicrobial resistance

EFSA Journal 2012;10(6):2740

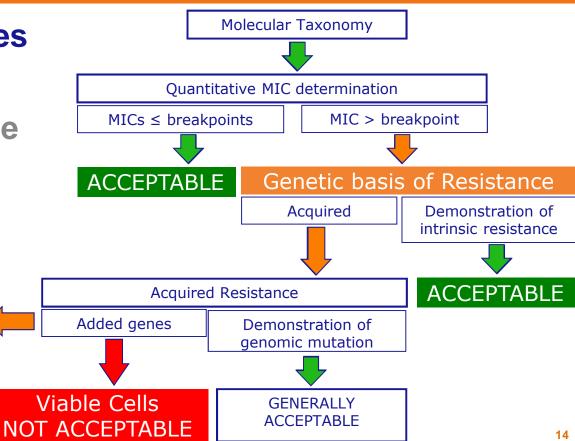
SCIENTIFIC OPINION1

Guidance on the assessment of bacterial susceptibility to antimicrobials of human and veterinary importance²


EFSA Panel on Additives and Products or Substances used in Animal Feed (FEEDAP)^{3,4}

European Food Safety Authority (EFSA), Parma, Italy

INTRINSIC vs ACQUIRED


- Where all strains within a given taxonomic group show phenotypic resistance to an antimicrobial, such resistance can be considered intrinsic to the taxonomic group
- Molecular basis of intrinsic resistance are generally well described.

- Microbial Additives
 - Viable cells
 - Absence of viable cells

Production strain: Absence of DNA in the products

Minutes of the 102nd Plenary Meeting Held on 4-6 March 2014, Parma

Annex II

Update on the requirements for the assessment of additives produced by fermentation

- If atypically antibiotic resistance is detected, it should be demonstrated that the DNA from the production strain is not present in the final product.
- This can be done by PCR targeting known DNA sequences coding for the resistance or other sequences specific to the production strain.
- The specificity of the target sequence should be demonstrated

Minutes of the 102nd Plenary Meeting Held on 4-6 March 2014, Parma

Annex II

Update on the requirements for the assessment of additives produced by fermentation

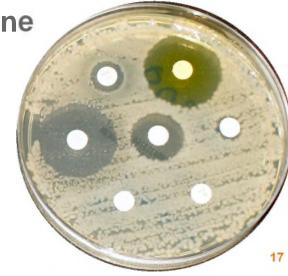
Demonstration of the absence of DNA by PCR

- Sequence to target (specificity, length)
- Methods (PCR qPCR)
- Controls (for PCR, for DNA extraction)
- Limits of detection / thresholds

Susceptibility testing

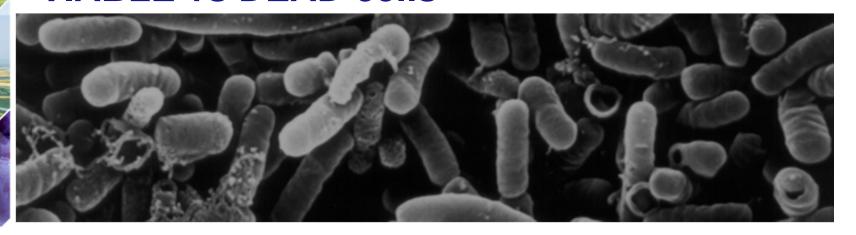
Phenotypic analysis

Inclusion of new species, including production species (e.g. C. glutamicum)


Revisit lists of antibiotics (e.g. colistine

and ciprofloxacin for *E. coli*)

Updated cut-off values


Whole Genomic Sequence data for resistance mechanisms

Presence/absence of DNA

- Critical point for the Risk assessment of GMM and non-GMM
- Definition the amount of product to be tested
- Resuscitation approaches
- Background/contaminant microbiota

Genetic modifications

- Most common cause of inconclusive opinions
- New options and methodologies not well covered in the current Guidance Document
- Reiterated questions on aspects not well clear
- New assessment criteria, based on experience

Genetic modifications

- Most common cause of inconclusive opinions
- New options and methodologies not well covered in the current Guidance Document
- Reiterated questions on aspects not well clear
- New assessment criteria, based on experience

Current GMM Guidance Document:

- From the GMO Panel
- GM food and feed
- GM fermentation products | Food additives

Food enzymes
Food additives
Feed additives

New Guidance Document for GM fermentation products:

- From the FEEDAP Panel
- Based on experience
- Harmonised among Panels (FEEDAP, CEF)