

Committed since 2002
to ensuring that Europe's food is safe

European Food Safety Authority

Protection goals in environmental risk assessment

Professor Tony Hardy
York, UK
Chairman of EFSA Scientific Committee

Challenging boundaries in risk assessment
Parma 7-8 November 2012

Outline

- Background
- Protection goals in legislation
- Methodology - Ecosystems Services approach and Steps

- Specific protection goals – example Honeybees
- Relevance to other Environmental Risk Assessment

EFSA's Plant Protection Products and their Residues Panel (PPR) was asked to revise EC Guidance Documents on RA

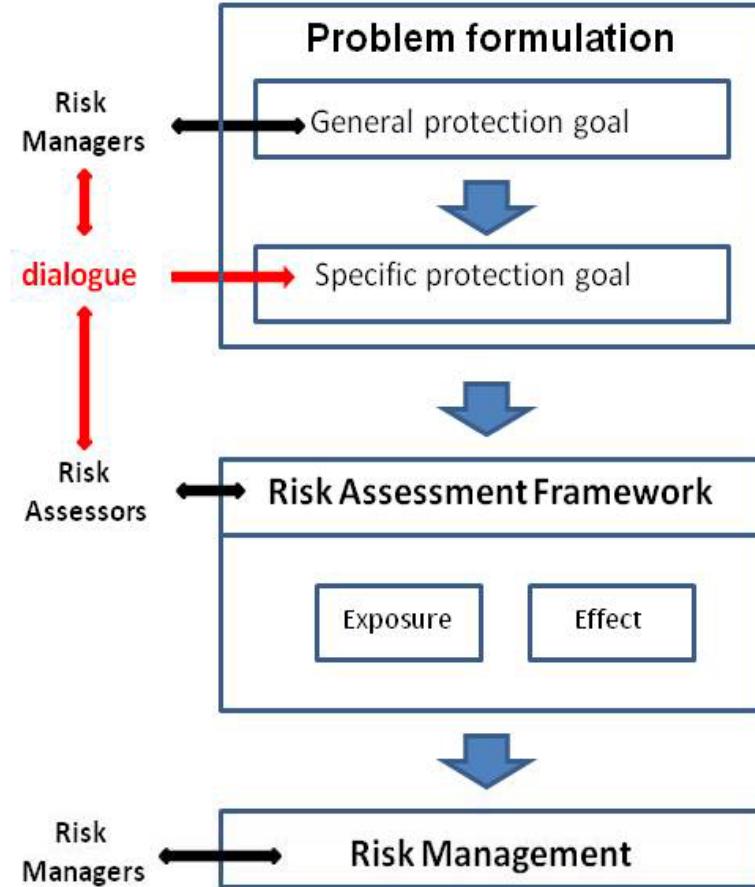
- Aquatic ecotoxicology
- Terrestrial ecotoxicology

Directive 91/414/EC replaced by Regulation (EC) No 1107/2009 in June 2011

To develop robust, efficient ERA procedures required, must define protection goals more precisely in order to quantify

- What to protect?
- Where to protect it?
- Over what time period?

Protection goals in legislation


- Protection goals are defined in relevant EU legislation at a general level
- PPP Regulation (1107/2009) Requires high level of protection
 - “ *no unacceptable effects on the environment*” for ppps
 - “ *no serious risk to the environment*” for treated seeds

Translation into precise goals for RA methodology is difficult

- Directive on Biocides
- REACH Regulation
- Habitats Directive
- Water Framework Directive

Specific Protection Goals (SPG)

SPGs needed to clarify ecological, temporal, spatial scales,
In-crop vs off-crop, multiple stress and uncertainties

Committed since 2002
to ensuring that Europe's food is safe

ES defined as benefits that humans receive from ecosystems including

- Production of goods (provisioning services e.g. food production)
- Life support processes (regulating and supporting services e.g. water and climate regulation)
- Life fulfilling conditions (cultural services e.g. aesthetic value and recreation)

1. List Ecosystem Services

MEA category	Ecosystem service
Provisioning service	Food, Fibre, Genetic Resources, Biochemicals , natural medicines, pharmaceuticals, Ornamental resources, Fresh water
Regulatory services	Air quality, Climate, Water, Erosion, Disease, Pest, Natural hazard - Regulation Water purification and treatment, Pollination

from Millennium Ecosystem Assessment 2005

Committed since 2002
to ensuring that Europe's food is safe

2. Identify ES potentially affected

ES category	In-crop area	Off-crop area
Provisioning	Food, Fibre & fuel	Food, Genetic resources, Fresh water
Regulating	Pollination, Pest & disease regulation	Pollination, Pest & disease regulation, Water & Erosion regulation, water purification
Cultural	Education & inspiration Recreation & ecotourism Cultural heritage	Education & inspiration, Recreation & ecotourism, Cultural heritage, Aesthetic value
Supporting	Primary production Photosynthesis	+ Habitat provision, Soil formation & retention, Nutrient cycling, Water cycling

3. Identify key drivers

- Key drivers for a given ES are major taxonomic or functional groups that support the ES
- Large number of key drivers for aquatic and terrestrial ecosystems were identified
- Inclusion of taxa for which data are requested under Regulation (EC) 1107/2009 was checked

4. Develop SPG

Define 6 dimensions for each key driver/ES combination

Ecological entity: individual – (meta)population – functional group – ecosystem

Attribute: behaviour – survival/growth – abundance/biomass – process – biodiversity

Magnitude: negligible effect – small effect – medium effect – large effect

Temporal scale: days – weeks – months – seasons – > 1 year

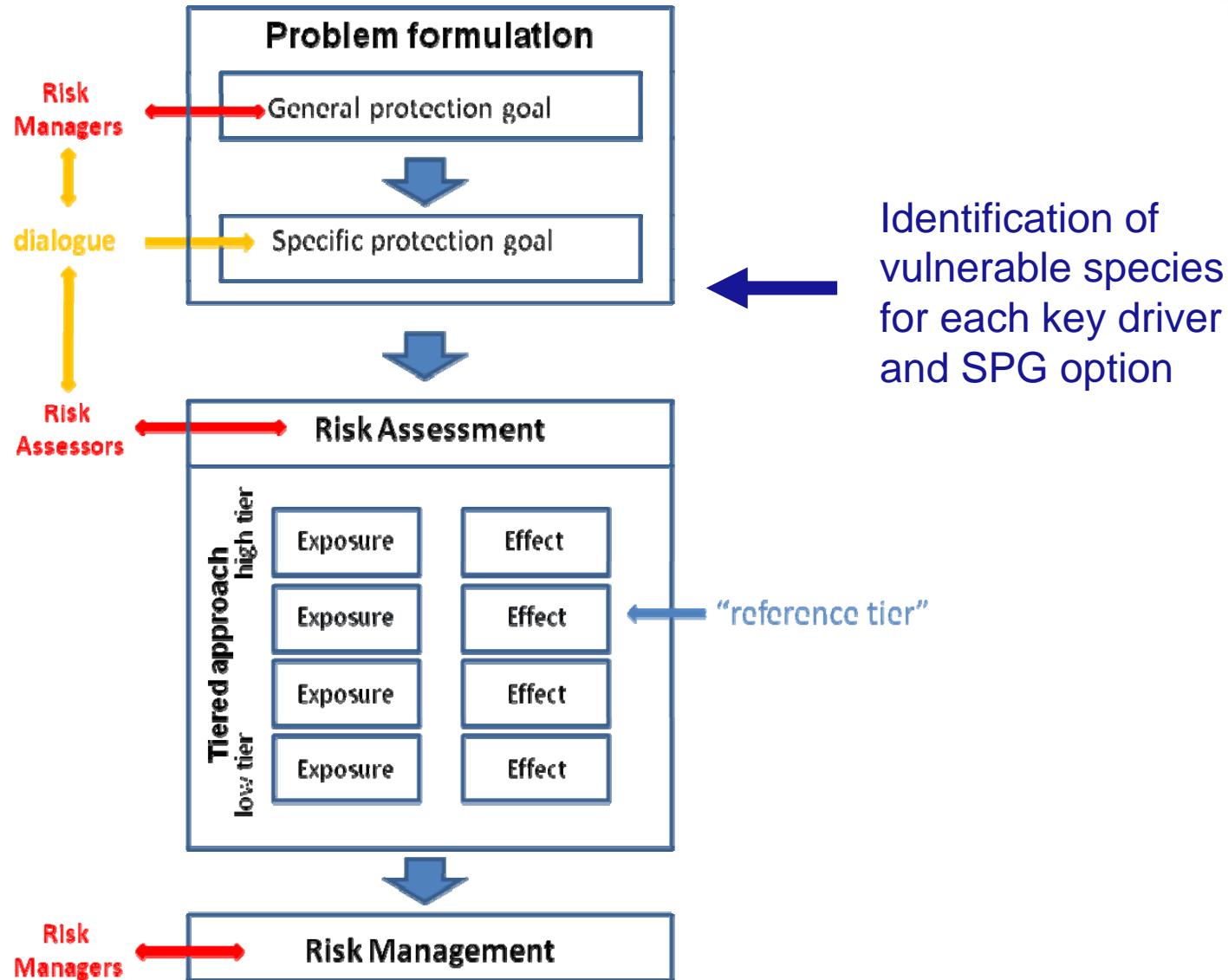
Spatial scale: in crop – edge of field – nearby off-crop – watershed/landscape

Degree of certainty: low – medium – **high ***

After deriving SPG for each key driver/ES combination, those combinations leading to similar SPG were pooled to give seven main categories:

- Microbes
- Algae
- Non-target plants (aquatic and terrestrial)
- Aquatic invertebrates
- Terrestrial non-target arthropods (including honeybees)
- Terrestrial non-target invertebrates (e.g. worms, snails)
- Vertebrates (fish, amphibia, reptiles, birds, mammals)

Identify vulnerable species


Committed since 2002
to ensuring that Europe's food is safe

- Relevant ES – pollination, hive products, biodiversity
- Attributes
 - colony survival & development (in Regulation)
 - effects on larvae & bee behaviour (in Regulation)
 - (abundance/biomass, reproduction) long-term
- Colony viability – depends on colony strength = colony size
- Effects

Effect	Magnitude (reduction in colony size)
Large	>35%
Medium	15% to 35%
Small	7% to 15%
Negligible	3.5% to 7%

Tiered Risk Assessment

Considerations

- For majority of Key Drivers, SPGs defined at population level or higher
- Recovery rate is important issue
- Population models are needed for RA
- Spatio-temporal scale of effects & exposure require same Ecotoxicologically relevant concentration
- Define 'statistical population' and percentiles
- Mixture toxicity & multiple stress (pesticides in different crops) can be included in methodology

- ES enables systematic and transparent assessment of all SPG options, useful communication tool with RMs, stakeholders and public
- Trade-offs are visible (environmental impact vs benefit)
- Decision is for Risk Managers
- Dialogue important – PPR experience - workshops, consultations with RMs

Scientific Opinion of the PPR Panel in EFSA Journal, 2010
(vol 8: 1821)

Paper in Science of the Total Environment, 2012
(vol 415: 31-38)

