Epigenetic Regulation of Health and Disease

Nutritional and environmental effects on epigenetic regulation

Robert FEIL

Director of Research

CNRS & University of Montpellier, Montpellier, France. E-mail: robert.feil@igmm.cnrs.fr

EFSA Scientific Colloquium N°22:

'Epigenetics and Risk Assessment: Where do we stand?'

14-15 June 2016 | Valencia

Epigenetics?

«The study of somatically and/or meiotically heritable changes in gene function that cannot be explained by changes in DNA sequence »

A heritable DNA methylation change at a gene involved in fruit ripening

Agouti (A^{vy}) coat colour gene in mice: MAJOR phenotypic effects of differential DNA methylation

Drs. Emma Whitelaw, Randy Jirtle, others

Epigenetic modifications?

* DNA methylation

* Stable histone modifications

Feil R, Mutation Research 2006

The epigenome(s) undergoes changes during development and postnatal life

Many chromosomal regions show differential DNA methylation between 'old' mono-zygotic twins

Roles of DNA methylation in mammals

- * Chromosome stability
- * Repression of DNA elements of foreign origin
- * Tissue-specific repression of genes
- * 'X-chromosome inactivation' in females
- * Genomic Imprinting

genomic imprinting

Two growth-related imprinted domains involved in cellular proliferation and fœtal growth

Imprinting Control Regions (ICRs)

CH3 CH3 CH3 CH3 CH3

Parental allele WITH DNA methylation

Parental allele WITHOUT DNA methylation

DNA methylation dynamics in the early embryo: only ICRs are stably maintained

Kelsey and Feil, *Phil. Trans. R. Soc. B* (2013). Smallwood and Kelsey, *Trends Genet* (2012).

'epigenetic diseases': Silver-Russell Syndrome (SRS)

- Intra-uterine growth restriction (IUGR)
- Postnatal growth deficiency

- Learning disabilities
- Mostly sporadic

'epigenetic diseases':

Beckwith-Wiedemann Syndrome (BWS)

- Foetal overgrowth
- Large internal organs, large tongue

 Predisposition to Wilms' tumour of the kidney

Mostly sporadic

Frequent perturbation of methylation imprints upon in vitro culture and manipulation

* **Derivation and culture of ES cells** Dean *et al.* 1998;

Humpherys et al. 2001

* **Pre-implantation embryo culture** Khosla *et al.* 2001; Young *et al.* 2001

* **Super-ovulation** Fortier et al. 2008;

Market-Velker et al. 2010

Reprogramming into induced Stadtfeld et al. 2010,
 pluripotent stem cells (iPS cells) Kota et al. 2014.

* **Somatic cell nuclear transfer** Humpherys *et al.* 2001 Young *et al.* 2003

Increased occurrence of epigenetic 'Imprinting Disorders' in cohorts of 'Assisted Reproduction' babies

Beckwith-Wiedemann Syndrome (BWS)
Silver-Russell Syndrome (SRS)
Angelman Syndrome (AS)
Transient Neonatal Diabetes Mellitus (TNDM) (?)

Causal mechanism(s) unclear: ART or 'predisposing infertility'?

Dias and Maher, *Epigenomics* 2013.

Sato *et al. Reproduction Med. Biol.* 2014.

Faugue *Fertil Sterility* 2013.

Lim *et al. Hum Reprod* 2009.

Sutcliffe *et al. Human Reprod.* 2006.

Cox *et al. Am. J Hum Genet* 2002.

Nutrition influences the mono-carbon cycle

Feil and Fraga, Nature Rev. Genet. (2013)

MINOR effects of nutrition on imprinted DNA methylation in human and animal studies

- Dutch Hunger Winter, peri-conceptional exposure to famine:
 - -Decreased DNA methylation at imprinted genes in children.
- Increased folate, or altered choline, during pregnancy (human, rat): Increased DNA methylation at IGF2.
- * High-fat diet during gestation (mouse):
 Altered DNA methylation at the *IGF2R* locus in placenta.
- Alcohol consumption during pregnancy (mouse):
 Decreased DNA methylation at H19 ICR and IGF2 in offspring.
- Alcohol consumption in adult males (mouse, human):
 Aberrant DNA methylation at ICRs in sperm

Endocrine disruptors:

* Long-term effects on reproduction* MINOR effects on DNA methylation imprints

 Vinclozolin (50mg/kg, E10-18) and methoxychlor (10 mg/kg E10-18) administration to females <u>during pregnancy</u>:

Altered methylation in sperm of F1, F2 & F3 males:

- * Slight reductions in DNA methylation at 'paternal ICRs'
- * Gains in DNA methylation at 'maternal ICRs'

Stouder et al, Reproduction (2010) (2011) Kang et al, Epigenetics (2011) Somm et al., Reprod Toxicol (2013)

Inter-generational epigenetic effects of maternal diet and environmental cues

Altered DNA methylation imprints in sperm of oligozoospermic men

Marques et al. 2004, 2008 Kobayashi et al. 2007 Boissonnas et al. 2010 Reviewed in: Filipponi and Feil, Epigenetics 2009

Agouti (Avy) locus in the mouse: MAJOR methylation effects of nutrition and endocrine disruptors

Search for 'metastable alleles' in humans: Seasonal gestational influence on child's DNA methylation

Different studies suggest that also paternal nutrition can influence phenotype and DNA methylation in offspring

* Effects metabolism in offspring

*MINOR changes in DNA methylation at specific metabolic genes in liver

* These methylation changes are not detected in sperm

* Sperm DNA methylation is largely normal

Carone BR et al. Cell (2010) Radford EJ et al. Science (2014)

Some discussion points.....

- Are DNA methylation changes caused by the environmental cues?
 Or rather, do these changes reflect developmental or tissue alterations?
- Why are certain gene loci much more susceptible than others?
- Which mechanisms normally control these 'metastable' loci?
- Which genomic loci are most susceptible in humans?
- Are the epigenetic alterations at these genomic loci consistent and 'big enough' to be considered biomarkers?
- Besides DNA and histone methylation, which other epigenetic markers should be considered?