Use of short-term dietary data for the estimation of usual intake

Victor Kipnis

Biometry, National Cancer Institute, USA

Acknowledgments

I am part of the Measurement Error Working Group at the U.S. National Cancer Institute.

We have been working together for 8+ years to address important issues in nutritional surveillance and nutritional epidemiology

Surveillance Measurement Error Group

Susan Krebs-Smith, Dennis Buckman, Raymond Carroll, Kevin Dodd, Laurence Freedman, Patricia Guenther, Victor Kipnis, Douglas Midthune, Amy Subar, Janet Tooze

Dietary Assessment

- There are many methods to measure dietary intake both long-term (FFQ) and short-term (24HR, Food records, Biomarkers)
- More accurate short-term measurements have been often used in national surveys (e.g., 24HRs in US NHANES)

Dietary Assessment (2)

- Use of short-term measurements for estimating "usual" (long-term average) intakes is associated with numerous challenges
- even if otherwise precise, measurements contain substantial within-person error due to short-term variation in intake
- measurements often have **skewed to the right** distributions
- measurements of episodically consumed components (i.e., not consumed daily by most) are zero-inflated
- dietary components are usually mutually correlated requiring multivariate modeling

Episodically consumed components

 Problem: short-term measurements have spike at zero and skewed to the right distribution of positive intake



Motivating example: HEI-2005 Scores in NHANES

- NHANES is US National Survey involving 2 24HRs
- HEI-2005 is scoring system based on a priori chosen dietary recommendations for densities of 6 episodically & 6 daily consumed dietary components:
 - total fruit; whole fruit; total veggies; dark green and orange veggies & legumes (DOL); total grains; whole grains; milk; meat & beans; oil; saturated fat; sodium; solid fats, alcoholic beverages and added sugars (SoFAAS)
- Higher scores indicate greater compliance with dietary guidelines (healthier diet)
- Total score (sum of individual scores) is on a scale 0 to 100 and estimating its distribution requires multivariate modeling

Modeling Assumption

- In what follows, we will consider studies where dietary assessment is done with repeat short-term measurements of p dietary components, of which first m are episodically and last p−m are daily consumed
- Main assumption: for person i, repeat j, short-term measurement $R_{k,ij}$ of the k-th component is unbiased for its true usual intake
- The developed methodology is demonstrated using 24HR

New Multivariate Model (1)

- Methodology is a multivariate extension of the NCI method (Tooze et al., 2006; Kipnis et al. 2009; Tooze et al., 2010)
- Generically, X denotes model covariates (e.g., socioeconomic characteristics, demographics), and β denotes population-based covariate effects (*fixed effects*)
- Generically, u denotes person-specific random effects representing part of within-person mean not explained by covariates
- Finally, ε denotes within-person variation in repeat measurements

New Multivariate Model (2)

- For an episodically consumed component k=1,...,m, specify the two-part model as follows
 - Part I: Consider a mixed effects latent variable

$$\tilde{R}_{klj} = \boldsymbol{\beta}_{2k-1,X}^{t} \mathbf{X}_{i} + \boldsymbol{u}_{2k-1,i} + \boldsymbol{\varepsilon}_{2k-1,ij}$$

The fact of consumption during period j is specified as $\tilde{R}_{kl} > 0$

Part II: Given consumption, consider Box-Cox transformation

$$g(v;\lambda) = (v^{\lambda} - 1) / \lambda$$

such that the *transformed amount* follows the *mixed effects* linear model

$$g_{R_k}\left(R_{kij}\right) = \boldsymbol{\beta}_{2k,X}^t \mathbf{X}_i + u_{2k,i} + \boldsymbol{\varepsilon}_{2k,ij}$$

New Multivariate Model (3)

• For a daily consumed component k=m+1,...,p, consider a Box-Cox transformation such that the *transformed amount* follows the *mixed effects linear model*

$$g_{R_k}\left(R_{kij}\right) = \boldsymbol{\beta}_{m+k,X}^t \mathbf{X}_i + u_{m+k,i} + \boldsymbol{\varepsilon}_{m+k,ij}$$

New Multivariate Model (4)

 Person-specific random effects and within-person errors are specified as

$$\mathbf{u}_{i} = \left(u_{1i}, ..., u_{2m+p,i}\right)^{t} \sim N(\mathbf{0}; \mathbf{\Sigma}_{\mathbf{u}})$$

$$\mathbf{\varepsilon}_{ii} = \left(\mathbf{\varepsilon}_{1ii}, ..., \mathbf{\varepsilon}_{2m+p,ii}\right)^{t} \sim N(\mathbf{0}; \mathbf{\Sigma}_{\mathbf{s}})$$

For identifiability

$$\operatorname{var}\left(\varepsilon_{2k-1,ij}\right) = 1, k = 1, ..., m$$

Based on two-part model specification,

$$\operatorname{var}\left(\varepsilon_{2k-1,ij},\varepsilon_{2k,ij}\right) = 0, k = 1,...,m$$

New Multivariate Model (5)

- Allowing correlations among person-specific random effects induces correlations among usual intakes of daily consumed and episodic components
- Allowing correlations among within-person errors induces
 - correlations among short-term positive intakes of daily and episodically consumed components
 - correlations of indicators of short-term consumption (yes, no) for episodically consumed components among themselves and with consumed positive amounts of other components

New Multivariate Model: fitting

 Denoting model parameters by \(\theta\), we have a highly nonlinear mixed effects model

$$\mathbf{R}_{ij} \equiv \left(R_{1,ij},...,R_{p,ij}\right)^t = \Re(\mathbf{X}_i,\mathbf{u}_i,\boldsymbol{\varepsilon}_{ij};\boldsymbol{\theta})$$

with many correlated latent variables and the patterned covariance matrix of within-person errors with structured zeros and ones

- Currently available software cannot handle such models
- The model is therefore fitted using Markov Chain Monte-Carlo technique
- We treat the method as if it were non-Bayesian, and get standard errors using Balanced Repeated Replication (BRR)

Estimating the Distribution of Usual Intakes

lacktriangle Multivariate true usual intake is defined as the mean of $old R_{ij}$

$$T_{i} = \int \Re(\mathbf{X}_{i}, u_{i}, \varepsilon_{ij}; \mathbf{\theta}) f(\varepsilon_{ij} \mid \mathbf{X}_{i}, u_{i}; \mathbf{\theta}) d\varepsilon \equiv \mathfrak{T}(\mathbf{X}_{i}, \mathbf{u}_{i}; \mathbf{\theta})$$

Individual realizations of \mathbf{u}_i (and thus true intakes) remain unknown

- BUT generating $\tilde{\mathbf{u}}_{ib} \sim \mathbf{N}\left(0, \hat{\boldsymbol{\Sigma}}_{\mathbf{u}}\right)$, b = 1, ..., B, one can estimate the distribution of true usual intakes or its function, such as the total HEI score, by weighted (survey weights) empirical distribution of $\mathfrak{T}(\mathbf{X}_i, \tilde{\mathbf{u}}_i; \hat{\boldsymbol{\theta}})$
- Details in Zhang et al., 2011

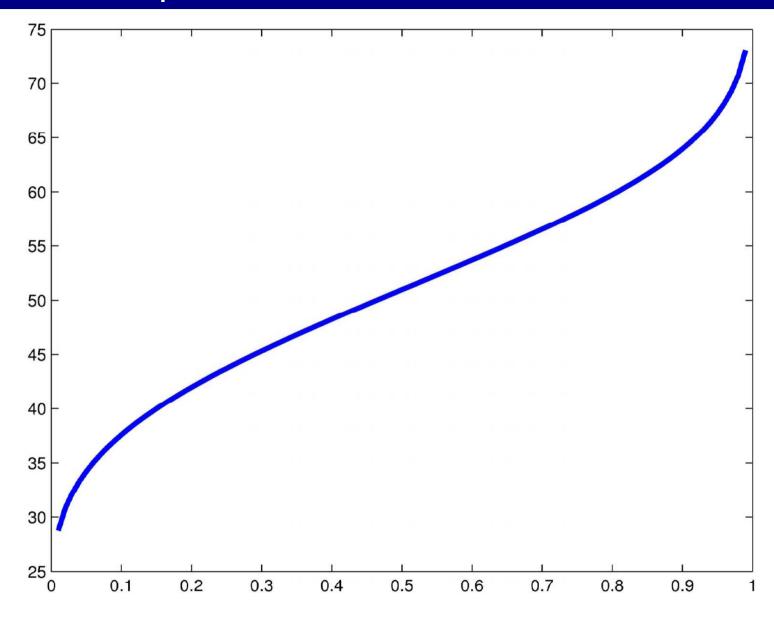
Example: HEI-2005 Scores in NHANES

- Data: 2 24HRs from 2001-2004 NHANES for children aged 2-8
- The vector of covariates \mathbf{X}_i included age, gender, a dummy variable indicating weekend (Friday, Saturday, or Sunday) or week day, and a dummy variable indicating 1^{st} or 2^{nd} recall
- Important questions:
 - correlations among HEI-2005 component scores
 - distribution of the HEI-2005 total score
 - distribution of HEI-2005 component scores among those with total score greater or smaller than, say, 50
 - % of Americans exceeding percentiles for all 12 HEI-2005 component scores

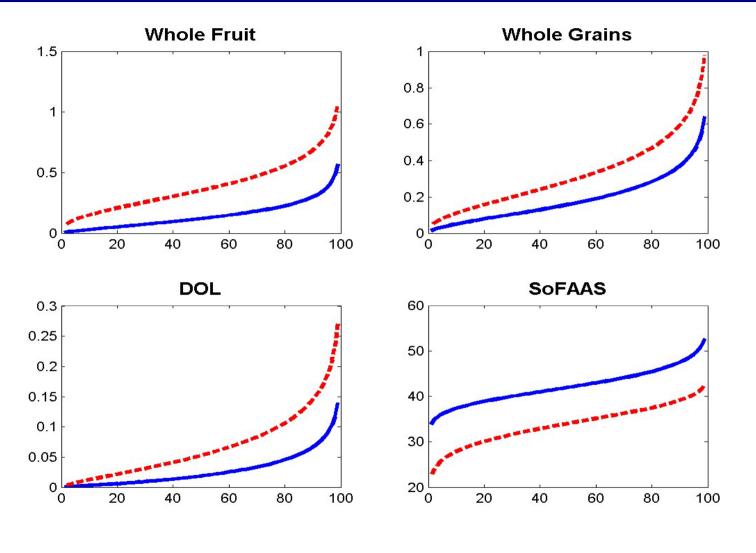
Estimated Correlations among HEI-2005 Components

	TF	WF	TG	WG	TV	DOL	Milk	Meat	Oil	SFat	Sod	SoffAS
T Fruit	1	.75	09	.27	.05	.45	.15	.07	35	36	27	64
W Fruit		1	.04	.32	.13	.52	.09	.06	17	30	21	53
T Grns			1	.36	24	08	29	13	.44	36	.18	24
W Grns				1	22	.13	.16	17	11	31	14	46
T Veg's					1	.48	11	.53	08	.07	.44	16
DOL						1	.15	.25	09	26	02	50
Milk							1	37	22	.20	28	21
Meat								1	03	09	.41	21
Oil									1	06	.11	.04
Sat Fat										1	.09	.45
Sodium											1	.04
SoffAS												1

Estimated percentiles of the HEI-2005 Total Score

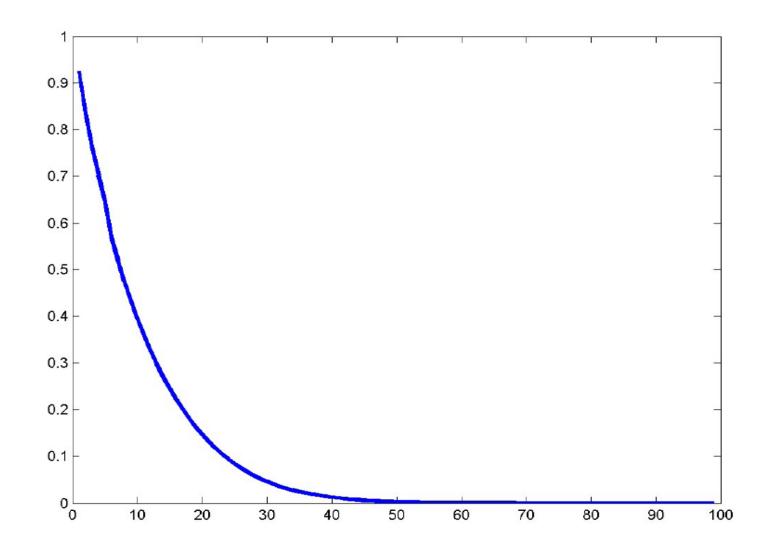


Estimated percentiles of HEI-2005 Components



Total Score ≤ 50 (Solid Blue); Total Score > 50 (Dashed Red)

Estimated probabilities of exceeding k-th percentile on all 12 HEI-2005 components



Modeling Lifetime Exposure

- Let c denote survey cycle during which usual intake is assumed to be constant
- Using repeat short-term measurements during cycle c, true usual intake (average units per day) is modeled as

$$T_{ic} = \int \Re \left(\mathbf{X}_{ic}, u_{ic}, \varepsilon_{icj}; \mathbf{\theta}_c \right) f\left(\varepsilon_{icj} \mid \mathbf{X}_{ic}, u_{ic}; \mathbf{\theta}_c \right) d\varepsilon \equiv \mathcal{I}_c\left(\mathbf{X}_{ic}, \mathbf{u}_{ic}; \mathbf{\theta}_c \right)$$

Lifetime intake (up until cycle C) is defined as

$$T_i = \sum_{c=1}^{C} \mathfrak{T}_c(\mathbf{X}_{ic}, \mathbf{u}_{ic}; \boldsymbol{\theta}_c) \times t_c$$

where t_c denotes number of days in cycle c

Modeling Life-time Exposure (2)

- Ideal situation: everyone in the survey is followed up from cycle 1 to cycle C
- Modeling correlations among components of person-specific random effects $\{\mathbf{u}_{ic}\}$, one can estimate the distribution of lifetime cumulative intake until cycle C by generating $\{\tilde{\mathbf{u}}_{ic}\}$ from the estimated multivariate normal distribution and using the resulting empirical weighted distribution of

$$T_{i} = \sum_{c=1}^{C} \mathfrak{T}_{c}(\mathbf{X}_{ic}, \tilde{\mathbf{u}}_{ic}; \hat{\boldsymbol{\theta}}_{c}) \times t_{c}$$

Modeling Life-time Exposure (3)

- Realistic situation: consecutive surveys sample different people in different cycles
- ullet Data for modeling correlations among $\{oldsymbol{u}_{ic}\}$ do not exist
- One way out: assuming that, although $var(\mathbf{u}_{ic})$ may change from cycle to cycle, person-specific random effects for each person represent the same quantile in the distribution
- Modeling the variance of person-specific random effect in cycle c as $\sigma_{\mathbf{u}_c}^2 = \sigma_{u_c}^2 \exp\left\{ \mathbf{\gamma}_c^t \mathbf{X}_{ic} \right\}$

person-specific random effects could be generated as

$$\tilde{\mathbf{u}}_{ic} = \boldsymbol{\sigma}_{u_{ic}} z_i, \ z_i \sim N(0,1)$$

Discussion

- New methodology addresses main challenges for simultaneous modeling of usual intakes of episodically and daily consumed dietary components using short-term unbiased assessment:
- in any short-term period, binary indicators of episodic consumption are allowed to be correlated among themselves and with consumed positive amounts of other components
- in any short-term period, all daily consumed and positive amounts of episodically consumed components are allowed to be mutually correlated
- all usual dietary intakes are allowed to be mutually correlated

Discussion (2)

- Marginal models for both episodically and daily consumed dietary components are the same as in the NCI univariate approach
- The model contains covariates and therefore could be used for subgroup analysis
- Frequentist treatment of MCMC methodology allows one to use BRR-based estimates of uncertainty
- In principle, the model could be extended to describe lifetime usual intake