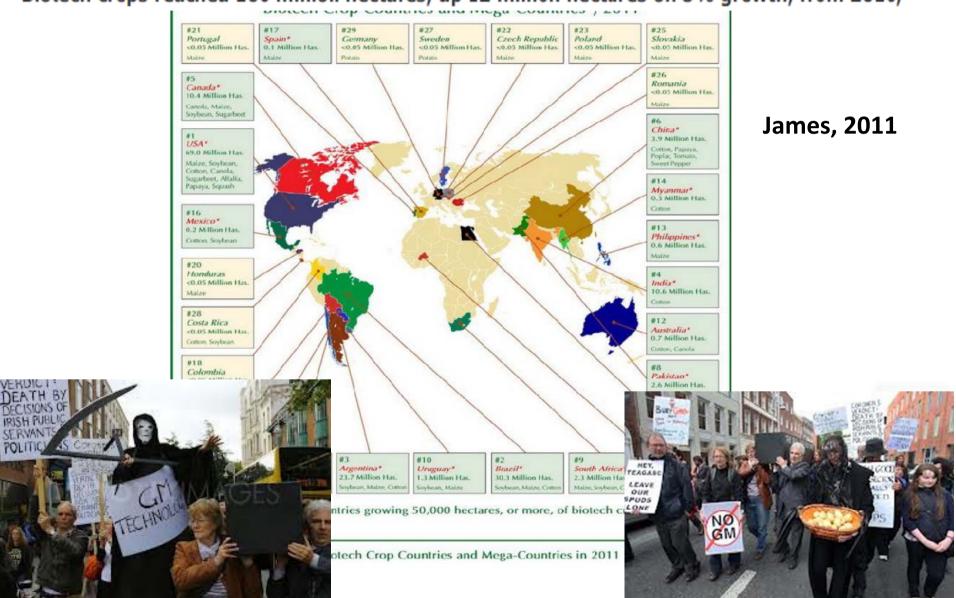


Challenges pertaining to the comparative assessment of potential adverse effects of GM plants on non-target organisms


Salvatore ARPAIA - ENEA

Challenging boundaries in risk assessment – sharing experiences Parma, 7-8 November 2012

Who wants GMOs?

Biotech crops reached 160 million hectares, up 12 million hectares on 8% growth, from 2010,

Non-target Organisms

It is a practical concept which has no relationships with ecological roles

"all living organisms, that are not meant to be affected by newly expressed compounds in GMPs, and that can be potentially exposed, directly or indirectly, to the GM plant and/or its products in the agro-ecosystem where GMPs will be released or in adjacent habitats".

Arpaia, 2010 (Coll. Biosaf. Rev.)

Possible exposure mechanisms for NTOs and consequences

Channel	Mechanism	Non-target group	Ecosystem Functions
AIR	Pollen flow, seed dispersal	-Sexually compatible plants; -Herbivores ingesting pollen; -Spermophagous species	Pollination Food turnover (impacts on biodiversity)
PLANT	Trophic chain effects	-Primary consumers (herbivores); - Higher order consumers (carnivores) including mammals, birds, etc.	Pollination Food turnover (impacts on biodiversity)
SOIL	Horizontal Gene Transfer, Release of plant products	Microorganisms, meso- and macro- fauna	Food turnover (impacts on biodiversity)

Arpaia, 2010 (Coll. Biosaf. Rev.)

Agricultural Effects of GM Plants

- Gene escape /invasiveness
- Undesirable effects on non-target organisms: damage to the "ecosystem services" (Daily,1997):
 - Natural biological control
 - Pollination
 - Soil fertility

Directly, or through changes in agricultural practices

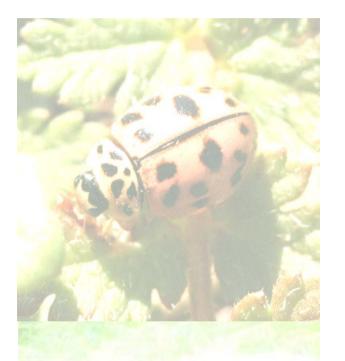
Ecosystem Services

Ecosystems provide "services" that:

- moderate weather extremes and their impacts
- disperse seeds
- mitigate drought and floods
- protect people from the sun's harmful ultraviolet rays
- protect stream and river channels and coastal shores from erosion
- detoxify and decompose wastes
- contribute to climate stability
- purify the air and water
- regulate disease carrying organisms
- control agricultural pests
- preserve soils and renew their fertility
- maintain biodiversity
- cycle and move nutrients
- pollinate crops and natural vegetation

Ecosystem Services

... and these services are commonly associated to particular guilds of organisms

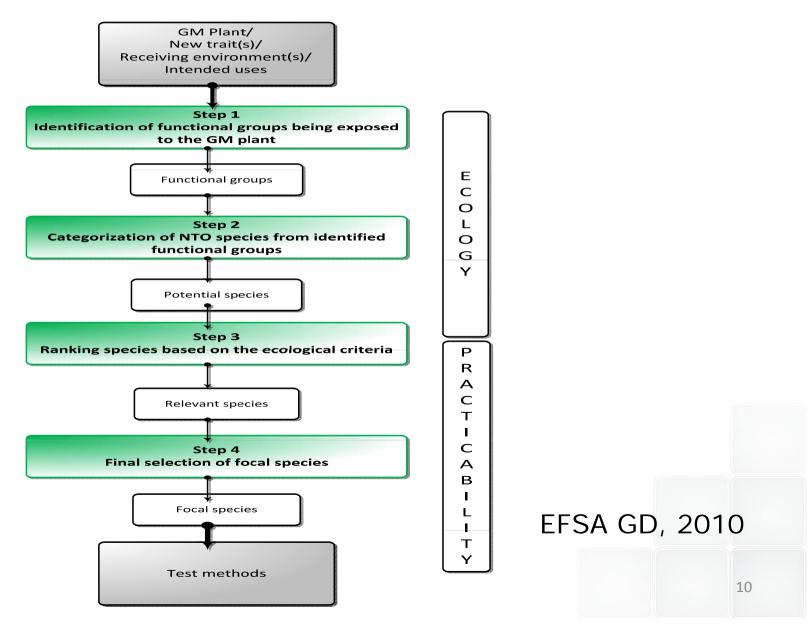

Over 100,000 different animal species - including bats, bees, flies, moths, beetles, birds, and butterflies - provide free pollination services.

Biodiversity

- Ecosystem diversity
- Species diversity
- Genetic diversity
- Functional diversity

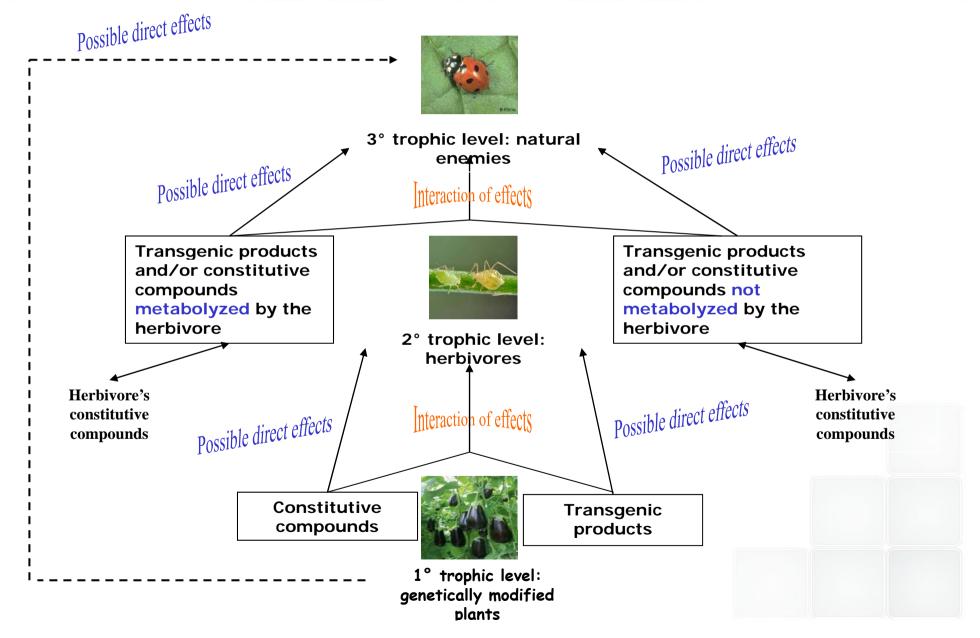
We assume that a change in biodiversity may trigger a change in the functioning of the agro-ecosystem

Selection of "focal species"


Functional groups

- ✓ Herbivores
- ✓ Predators
- ✓ Parasitoids
- ✓ Pollinators, pollen feeders
- Decomposers
- ✓ Species of conservation/cultural concern

Selection of "focal species"


Cry1f-expressing maize

- Danaus plexippus originally chosen as a surrogate species, its LC50 >24750
- Using the Perry et al. model for European species, local and global estimated mortality increase monotonically with the five levels of species sensitivity studied
- The EFSA GMO Panel concludes that there is a risk to certain highly sensitive non-target lepidopteran species where high proportions of their populations are exposed over successive years to high levels of maize 1507 pollen deposited on their host-plants and recommends that mitigation measures are adopted to reduce exposure in such situations

Possible Exposure of Natural Enemies to Transgenic Proteins

What are the stressorS?

 The newly expressed protein(s) and their metabolite(s)

The GM plant

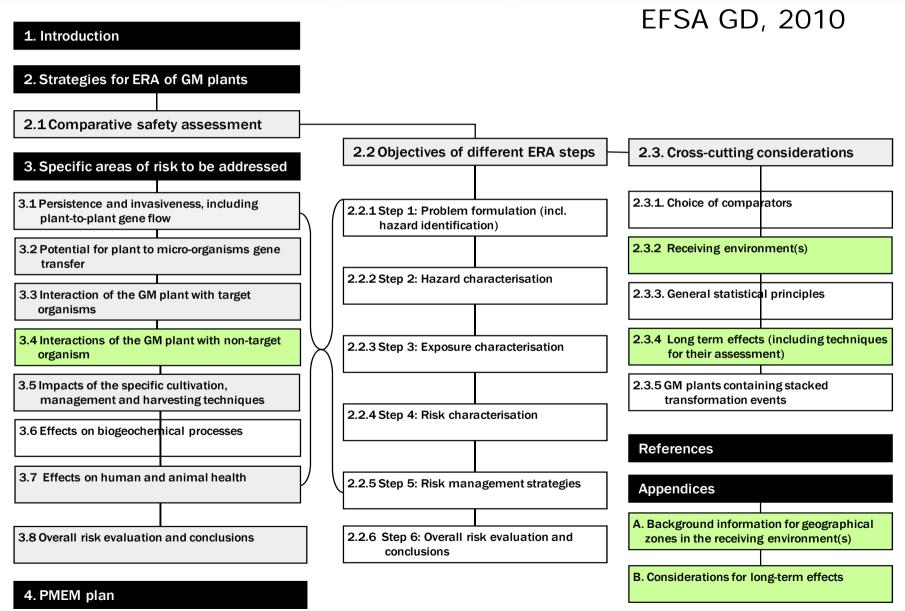
Strategies for ERA of GM plants

The 6 steps of the ERA

Legal basis:

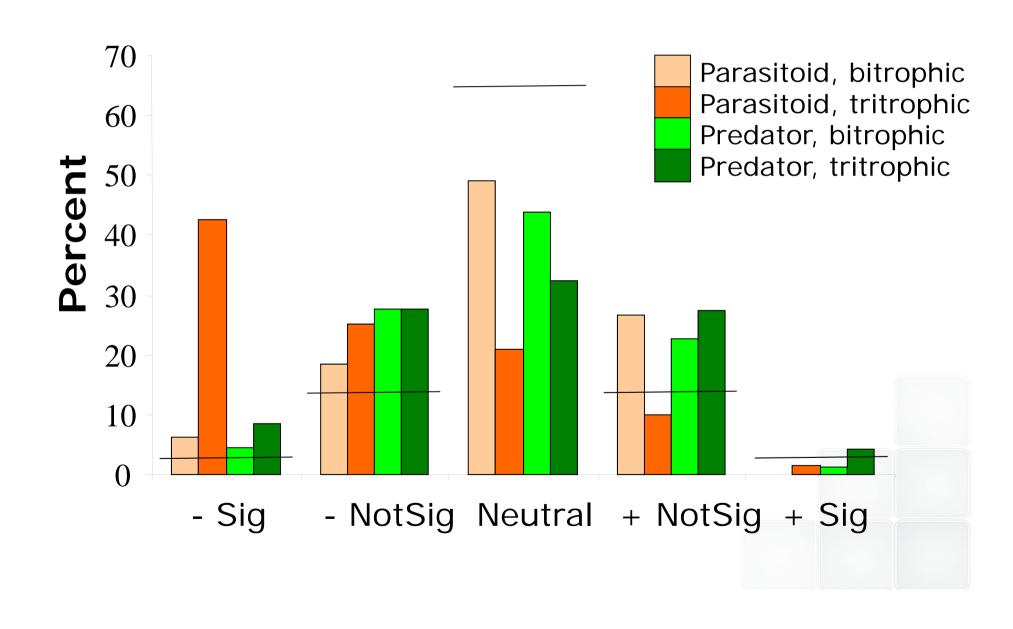
✓ the 6 steps are described in Directive 2001/18/EC

Principles:


- ✓ Systematic review following the 6 steps but
- ✓ the assessment of the GM plant is done on a case-by-case basis

Environmental Risk Assessment (ERA) (1) Problem formulation (including hazard identification) (2) Hazard (3) Exposure characterisation characterisation (4) Risk characterisation Feedback (5) Risk management strategies (6) Overall risk evaluation and conclusions **Overall Risk Management, including Post Market Environmental Monitoring (PMEM)**

EFSA GD, 2010


The EFSA Approach to ERA

Cry Toxins & non-random effects

Lack of knowledge and further progress

- ➤ Limited number of species studied (while it has improved in the last few years) and their geographic distributions;
- Limited choice of assessment endpoints (mostly detection of acute toxic effects, development, growth, fecundity, fertility should be addressed);
- Need for properly designed experiment with the sufficient power to detect adverse effects
- Addressing long term effects (Monitoring, Modelling)

Underlying principles

- Selection of specific receiving environment trying to encompass the largest possible variability of environmental conditions;
- Selection of "focal" species and/or ecological functions as potential bioindicators of environmental effects according to crop-traitenvironment and agricultural practices in the selected areas;
- Planning experimental designs according to a prospective power analysis and to the experimental designs advised in the EFSA Guidelines.

Output

 A network of laboratories able to perform small and medium scale studies of environmental impacts of GMPs based on commonly established and verified ERA protocols

Non-target herbivores outside agricultural areas

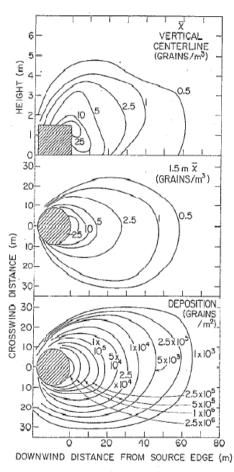


Fig. 1. Typical concentration (χ) and deposition patterns a corn pollen area source represented by the shaded f Concentrations are shown in the horizontal at a height 1.5 m and in the vertical along the plume centerline.

PROCEEDINGS THE ROYAL B BIOLOGICAL SCIENCES

A mathematical model of exposure of non-target Lepidoptera to *Bt*-maize pollen expressing Cry1Ab within Europe

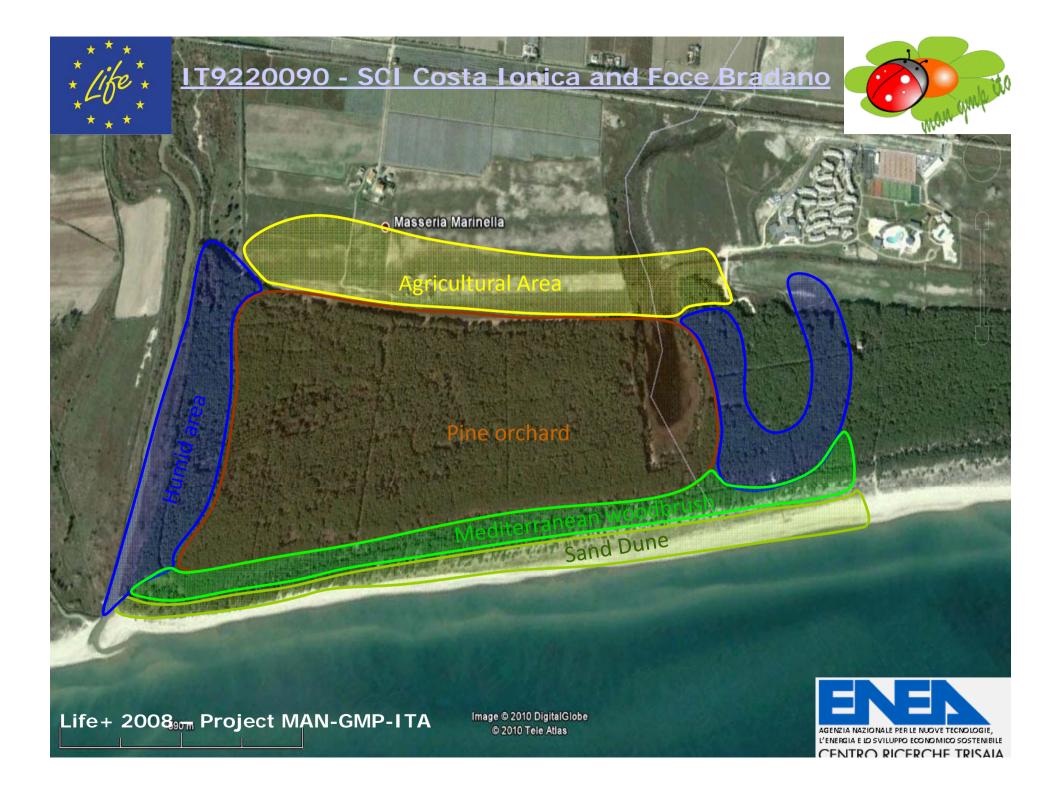
J. N. Perry, Y. Devos, S. Arpaia, D. Bartsch, A. Gathmann, R. S. Hails, J. Kiss, K. Lheureux, B. Manachini, S. Mestdagh, G. Neemann, F. Ortego, J. Schiemann and J. B. Sweet

Proc. R. Soc. B 2010 277, 1417-1425 first published online 6 January 2010 doi

Journal of Applied Ecology

Journal of Applied Ecology 2012, 49, 29-37

doi: 10.1111/j.1365-2664.2011.02083.x


Estimating the effects of Cry1F *Bt*-maize pollen on non-target Lepidoptera using a mathematical model of exposure

The usefulness of a mathematical model of exposure for environmental risk assessment


J. N. Perry, Y. Devos, S. Arpaia, D. Bartsch, A. Gathmann, R. S. Hails, J. Kiss, K. Lheureux, B. Manachini, S. Mestdagh, G. Neemann, F. Ortego, J. Schiemann and J. B. Sweet

Proc. R. Soc. B 2011 278, 982-984 first published online 5 January 2011

SCI 1T4050024

Life+ 2008 - Project MAN-GMP-ITA

Diurnal butterflies in SCI 1T9220090

Papilionidae

Papilio machaon Linnaeus

Geometridae

Ascotis selenaria ([Denis & Schiffermüller

Noctuidae

Grammodes stolida (Fabricius)
Eutelia adulatrix (Hübner)
Ophiusa tirhaca (Cramer)

Arctiidae

Coscinia striata (Linneus)

Lycaenidae

Lycaena phlaeas (Linnaeus)
Polyommatus thersites (Cantener)
Polyommatus icarus (Rottemburg

Nymphalidae

Coenonympha pamphilus (Linnaeus)

Lasiommata megera (Linneus)

Maniola jurtina (Linneus)

Pararge aegeria (Linneus)

Vanessa atalanta (Linneus)

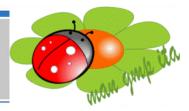
Vanessa cardui (Linneus)

Lasiocampidae

Lasiocampa (Lasiocampa) quercus (Linnaeus)

Anthocharis cardamines (Linnaeus)
Colias croceus (Geoffroy)
Gonepteryx cleopatra (Linnaeus)
Gonepteryx rhamni (Linnaeus)
Pieris brassicae (Linneus)
Pieris napi (Linnaeus)
Pieris rapae (Linnaeus)
Pontia daplidice (Linnaeus)

Pontia edusa (Fabricius)



Menù

Filtro

Grafico

Database of Lepidoptera

Canc

A mbienti	
Osser∨atori	
Metodi di Campionamento	
Date di Campionamento	
Specie Campionate	
Riepilogo	
Inserisci Dati	
	_

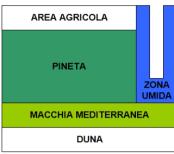
Analizza Dati

MENU

SIC

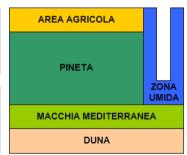
	Immissione Dati
SIC	Foce Bradano
Ambiente	Macchia mediterranea
	umida sito 2 o misto
Metodo di campioname Ulivet	hia mediterranea a 30 umida
Data di raccolta	8 agosto 2011
Specie	Lasiommata megera
Note	
	Load Delete

SIC	Ambiente	Osservatore -	Metodo di campionamento 🖵	Data di raccolta 🔻	Specie	Note	e 🔽
Foce Bradano	Area agricola		mento crescente mento decrescente	25 agosto 2011	Chilocorus sp.		
Foce Bradano	Duna	Ordinar	niei ito deci escel ite	11 maggio 2011	Hippodamia variegata		
Foce Bradano	Area agricola	(Tutto) (Primi 1		24 maggio 2011	Propylaea 14-punctata		
Foce Bradano	Zona umida	Salvatore San (Persor	nalizza)	10 marzo 2011	Coccinella septempunctata		
Foce Bradano	Pineta	Frappag Osserva	ge 1/5 azione diretta	5 luglio 2011	Chilocorus sp.	Lenti	isco
Foce Bradano	Duna	Salvatore San Retino a	al volo	10 marzo 2011	Coccinella septempunctata	Gine	pro
Foce Bradano	Pineta	(7) (7) (7) (7)	la luminosa	29 settembre 2011	Coccinella septempunctata	Lenti	isco
Foce Bradano	Area agricola	ShArp	Osservazione diretta	29 settembre 2011	Coccinella septempunctata		
Foce Bradano	Duna		Sfalcio	7 settembre 2011	Coccinella septempunctata		
Foce Bradano	Zona umida	Salvatore Santorsola	Osservazione diretta	8 agosto 2011	Coccinella septempunctata		

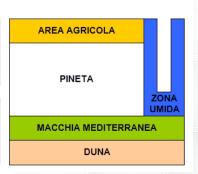


Presence/Absence

Anthocharis cardamines

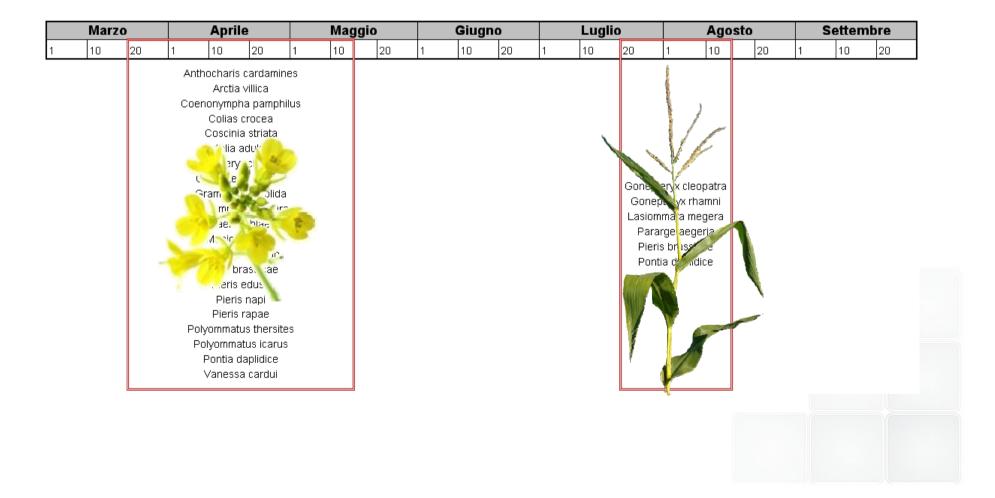


Lasiommata megera


2010	mar	mar	mar	apr	apr	mag	mag	giu	giu	gnl	lug	ago	ago	ago	set	set
20	01	15	29	12	26	10	24	07	21	05	19	02	16	30	13	27
2011	mar	mar	mar	apr	apr	mag	mag	giu	giu	lug	lug	ago	ago	ago	set	set
20	01	15	29	12	26	10	24	07	21	05	19	02	16	30	13	27

Gonepteryx rhamni

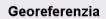
2010	mar	mar	mar	apr	apr	mag	mag	giu	giu	lug	lug	ago	ago	ago	set	set
7	01	15	29	12	26	10	24	07	21	05	19	02	16	30	13	27
2011	mar	mar	mar	apr	apr	mag	mag	giu	giu	lug	lug	ago	ago	ago	set	set
70	01	15	29	12	26	10	24	07	21	05	19	02	16	30	13	27

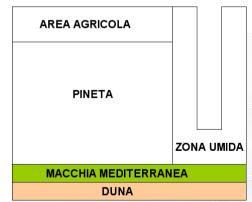


Evaluation of possible exposure

GM Canola

GM Maize




Support to Risk Assessment

Specie saggiata	CL ₅₀	Stadio larvale	Evento di mais Bt	[Tossina] nel polline	Fonte
Pieris rapae	549	II età	Mais Bt176	3,7 ng/mg di p.s.*	(Felke <i>et al.</i> , 2002)
Pieris brassicae	1.962	II età	Mais Bt176	3,7 ng/mg di p.s.*	(Felke <i>et al. ,</i> 2002)
Vanessa cardui	8.565	l età	Mais 1507	32 ng/mg di p.s.	(EFSA, 2011)

