SURVEY PLANNING IN LOMBARDY REGION

MARIANGELA CIAMPITTI¹ - BENIAMINO CAVAGNA²

PLANT HEALTH SERVICE - MILANO 1 ERSAF 2 REGIONE LOMBARDIA

THE ROUTE TAKEN BY THE DATA

REGIONAL PLANT HEALTH SERVICE

NPPO

EUROPEAN COMMISSION

A SERIOUS RESPONSIBILITY

ENVIRONMENTAL IMPACT AND BIODIVERSITY LOSS

The PPS of Lombardy Region conducts monitoring in order to:

- □ define the pest status of its territory:
 - >to issue export certification
 - >to apply emergency measures
 - >to maintain a pest free area
- □ collect the data required by DG SANCO and NPPO
- □ prepare a contingency plan on a new pest;
- □ verify the effectiveness of control measures applied
- **□** develop defense strategies in low input of PPPs

The monitoring is carried out in

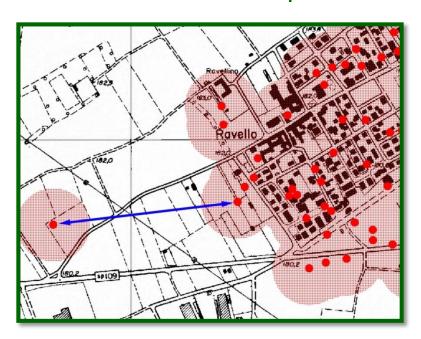
- ☐ field crops
- □ orchards
- □ vineyards
- □ forests
- □ green areas
- □ sites considered to be sources of risk such as wood processors

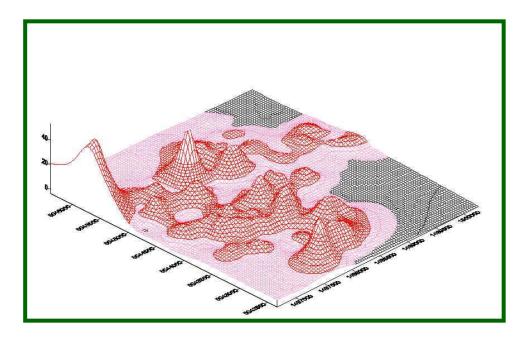
Inspections in nurseries, checks and controls for import and export are not considered in these survey activities.

In 2013 the monitoring was carried out on 48 pests

	N°
INSECTS	14
FUNGI	8
BACTERIA	4
PHYTOPLASMA	4
VIRUSES/VIROIDS	13
NEMATODES	4
MOLLUSCS	1

	Common name	Scientific name	Acronym
	Spotted-wing drosophila	Drosophyla suzuki	
	Red palm weevil	Rhynchophorus ferrugineus	
	Palm moth	Paysandisia archon	
	Chestnut gall wasp	Dryocosmus kuriphilus	
	Pine sawyer beetle	Monochamus spp.	
	Tomato leafminer	Tuta absoluta	
INSECTS	Tuber flea beetle	Epitrix spp.	
	Rice water weevil	Lissorhoptrus oryzophilus	
	Grapevine leafminer	Antispila oinophylla	
	American grapevine leafhopper	Scaphoideus titanus	
	Cotton leafworm	Spodoptera littoralis	
	western corn rootworm	Diabrotica virginifera virginifera	
	European vine moth	Lobesia botrana	
	Sudden oak death	Phytophthora ramorum	
	Pitch cancker of pine	Gibberella circinata	
	Intensive dieback of ash	Chalara fraxinea	
FUNGI	Canker of apple	Valsa ceratosperma	
	Downy mildew of grapewine	Plasmopara viticola	
	Grape powdery mildew	Unicinula necator, Oidium tuckeri	
	Black rot	Guignardia bidwellii	
	Fireblight	Erwinia amylovora	
	Bacterial canker of kiwi fruit	Pseudomonas syringae pv. Actinidiae	PSA
BACTERIA	Bacterial wilt	Ralstonia solanacearum	
	Bacterial canker of tomato	Clavibacter michiganensis subsp. michiganensis	
	Bacterial leaf spot of capsicum	Xanthomonas campestris pv. vesicatoria	


	Baco 22A disease	Grapevine flavescence dorée phytoplasma			
PHYTHOPLASMA	Black wood	Grapevine bois noir phytoplasma			
PHTTHOPLASIVIA	Apple proliferation	Apple Proliferation Phytoplasma	APP		
	Stolbur	Potato Stolbur phytoplasma			
	Maize redness phytoplasma	Phytoplasma solani			
	Sharka	Plum Pox Virus	PPV		
	Tristeza of citrus	Citrus Tristeza Virus	CTV		
	Pepino mosaic potexvirus	Pepino Mosaic Virus	PeMV		
	Cucumber mosaic	Cucumber mosaic virus	CMV		
	spotted wilt of tomato	Tomato Spotted Wilt Virus	TSWV		
VIRUSES/	Tomato yellow leaf curl virus	Tomato Yellow leaf curl virus	TYLCV		
VIROIDS	Potato mottle	Potato Y virus	PVY		
VIICIDS	Potato mild mosaic virus	Potato X Virus	PVX		
	Alpha Mosaic Virus	Alpha Mosaic Virus	AMV		
	Pelargonium zonate spot virus	Pelargonium zonate spot virus	PZSV		
	Iris Yellow Spot Virus	Iris Yellow Spot Virus	IYSV		
	Iris Yellow Spot Virus	Iris Yellow Spot Virus	ToMV		
	Potato spindle tuber	Potato spindle tuber viroid	PSTVd		
	Pine wood nematode	Bursaphelenchus xiliphilus			
NEMATODES	Yellow and white potato cyst nematode	Globodera spp.			
IVEIVIATODES	Potato wart disease	Synchytrium endobioticum			
	Soybean cyst nematode	Heterodera glycines			
MOLLUSCS	Apple snails	Pomacea spp.			



STRATEGIC PLANNING STEPS:

✓ which data to collect: data requested by DG SANCO and by NPPO, but also other data to develop control strategies or monitor their effectiveness (ex. *Anoplophora chinensis* N. of exit holes and sawdust per infested tree)

STRATEGIC PLANNING STEPS:

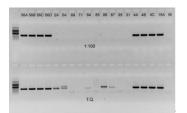
✓ how: detailed protocols are processed on how to make the survey, which species to control (all host plants or those specified by an EC Emergency Decision or listed in EPPO standard or those most at risk) and which symptoms are to be checked

Anoplophora glabripennis	Anoplophora glabripennis	Anoplophora glabripennis
Genera listed by the Lombardy Regional Law	Genera listed by EPPO Standard PM 9/15	Genera listed by EPPO Standard PM 9/15
Acer	Acer	Fraxinus
Betula	Betula	Morus
Salix	Salix	Platanus
Populus	Populus	Prunus
Ulmus	Ulmus	Pyrus
	Aesculus	Robinia
	Albizia	Sorbus
	Alnus	Sophora
	Carpinus	Fagus

STRATEGIC PLANNING STEPS:

√how many: n ha, n sites according to the importance of the crop in the area and of its GDP;

✓ Who and time commitment: n. days for inspectors, agents, technicians calculated on the basis of efficiency ratios that vary from crop to crop, but also from area to area (ex, if the ground is flat, hilly or terraced. We have developed performance indices based on real data recorded in recent years;


	INDEX	AVERAGE COST(€)		
FD in Vineyards	1,5 ha/day	118/ ha		
SHARKA PPV in orchards	2,0 ha/day	95/ha		
Erwinia in orchards x	3,5 ha/day	61/ha		
PSA in orchards	1,5 ha/day	132/ha		
Rhynchophorus RPW	0,6 site/day	319/site		
Drosophyla suzukii	0,9 site/day	232/site		
Bursaplenchus in forestry	1,9 site/day	108/site		
Monochamus x PWN	0,4 site/day	510/site		
Tomato crops	9,0 ha/day	22/ha		
Potato crops	4,5 ha/day	33/ha		
CTV in public gardens	3,7 site/day	54/site		

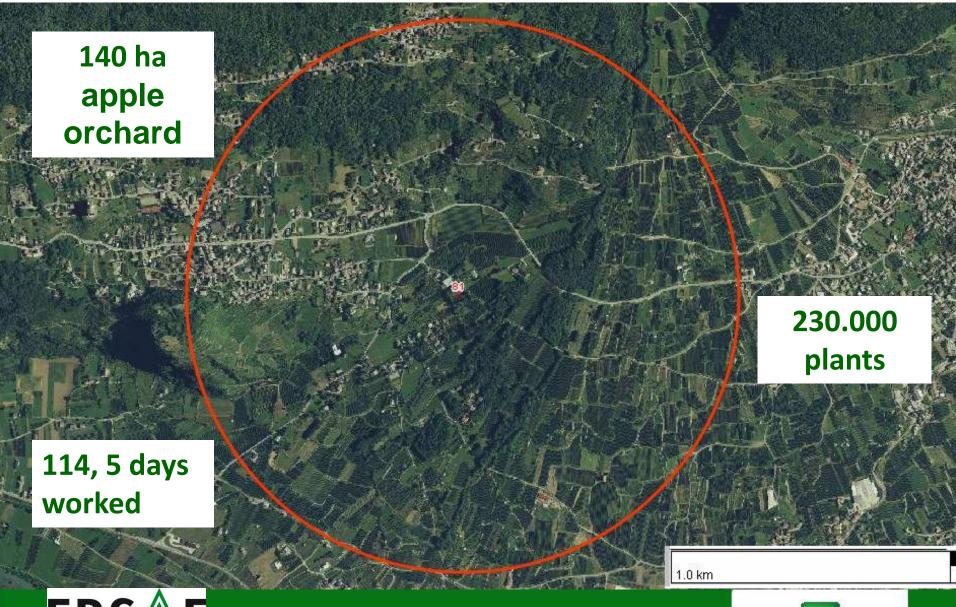
STRATEGIC PLENNING STEPS:

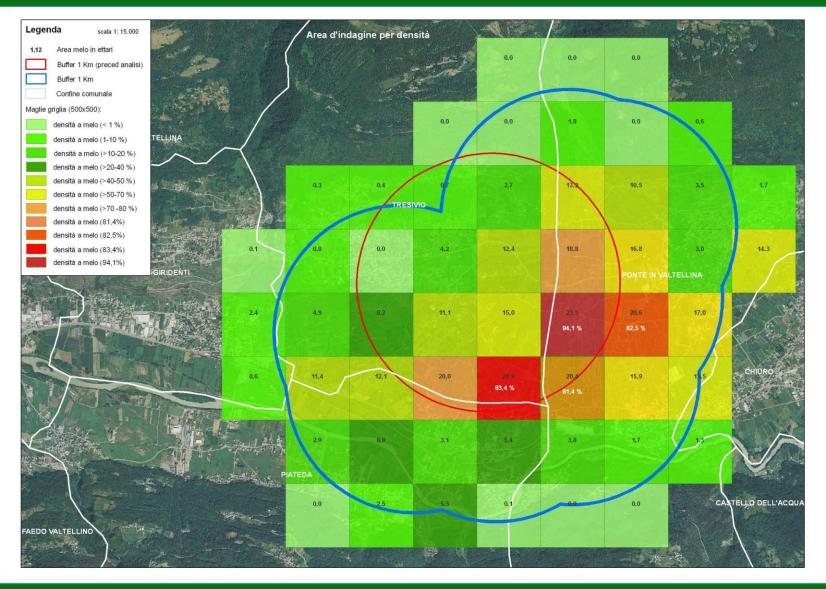
✓ when: on a scientific basis, the timing depends on the cycle of the HO, the presence of symptoms, the expiry of the reporting ✓ support tools: GPS, laboratory analysis, pheromone or kairomones traps, binoculars, tree-climber, platform), etc.

SPREADSHEET

	PROV	BOY ATTIVITA	PERIODO DEI CONTROLLI		HA COLTIVATI PER	HA-SITI-N	HA-SITI-N	CAMPIONI	INVIO AL	GG	indice
			DA	Α	PROVINCIA	CONTROLLI	CONTROLLATI	PRELEVATI	LABORATORIO	Effettiv e	Effettivo
	BG BS LC MI LO MN PV SO		luglio	settembre	da dichiarazioni SIARL 2013 (esclusi vivai): 21621 Ha	150 HA	180,11	110	max 15 campioni a settimana (avvisare il laboratorio quando si effettua il prelievo per allertare la ricezione	106,25	1,7
	BG	FLAVESCENZA DORATA VIGNETI + CONTROLLO VETTORE + Antispila oinophulla	luglio	settembre	655	10 HA	9,51	6	3 positivi a FD ed 1 positivo LN	9	ţ,t
	BS	FLAVESCENZA DORATA VIGNETI + CONTROLLO VETTORE + TIGNOLETTE +	luglio	settembre	5612	27 HA	31,46	16	5 positivi a FD e 5 positivi a LN	12	2,6
	LС	FLAVESCENZA DORATA VIGNETI + CONTROLLO VETTORE + Antispila oinophulla	luglio	settembre	53	7HA	7,74	10	6 positicvi a FD e 1 positivo a LN	4	1,9
	MI-LO	FLAVESCENZA DORATA VIGNETI + CONTROLLO VETTORE + Antispila oinophulla	luglio	settembre	178	8HA	8,77	12	7 positivi a FD e 3 positivi a LN	6,75	1,3
	MN	FLAVESCENZA DORATA VIGNETI + CONTROLLO VETTORE + Antispila oinophulla	luglio	settembre	1715	10 HA	14,15	8	8 positivi a FD	7	2,0
	PV	FLAVESCENZA DORATA VIGNETI+ CONTROLLO VETTORE + Antispila oinophylla	luglio	settembre	12877	80 HA (vedi note)	100,18	37	34 positivi a FD e 2 positivi a LN	55,25	1,8
	en	FLAVESCENZA DORATA VIGNETI +	luglio	cottombro	470	٥ 🗆 ٨	0.20	21	10 positivi a FD e 8	10.0E	0.7

Erwinia amylovora outbreak in Sondrio: how to change plans in course of work


NEW OUTBREAK AUTUMN 2010



The demarcated area was divided into squares of 25 ha, within which sample checks were carried out on a surface to apple / pear variable:

within the squares with apple/pear orchards less than 40% of the surface: inspection of more than 10% of orchards;

within the squares with apple/pear orchards between 40% and 80% of the surface: inspection of more than 15% of orchards;

within the squares with apple/pear orchards more than 80% of the surface: inspection of more than 20% of orchards;


Presence of unfested plants by *E. amylovora* while checking spring: inspection of more than 30% of orchards.


VILLA DI TIRANO

TIRANO

Plantaregina prevention plan

- the Plantaregina district area extends for more than 50.000 ha and is specialized in the cultivation of fullsize deciduous ornamental trees
- each year, almost 3 million plants of the species most vulnerable to A. chinensis are grown in open fields
- to protect this district and ensure its economic wellbeing, the RPPS has designed and applied a steppedup surveillance system, in line with the FAO ISPMs

prevention plan - general goals

- protecting the territory
- keeping the district pest free
- protecting nursery production
- ensuring product quality
- ensuring district competitiveness
- informing producers and local authority

prevention plan - territory surveillance

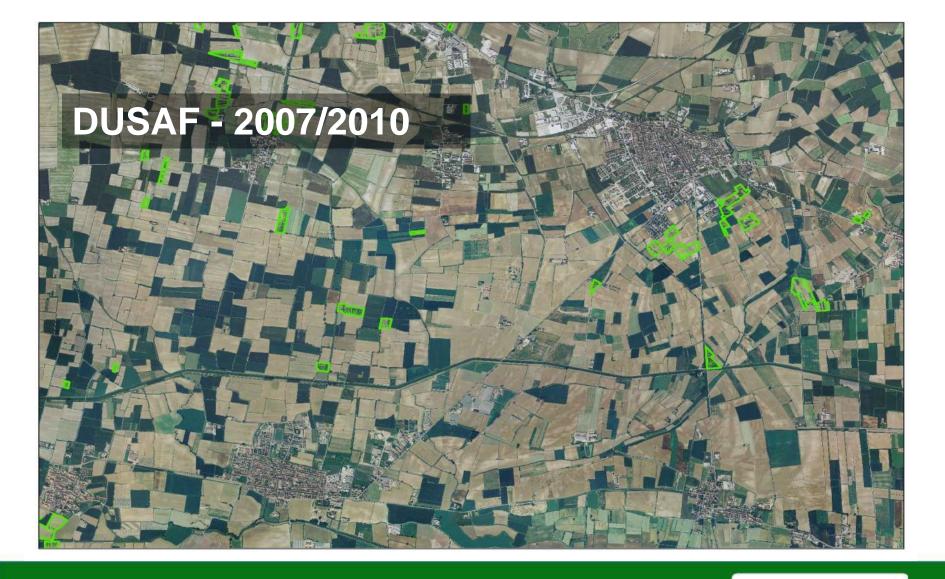
a new methodology was devised for the enhanced territorial surveillance

- drew up a map with a buffer zone of 2 km (500m + 1500m) radius around all the areas dedicated to nursery cultivation
- in addition to controlling the plants being cultivated, a buffer zone with a radius of 100 m around the company headquarters was also controlled
- superimposed a grid of 500m on each side, leading to the creation of 2,156 cells subsequently classified based on the risk to plant health and identified by different colors

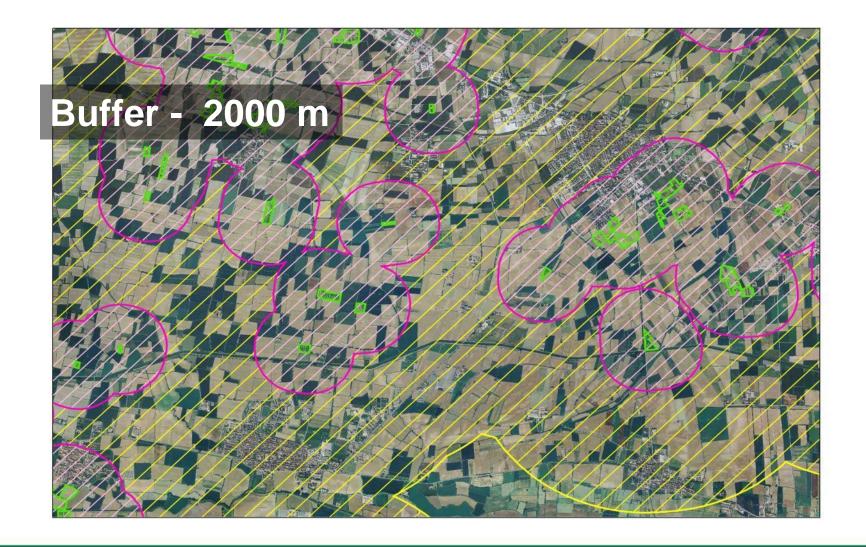
Surveillance of the territory

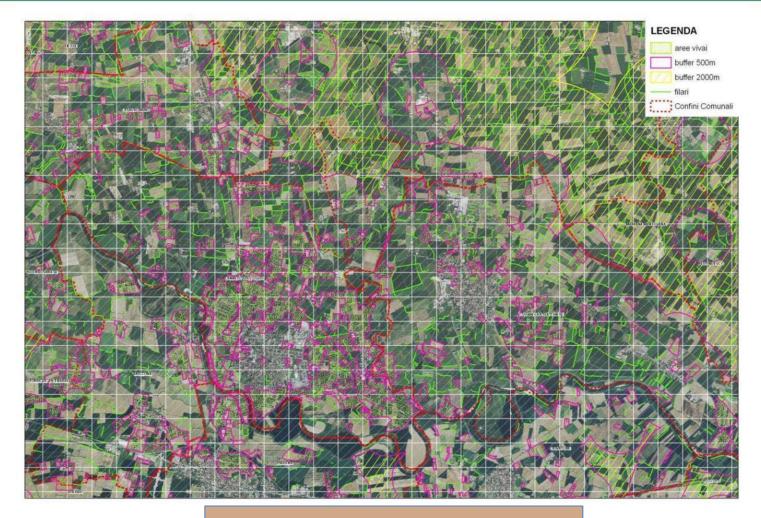
number of spy points:

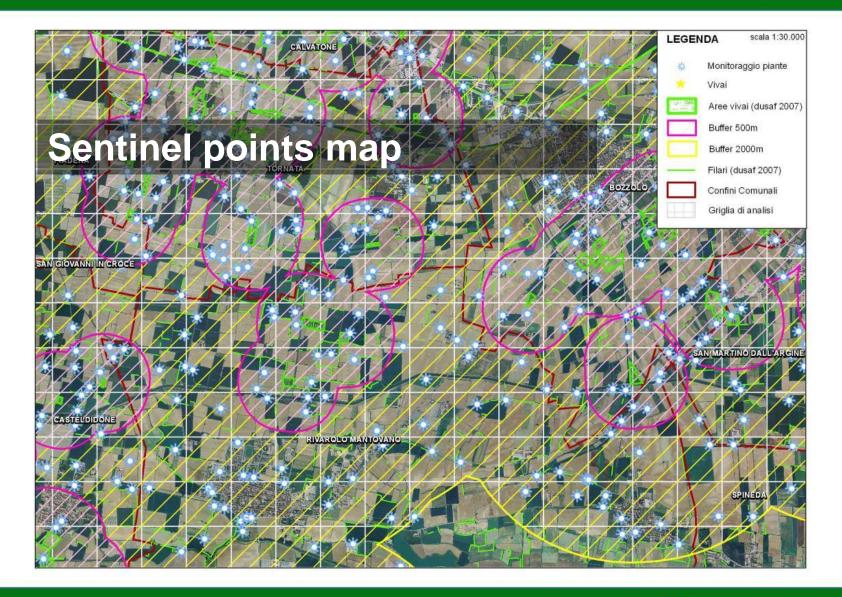
- 500 m buffer zones: from 2 to 4 sentinel points/grid unit
- 1500 m buffer zones: 1 sentinel point/grid unit


survey:

- more sensitive host plants
- proximity to risk sources
- detection feasibility and ease of control







500x500 m - Grid

Summary of Survey Results

- survey of 6.223 host plants in urban green areas of 31 municipalities
- survey of 82.275 host plants in 15 nursery fields
- 3450 sentinel points (11.233 trees)
- 140 days worked

The cost of the first year application plan was 40.000 euro

Annual maintenance is 30.000 euro

The District annual value of the production is 120.000.000 euro

0,025%

Conclusions

- Monitoring is an essential tool for the application of a proper plant health regime.
- Monitoring is extremely expensive and although specific and representative should be graduated according to the real risks present in EU plant health PRA need to pay increasing attention to the specific reality of Union territory.
- Need for clear legenda, key, for a unique reading of the DG SANCO survey template.
- Need to identify a unique protocol that define what is meant by inspection site in the forest, in the urban environment, field, etc.

