

In vitro comparative metabolism studies to identify metabolites using microsomes: standards and criteria for acceptability and interpretation

Khaled Abass, Ph.D., ERT

Faculty of Medicine, University of Oulu, Finland

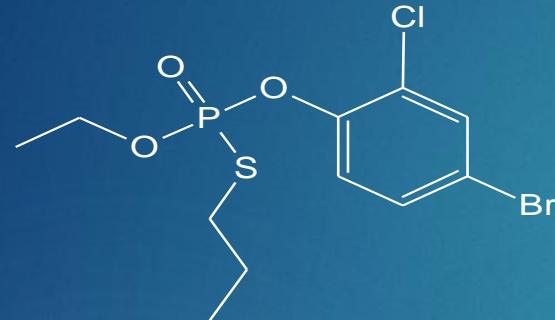
Outlines

- Introduction
- Case studies (comparative qualitative and quantitative metabolism)
- Pesticide-CYP interactions
- Conclusion

Introduction

Models in order of *in vivo* resemblance.

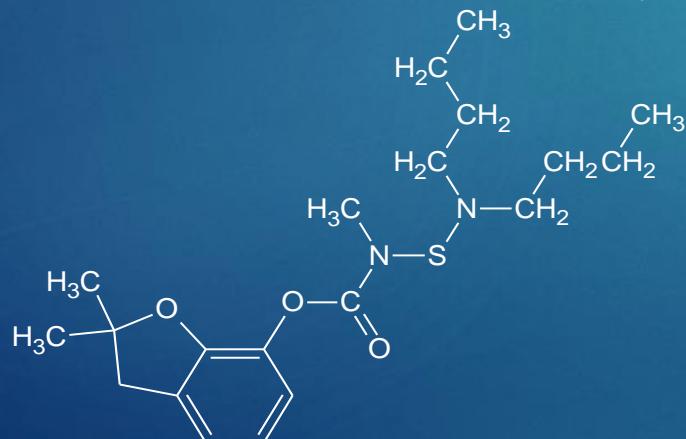
	Complexity	Easy applicable	Ethically acceptable	Resemblance of <i>in vivo</i>
Recombinant enzymes				
Microsomes				
S9 fraction				
Cell lines				
Primary hepatocytes				
Liver slices				
<i>In vivo</i> animal model				
Human				


Enzyme sources	Availability	Advantages	Disadvantages
Microsomes	Relatively good, from transplantations or commercial sources	Major Phase I enzymes. Inexpensive technique. Easy storage. Study of species-specific metabolic profile.	Cellular and organ architecture lost, Cofactor addition necessary, Lack of active uptake and transport

Case studies

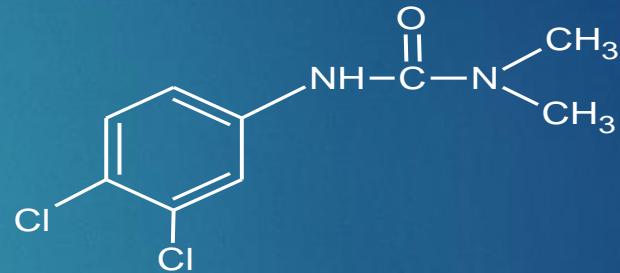
-qualitative and quantitative comparative metabolism

- Profenofos (Class: Organophosphorothiolate)


Abass et al. Pestic. Biochem. Physiol. 87 (2007)

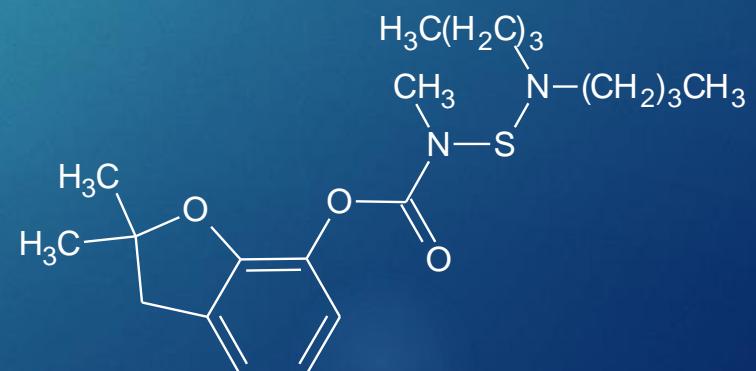
- Carbosulfan (Class: Carbamates)

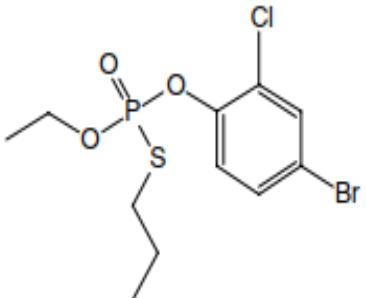
Abass et al. Chem. Biol. Interact. 181 (2009)


Abass et al. Chem. Biol. Interact. 185 (2010)

- Diuron (Class: Phenyl urea)

Abass et al. Drug Metab. Dispos. 35 (2007)

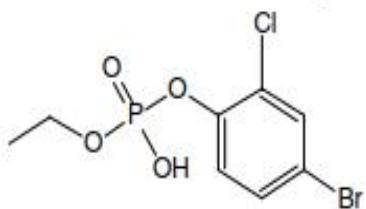

Abass Pestic. Biochem. Physiol. 107 (2013)


- Benfuracarb (Class: Carbamates)

Abass et al. Toxicology Letters 224 (2014), pp. 209-299

Abass et al. Toxicology Letters 224 (2014), pp. 300-310

1-Profenofos

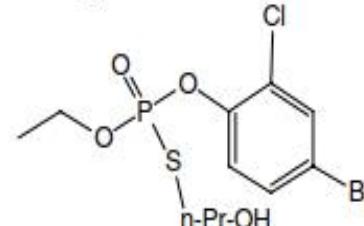


LC/MS-ESI+, $MH^+ = 373$ Da, $M(ACN)^+ = 414$

Exact mass: 372.9477, Calc. mass: 372.9430

Profenofos

O-(4-bromo-2-chlorophenyl)-*O*-ethyl-*S*-propyl phosphorothioate



LC/MS-ESI+, $MH^+ = 315$ Da, $M(ACN)^+ = 356$

Exact mass: 314.9211, Calc. mass: 314.9189

Desthiopropylprofenofos

O-(4-bromo-2-chlorophenyl)-*O*-ethyl phosphate

LC/MS-ESI+, $MH^+ = 389$ Da

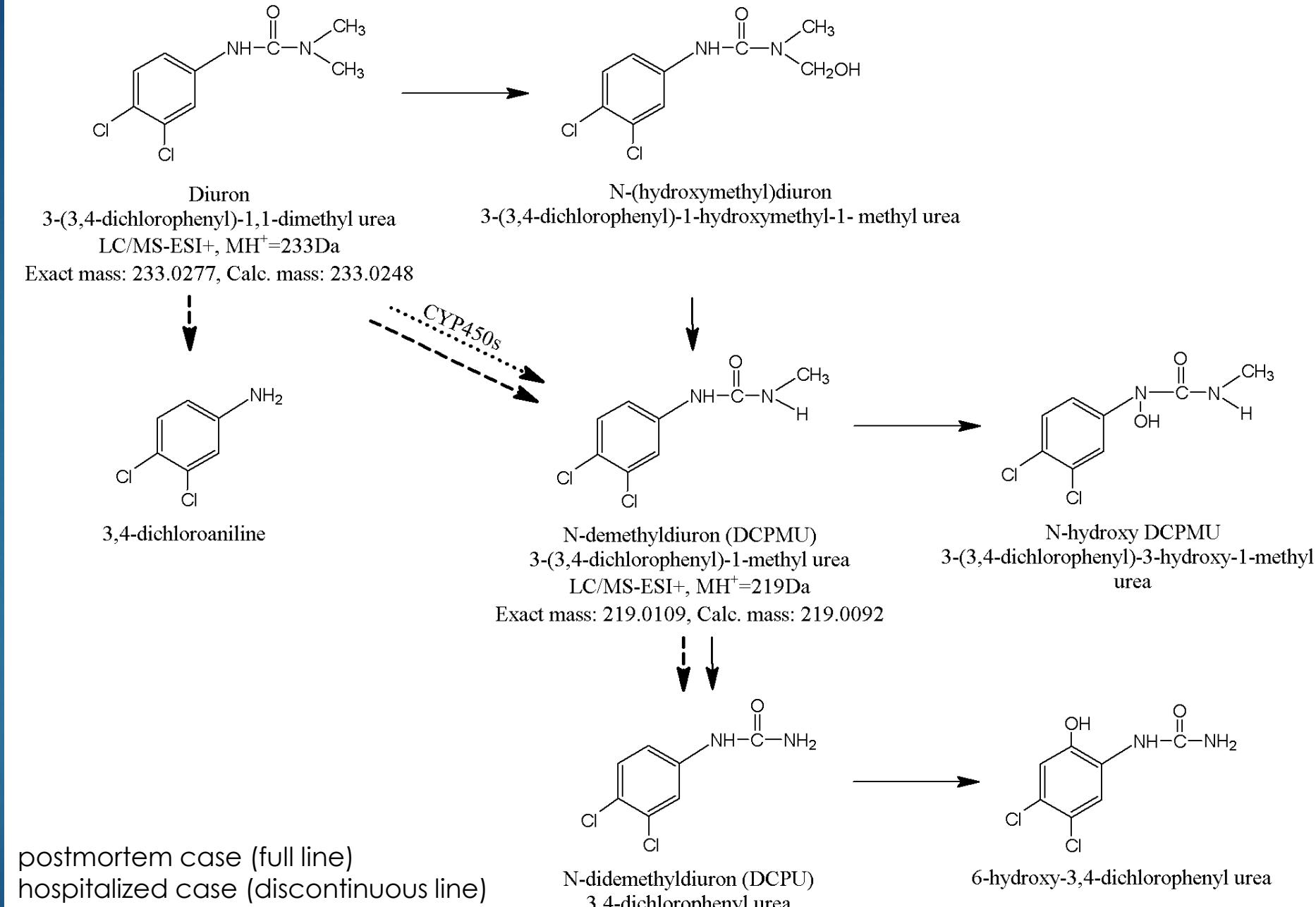
Exact mass: 388.9422, Calc. mass: 388.9379

Hydroxypropylprofenofos

O-(4-bromo-2-chlorophenyl)-*O*-ethyl-*S*-hydroxypropyl phosphorothioate

Overall scheme of profenofos metabolism in human, mouse, and rat hepatic microsomes and exact masses of metabolites

1-Profenofos


Kinetic parameters for the formation of profenofos metabolites by human, mouse and rat hepatic microsomes

	Metabolites	CL_{int} μl / (mg protein * min)	Bioactivation/ hydroxylation	<i>In vitro</i> species differences
HumanLM	Desthiopropylation	27.9	82	1.3
	Hydroxylation	0.3		
MouseLM	Desthiopropylation	37.5	14	9.0
	Hydroxylation	2.7		
RatLM	Desthiopropylation	8.8	5	0.3
	Hydroxylation	1.9		

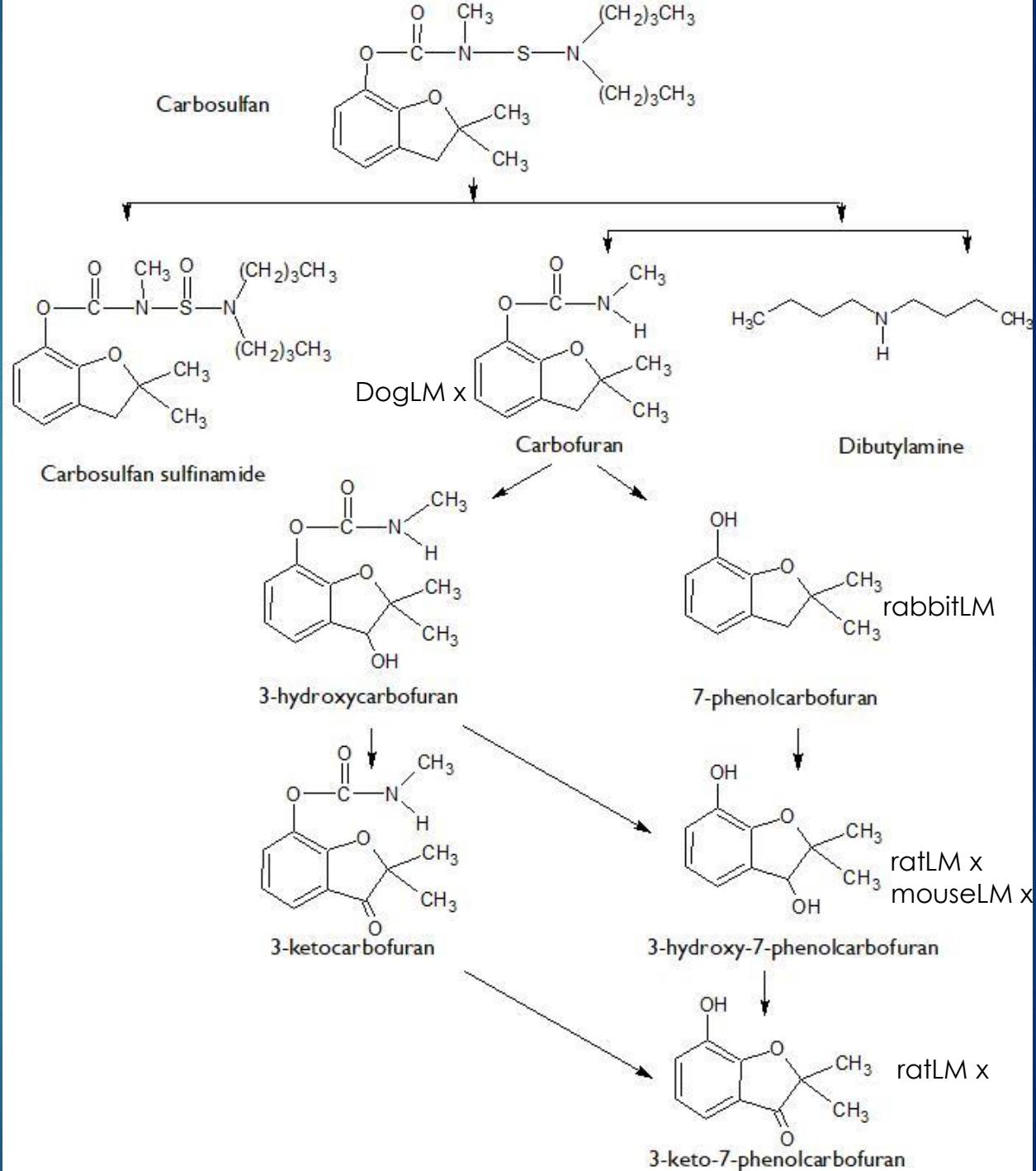
Interspecies differences represents animal to human fold differences in *in vitro* toxicokinetics

2-Diuron

The overall scheme of the diuron metabolites detected in postmortem and hospitalized cases. In addition to *in vitro* metabolism by seven mammalian LM.

2-Diuron

Kinetic parameters of N-demethyldiuron formations obtained with different mammalian liver microsomes


	Cl_{int} $\mu\text{l} / (\text{mg protein} * \text{min})$	<i>In vitro</i> species differences
HumanLM	174.2	
RatLM	74.7	0.43
MouseLM	214.0	1.23
DogLM	401.3	2.30
MonkeyLM	327.2	1.88
MiniPigLM	159.7	0.92
RabbitLM	314.1	1.80

Interspecies differences represents animal to human fold differences in *in vitro* toxicokinetics

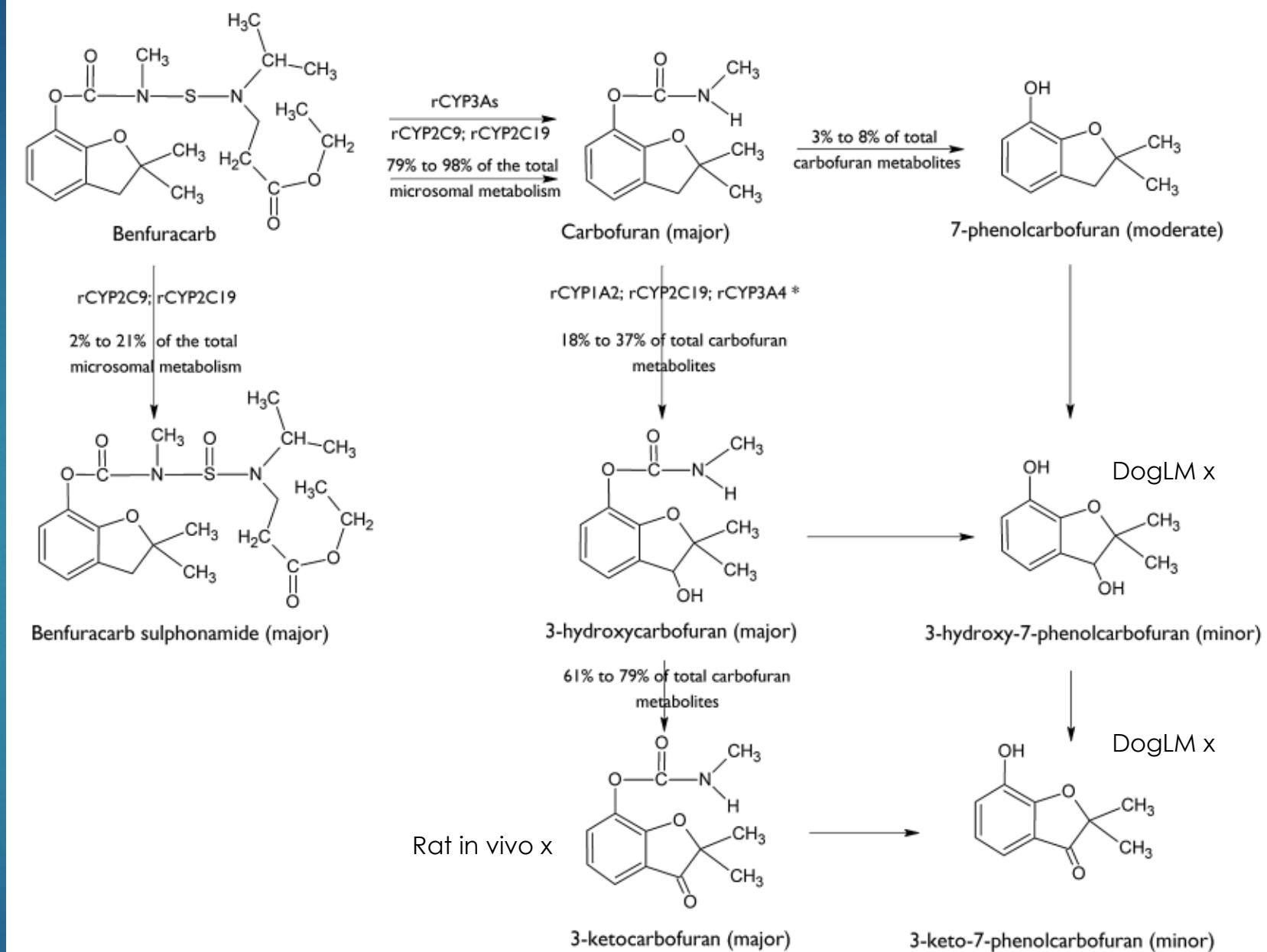
3-Carbosulfan

The overall *in vitro* scheme of carbosulfan metabolism in mammalian liver microsomes

Abass *et al.* Chem. Biol. Interact. 181 (2009)
Abass *et al.* Chem. Biol. Interact. 185 (2010)

3-Carbosulfan

Kinetic parameters of the carbofuran- metabolic pathway obtained with different mammalian liver microsomes^a


	Cl_{int} $\mu\text{l} / (\text{mg protein} * \text{min})$	<i>In vitro</i> species differences
HumanLM	454.9	
RatLM	326.6	0.72
MouseLM	253.2	0.56
DogLM	223.9	0.49
RabbitLM	335.7	0.74
MinipigLM	471.4	1.03
MonkeyLM	450.8	0.99

^a Sums of all the metabolites of the carbofuran pathway were used for the calculation of kinetic parameters

^b Interspecies differences represents animal to human fold differences in toxicokinetics

4-Benfuracarb

The overall *in vitro* scheme of benfuracarb metabolites detected in mammalian liver microsomes. The percentage of metabolite formation in HLM and the contribution of hrCYP are shown.

4-Benfuracarb

Kinetic parameters of the carbofuran- metabolic pathway obtained with different mammalian liver microsomes^a

	Cl_{int} $\mu\text{l} / (\text{mg protein} * \text{min})$	<i>In vitro</i> species differences
HumanLM	99.95	
RatLM	253.7	2.5
MouseLM	255.2	2.5
DogLM	145.8	1.4
RabbitLM	134.7	1.3
MinipigLM	268.9	2.7
MonkeyLM	143.9	1.4

^a Sums of all the metabolites of the carbofuran pathway were used for the calculation of kinetic parameters

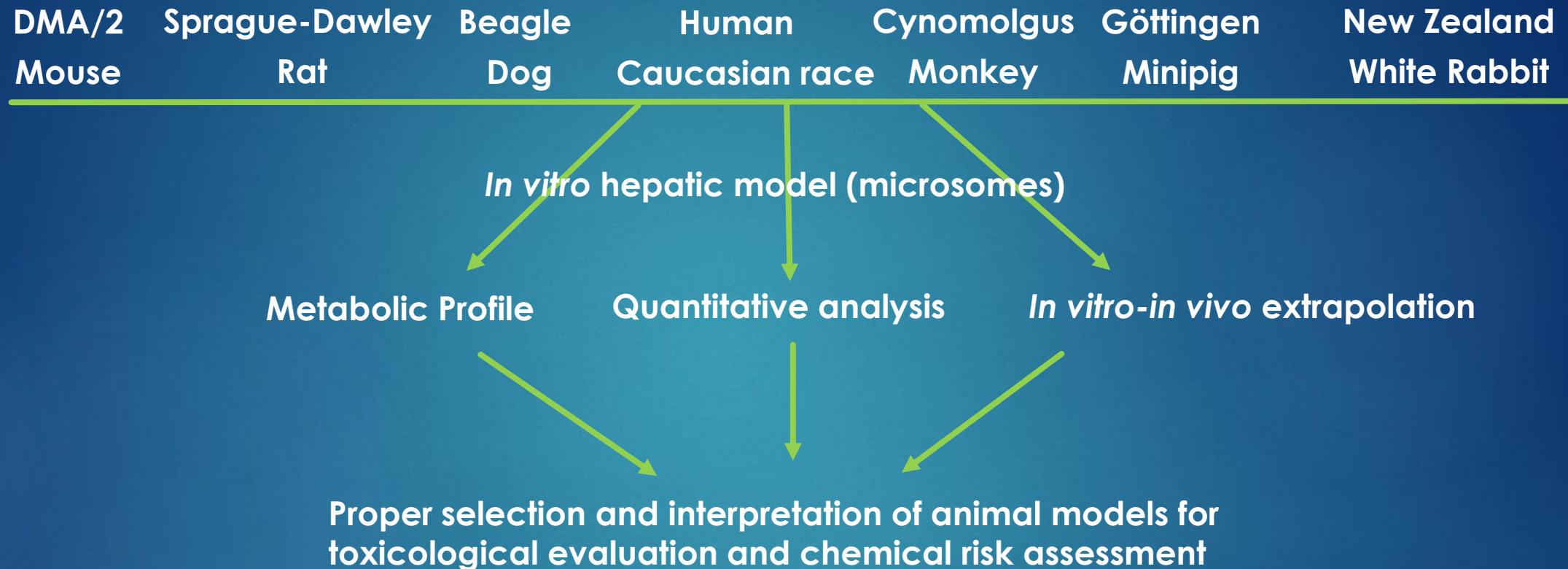
^b Interspecies differences represents animal to human fold differences in *in vitro* toxicokinetics

Abass *et al.* *Toxicology Letters* 224 (2014), pp. 209-299

Abass *et al.* *Toxicology Letters* 224 (2014), pp. 300-310

Qualitative Differences

	Profenofos	Diuron	Carbosulfan	Benfuracarb
HumanLM	-	- <u>In vivo vs in vitro</u>	-	-
RatLM	-	-	3-Keto-7-PhCF <u>ND</u> 3-OH-7-PhCF <u>ND</u>	3-Keto-CF <u>ND in vivo</u>
MouseLM	-	-	3-OH-7-PhCF <u>ND</u>	-
DogLM		-	Carbofuran <u>ND</u> 3-OH-7-PhCF <u>ND</u>	3-Keto-7-PhCF <u>ND</u> 3-OH-7-PhCF <u>ND</u>
RabbitLM		-	7-PhCF <u>specific metab.</u>	-
MinipigLM		-	-	-
MonkeyLM		-	-	-

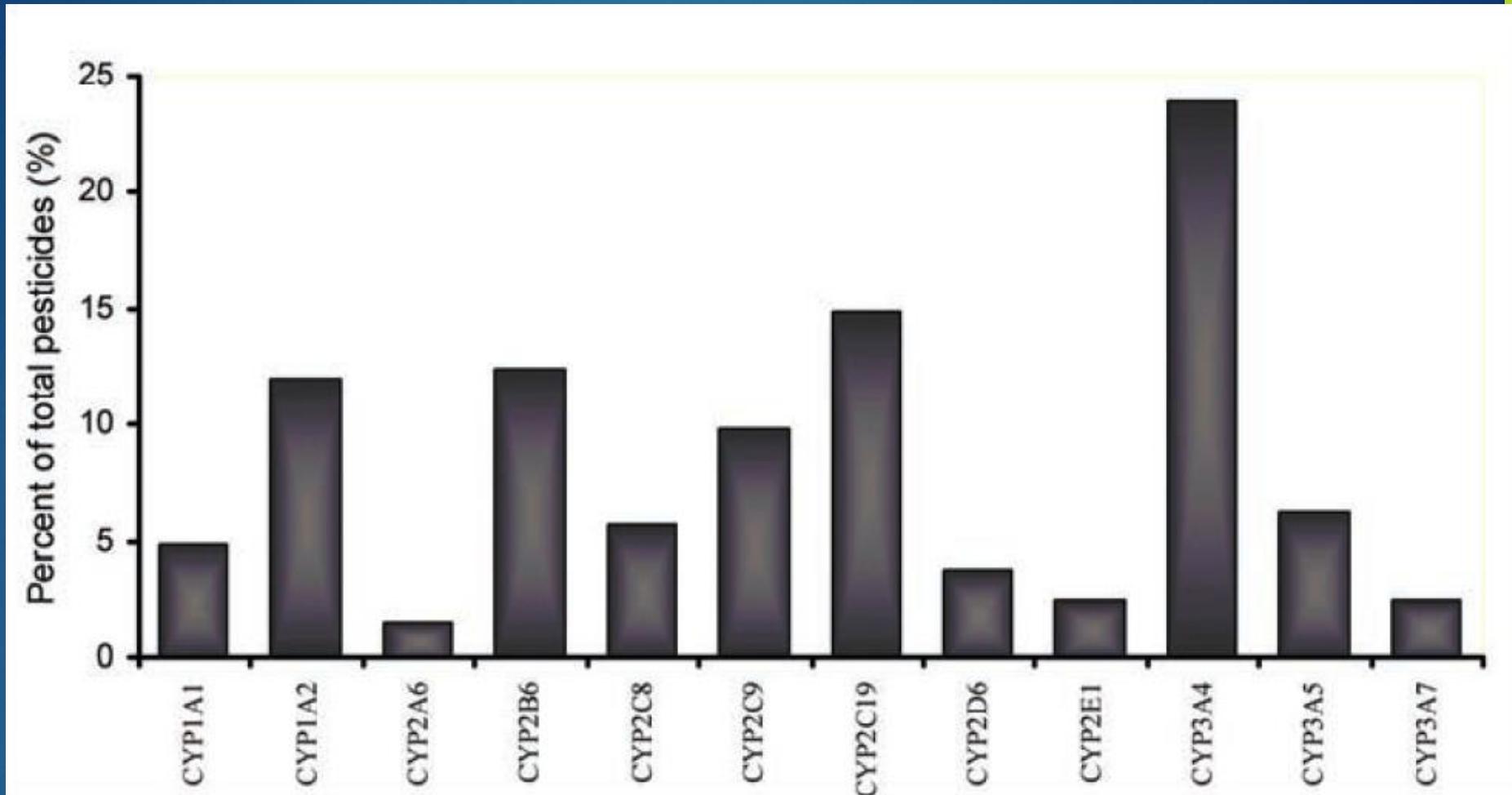

Quantitative Differences

in vitro and *in vivo* extrapolated values for animal to human differences (fold) in toxicokinetic for the active chemical moieties

	Profenofos		Diuron		Carbosulfan		Benfuracarb	
	CL_{int}	CL_H	CL_{int}	CL_H	CL_{int}	CL_H	CL_{int}	CL_H
HumanLM								
RatLM	1.3	3.3	0.43	2.3	0.72	3.1	2.5	4.1
MouseLM	0.3	4.1	1.23	3.9	0.56	3.5	2.5	4.8
DogLM			2.30	2.2	0.49	1.7	1.4	2.1
RabbitLM			1.88	2.3	0.74	2.0	1.3	2.3
MinipigLM			0.92	1.7	1.03	1.9	2.7	2.4
MonkeyLM			1.80	2.7	0.99	2.5	1.4	2.3

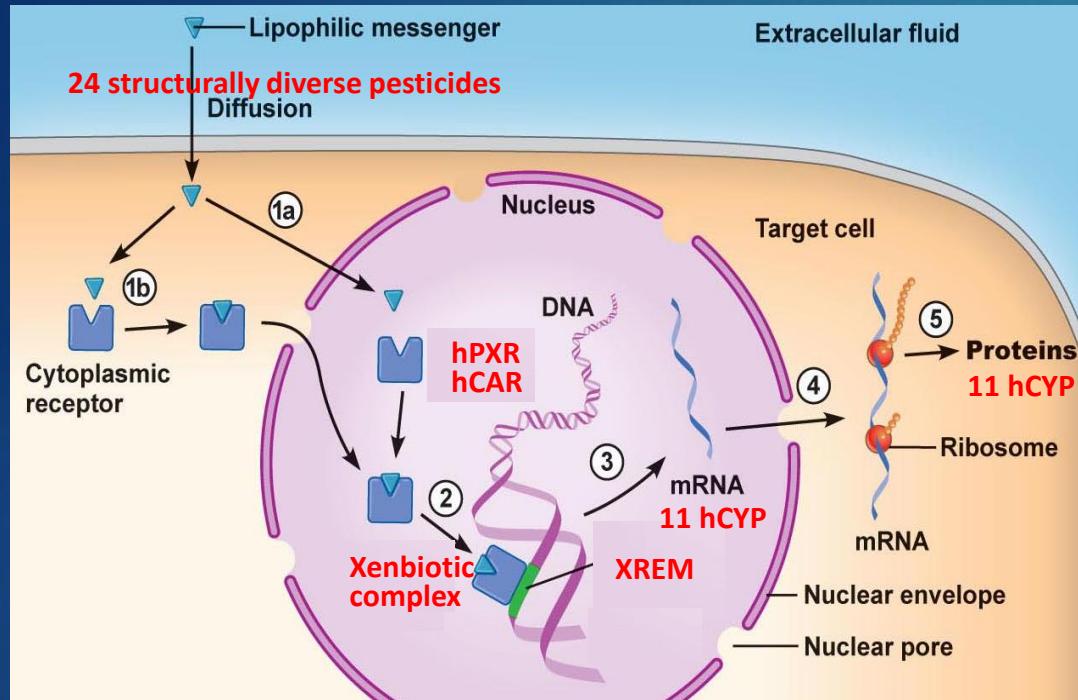
Animal to human quantitative differences (fold) in toxicokinetic for the active chemical moieties
The Extrapolated CL_H in animals were divided by the CL_H in humans

Comparative in vitro metabolism studies


Each pesticide is ‘‘an individual’’ with its own characteristics regarding toxicokinetics and metabolic pathway

Comparative *in vitro* metabolism studies

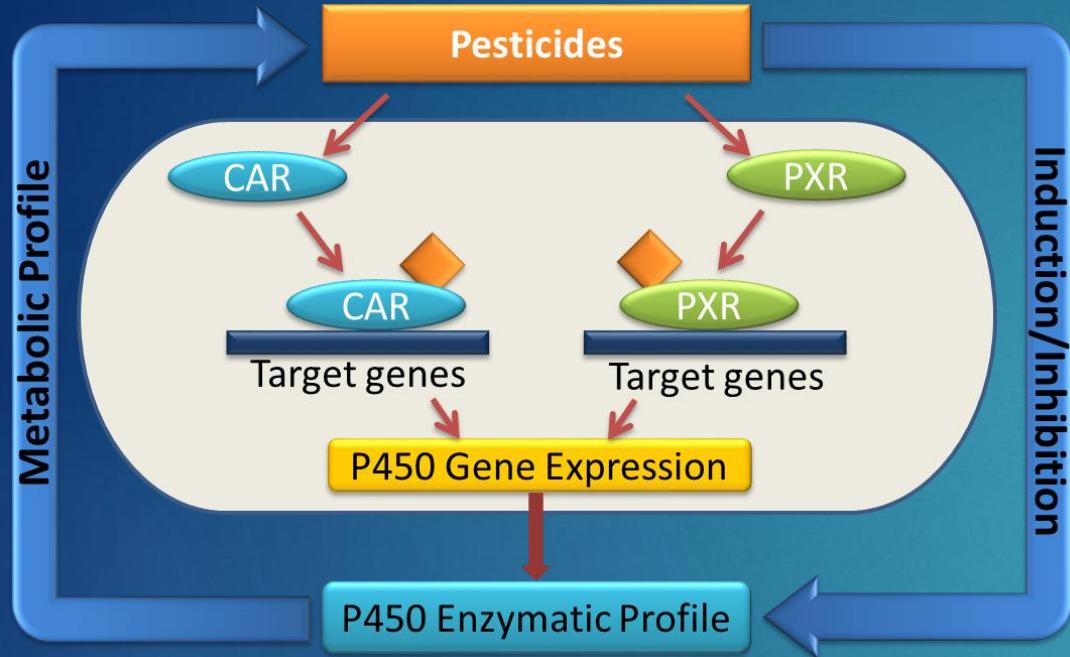
Limitations


- Results obtained from *in vitro* test systems are highly dependent on several technical factors
- The prediction of *in vivo* metabolic clearance is based on many scaling factors and physiological measures, which should either be assumed or measured.
- The best predictive value is usually obtained when the substrate concentration used is within the linear part of the time and protein concentration curves for substrate depletion or metabolite formation

Pesticides-CYP Intercations

The percentage of hrCYPs involved in pesticides metabolism. 63 compounds (36 insecticides; 14 fungicides; 10 herbicides; 2 plant growth regulators and a biocide agent) were metabolized at least in part by one or more hrCYP yielded 495 metabolic reactions (restricted to 2011 survey).

Pesticide-CYP Interactions

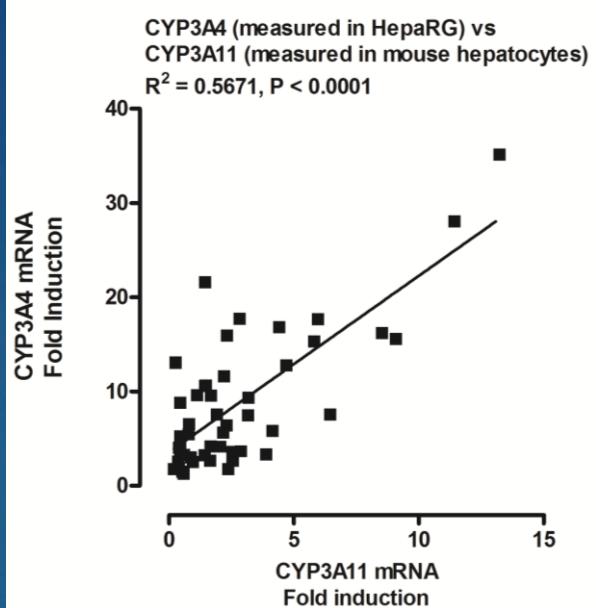
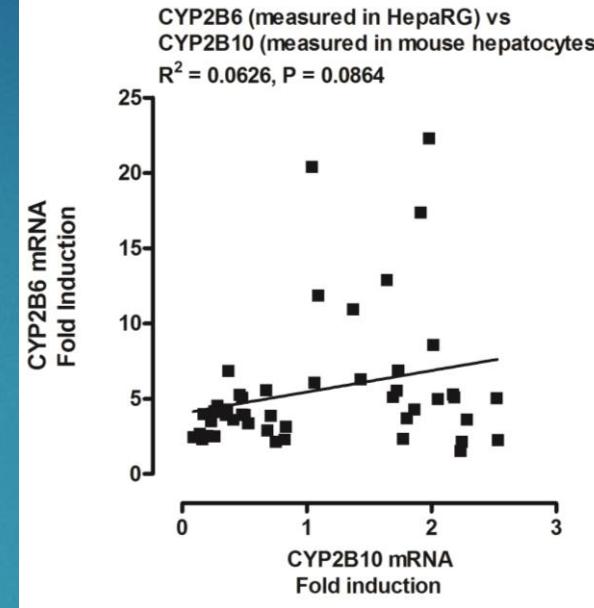
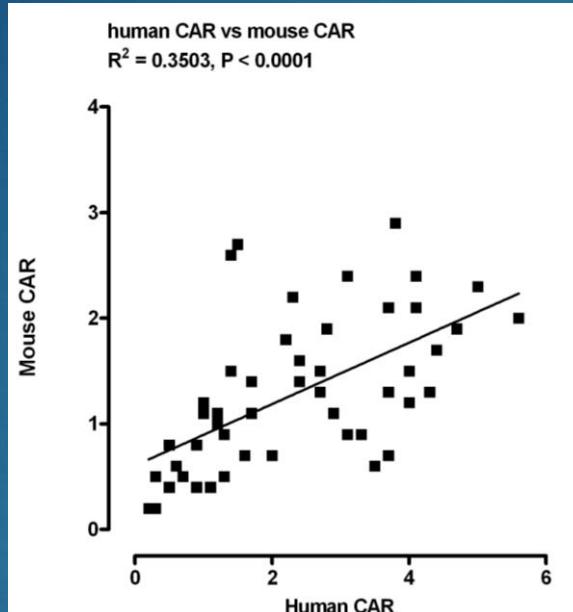
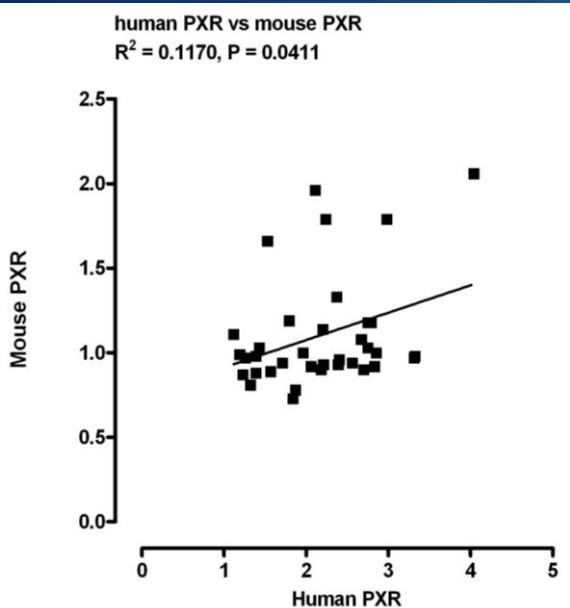

CYP mRNA levels in human HepaRG after 24 h exposure to tested pesticides.

mRNA		10 μ M /fold induction	50 μ M /fold induction
CYP1A2	TCDD	218 (10 nM)	
	Diuron	9	100
CYP2B6	Phenobarbital	6 (500 μ M)	
	Isoproturon	20	22
CYP3A4	Atrazine	11	13
	Rifampicin	20	19
	Cypermethrin	6	35
	Fenvalerate	17	22
	Cyhalothrin	13	28

Abass *et al.* 2012, Toxicology. 294: 17–26

Abass *et al.* 2013 Toxicol In Vitro. 27(5) 1584-8

Pesticide-CYP Interactions

Pesticides can induce/inhibit the CYPs involved in their own metabolism

CYP mRNA levels in human HepaRG after 24 h exposure to tested pesticides.

mRNA		10 μ M /fold induction	50 μ M /fold induction
CYP1A2	TCDD	218 (10 nM) <u>(20-fold Mela-OH)</u>	
	Diuron	9	100-fold <u>(IC50 = 3 μM)</u>
CYP2B6	Phenobarbital	6 (500 μ M) <u>(3-fold Bup-OH)</u>	
	Isoproturon	20 <u>(7-fold Bup-OH)</u>	22 <u>(7-fold Bup-OH)</u>
CYP3A4	Atrazine	11 <u>(3-fold Bup-OH)</u>	13 <u>(4-fold Bup-OH)</u>
	Rifampicin	20 <u>(10-fold Tes-6OH)</u>	19 <u>(10-fold Tes-6OH)</u>
	Cypermethrin	6	35
	Fenvalerate	17 <u>(3-fold Tes-6OH)</u>	22 <u>(10-fold Tes-6OH)</u>
	Cyhalothrin	13 <u>(5-fold Tes-6OH)</u>	28 <u>(8-fold Tes-6OH)</u>

Pesticide-CYP Interactions-Species differences

Nuclear receptor activity was measured by luciferase reporter gene

Comparison of the mouse and human CAR/PXR and CYP2B/CYP3A mRNA induction by 24 structurally diverse pesticides

The observed differences emphasize the importance of using human-based cellular screening models in comparative metabolism studies

Conclusion

- ❑ *in vitro* screening of metabolite profiles and toxicokinetics are desirable for the proper selection of animal models for toxicological evaluation
 - Rate of metabolism
 - Spectrum of metabolites produced
 - Intrinsic clearance
- ❑ to include interactions at different biological levels and to maximize the chance of having all possible metabolites, Living cells, if metabolically competent, would give metabolite patterns closer to *in vivo* situation than tissue fractions.

References

- Abass *et al.* 2016 Approches to describe risks and future needs. In Arctic Monitoring and Assessment Programme AMAP 2015, Oslo, Norway, ISBN: 978-82-7971-093-6.
- Abass *et al.* , 2013 Human variation and CYP enzyme contribution in benfuracarb metabolism in human in vitro hepatic models. *Toxicology letters* 224 (2), 300-309
- Abass *et al.* 2014 Comparative metabolism of benfuracarb in in vitro mammalian hepatic microsomal model and its implications for chemical risk assessment. - *Toxicology letters* 224 (2), 290-299.
- Pelkonen *et al.* 2013. How to preserve, induce or incorporate metabolism into the in vitro cellular system, *Toxicology in vitro*. 27.
- Abass K. 2013 From in vitro hepatic metabolic studies towards human health risk assessment: Two case studies of diuron and carbosulfan. - *Pesticide Biochemistry and Physiology* 107 (2), 258-265
- Abass and Pelkonen 2013 The inhibition of major human hepatic cytochrome P450 enzymes by 18 pesticides: comparison of the N-in-one and single substrate approaches. - *Toxicology in vitro* 27, 1584-1588
- Abass *et al* 2012. Characterization of human cytochrome P450 induction by pesticides. - *Toxicology* 294 (1), 17-26.
- Abass *et al.* 2009 Metabolism of carbosulfan. I. Species differences in the in vitro biotransformation by mammalian hepatic microsomes including human. - *Chemico-Biological interaction* 181, 210-219
- Abass *et al.* 2010 Metabolism of carbosulfan II. Human interindividual variability in its in vitro hepatic biotransformation and the identification of the cytochrome P450 isoforms involved. - *Chemico-biological interactions* 185, 163-173
- Abass *et al.* 2009 Evaluation of the cytochrome P450 inhibition potential of selected pesticides in human hepatic microsomes. - *Journal of Environmental Science and Health Part B* 44, 553-563
- Abass *et al.* 2007 Characterization of diuron N-demethylation by mammalian hepatic microsomes and cDNA-expressed human cytochrome P450 enzymes. - *Drug metabolism and disposition* 35, 1634-1641
- Abass *et al.* 2007 In vitro metabolism and interaction of profenofos by human, mouse and rat liver preparations. - *Pesticide Biochemistry and Physiology* 87, 238-247
- Abass *et al.* 2011 Metabolism of pesticides by human cytochrome P450 enzymes in vitro - a survey. *Insecticides* - - ISBN 979-953-307-667-5, pp. 165-194

Thank you

Arctic Health; University of Oulu, Finland