

ADOPTED: DD Month 2017

doi:10.2903/j.efsa.20XX.NNNN

1 Scientific Opinion of the PPR Panel on the follow-up of the 2 findings of the External Scientific Report "Literature review 3 of epidemiological studies linking exposure to pesticides 4 and health effects"

5 EFSA Panel on Plant Protection Products and their Residues (PPR),
6 Colin Ockleford, Paulien Adriaanse, Philippe Berny, Theodorus Brock, Sabine Duquesne,
7 Sandro Grilli, Susanne Hougaard, Michael Klein, Thomas Kuhl, Ryszard Laskowski, Kyriaki
8 Machera, Olavi Pelkonen, Silvia Pieper, Rob Smith, Michael Stemmer, Ingvar Sundh, Ivana
9 Teodorovic, Aaldrik Tiktak, Chris J. Topping, Gerrit Wolterink, Matteo Bottai, Thohallur
10 Halldorsson, Paul Hamey, Marie-Odile Rambour, Ioanna Tzoulaki, Daniele Court Marques,
11 Federica Crivellente, Hubert Deluyker and Antonio F. Hernandez-Jerez

12 **Abstract**

13 In 2013, EFSA published a comprehensive systematic review of all the epidemiological studies
14 published from 2006 to 2012, investigating the association between pesticide exposure and the
15 occurrence of 23 major human health outcomes. Despite the considerable amount of epidemiological
16 information available, the quality of this evidence is usually low and many biases likely affect the
17 results to an extent that firm conclusions cannot be drawn. Therefore, the use of these studies in the
18 regulatory arena is a matter of concern which does not allow Regulation (EU) No 1107/2009 in place
19 for pesticides to be fully implemented. In this Scientific Opinion, the EFSA Panel on Plant Protection
20 Products and their residues (PPR Panel) was requested to assess the methodological limitations
21 affecting the quality of pesticide epidemiology studies and found the following major methodological
22 drawbacks: study designs prone to bias, poor exposure characterisation, inadequate health outcomes,
23 deficiencies in statistical analysis and poor quality of reporting of research findings. The PPR Panel
24 proposed recommendations on how to improve the quality and reliability of epidemiological studies on
25 pesticides to overcome these limitations and to facilitate an appropriate use of epidemiological data for
26 pesticide risk assessment. Systematic reviews and meta-analysis of observational studies provide the
27 best information to understand the potential hazards of pesticides, exposure scenarios and methods
28 for assessing exposure, exposure-response characterization and risk characterization. Finally, the PPR
29 Panel proposed a methodological approach to integrate multiple lines of evidence, in particular how
30 epidemiological studies can complement well-designed toxicological *in vivo* studies and mechanistic
31 studies in the area of pesticide risk assessment. Epidemiologic data can thus form part of the overall
32 Weight of Evidence of available data. A contribution to establishing causation can be made by
33 providing evidence of biological plausibility where this is available.

34 © 2017 European Food Safety Authority. *EFSA Journal* published by John Wiley and Sons Ltd on
35 behalf of European Food Safety Authority.

36 **Keywords:** epidemiology, pesticides, risk assessment, quality assessment, evidence synthesis, lines
37 of evidence, Weight of Evidence

38
39 **Requestor:** European Food Safety Authority

40 **Question number:** EFSA-Q-2014-00481

41 **Correspondence:** pesticides.ppr@efsa.europa.eu

42 **Acknowledgements:** The Panel wishes to thank the following EFSA staff for the support provided to
43 this scientific output: Andrea Terron, Andrea Altieri and Arianna Chiusolo. The Panel and EFSA wishes
44 to acknowledge the following Hearing Experts for their input: 1) David Miller (US-EPA) for sharing the
45 experience of US-EPA and for effect size magnification, 2) Kent Thomas (US-EPA) for the Agricultural
46 Health Study, 3) Marie Christine Lecomte (INSERM), Sylvaine Cordier (INSERM) and Alexis Elbaz
47 (INSERM) for the INSERM Report, 4) Toby Athersuch (Imperial College) for Exposome and
48 Metabolomics, 5) Peter Floyd (Risk & Policy Analysts Ltd), Ruth Bevan (IEH Consulting Ltd), Kate
49 Jones (UK Health & Safety Laboratory) for the Human Biomonitoring data collection from occupational
50 exposure to pesticides, 6) Distinguished Professor Peter Diggle (Lancaster University) for statistical
51 advice. Finally, EFSA would like to thank the Scientific Committee and AMU Unit for the revision of the
52 Opinion and the input provided.

53 **Suggested citation:** EFSA PPR Panel (EFSA Panel on Plant Protection Products and their Residues),
54 Colin Ockleford, Paulien Adriaanse, Philippe Berny, Theodorus Brock, Sabine Duquesne, Sandro Grilli,
55 Susanne Hougaard, Michael Klein, Thomas Kuhl, Ryszard Laskowski, Kyriaki Machera, Olavi Pelkonen,
56 Silvia Pieper, Rob Smith, Michael Stemmer, Ingvar Sundh, Ivana Teodorovic, Aaldrik Tiktak, Chris J.
57 Topping, Gerrit Wolterink, Matteo Bottai, Thohallur Halldorsson, Paul Hamey, Marie-Odile Rambour,
58 Ioanna Tzoulaki, Daniele Court Marques, Federica Crivellente, Hubert Deluyker and Antonio F.
59 Hernandez-Jerez, 2017. Scientific Opinion of the PPR Panel on the follow-up of the findings of the
60 External Scientific Report "Literature review of epidemiological studies linking exposure to pesticides
61 and health effects". **EFSA Journal 20YY; volume(issue):NNNN, 110 pp. doi:10.2903/j.efsa.20YY.NNNN**

62 **ISSN:** 1831-4732

63 © 2017 European Food Safety Authority. *EFSA Journal* published by John Wiley and Sons Ltd on
64 behalf of European Food Safety Authority.

65 This is an open access article under the terms of the [Creative Commons Attribution-NoDerivs License](#),
66 which permits use and distribution in any medium, provided the original work is properly cited and no
67 modifications or adaptations are made.

68 Reproduction of the images listed below is prohibited and permission must be sought directly from the
69 copyright holder: Figures 1, 2, 3, 4, 5, 6 and 7.

70

The EFSA Journal is a publication of the European Food
Safety Authority, an agency of the European Union.

71

72

Summary

73 The European Food Safety Authority (EFSA) asked the Panel on Plant Protection Products and their
74 Residues (PPR Panel) to develop a Scientific Opinion on the follow-up of the findings of the External
75 Scientific Report "Literature review of epidemiological studies linking exposure to pesticides and health
76 effects" (Ntzani et al., 2013). This report was based on a systematic review and meta-analysis of
77 epidemiological studies published between 2006 and 2012 and summarised the associations found
78 between pesticide exposure and 23 major categories of human health outcomes. Most relevant
79 significant associations were found for liver cancer, breast cancer, stomach cancer, amyotrophic
80 lateral sclerosis, asthma, type II diabetes, childhood leukaemia and Parkinson's disease. While the
81 inherent weaknesses of the epidemiological studies assessed do not allow firm conclusions to be
82 drawn on causal relationships, the systematic review raised a concern about the suitability of
83 regulatory studies to inform on specific and complex human health outcomes.

84 The PPR Panel developed a Scientific Opinion to address the methodological limitations affecting the
85 quality of epidemiological studies on pesticides. This Scientific Opinion is intended to assist the peer
86 review process during the renewal of pesticides under Regulation (EC) 1107/2009 where the
87 evaluation of epidemiological studies, along with clinical cases and poisoning incidents following any
88 kind of human exposure, if available, is a data requirement. Epidemiological data concerning
89 exposures to pesticides in Europe will not be available before first approval of an active substance and
90 so will not be expected to contribute to a DAR. However there is the possibility that earlier prior
91 approval has been granted for use of an active substance in another jurisdiction and epidemiological
92 data from that area may be considered relevant. Regulation (EC) No 1107/2009 requires a search of
93 the scientific peer-reviewed open literature, which includes existing epidemiological studies. This type
94 of data is more suited for the renewal process of active substances, also in compliance with Regulation
95 (EC) 1141/2010 which indicates that "The dossiers submitted for renewal should include new data
96 relevant to the active substance and new risk assessments".

97 In this Opinion, the PPR Panel proposed a methodological approach specific for pesticide active
98 substances to make appropriate use of epidemiological data for risk assessment purposes, and
99 proposed recommendations on how to improve the quality and reliability of epidemiological studies on
100 pesticides. In addition, the PPR Panel discussed and proposed a methodology for the integration of
101 epidemiological evidence with data from experimental toxicology to delineate the potential
102 contributions of epidemiological studies that complement classical toxicological studies conducted in
103 laboratory animal species in the area of pesticide risk assessment.

104 First, the opinion introduces the basic elements of observational epidemiological studies¹, particularly
105 those dealing with pesticide exposure, and contrasts them with interventional studies which provide
106 the most reliable evidence in epidemiological research as the conditions for causal inference are
107 usually met. The major study designs are described together with the importance of a detailed
108 quantitative description of pesticide exposure, the use of validated health outcomes and appropriate
109 statistical analysis to model exposure-health relationships. The external and internal study validity is
110 also addressed to account for the role of chance in the results and to ascertain whether factors other
111 than exposure can distort the associations found. Several types of human data can contribute to the
112 risk assessment process, particularly to support hazard identification. Besides formal epidemiological
113 studies, other sources of data such as case series, disease registries, poison control centre
114 information, occupational health surveillance data and post marketing surveillance programmes can
115 provide useful information for hazard identification, particularly in the context of acute, specific health
116 effects.

117 However, most of the existing epidemiological studies on pesticides exposure and health effects suffer
118 from a range of methodological limitations or deficiencies (term of reference -ToR 1-). The systematic
119 appraisal of epidemiological evidence identified a number of methodological limitations including the
120 use of study designs prone to bias (e.g., cross-sectional studies, case-control studies), the lack of
121 direct and detailed exposure assessment to specific pesticides (e.g., use of generic pesticide
122 definitions or questionnaire data alone, which do not provide a reliable dosimeter for the pesticide of

¹ This Opinion deals only with observational studies (also called epidemiological studies) and vigilance data. In contrast, interventional studies (experimental studies or randomized clinical trials) are outside the scope of this Opinion.

123 concern and need to be supplemented with other direct measures such as biomonitoring), deficiencies
124 in outcome assessment (use of inappropriate or non-validated health outcomes such as broad
125 outcome definitions, self-reported outcomes or surrogate outcomes), deficiencies in statistical analysis
126 (sparse use of appropriate analysis, scarce information on relevant factors affecting the exposure-
127 outcome relationship, impact of bias on results, multiple testing, misplaced focus of the inferential
128 objectives,...), and poor quality reporting of research findings (lack of key information, selective or
129 inappropriate reporting, misinterpretation of study findings, etc.). These limitations are to some extent
130 responsible for heterogeneity or inconsistency of data and do not allow robust conclusions on causality
131 based on epidemiological evidence alone, and can result in misleading or unsupported conclusions.

132 The PPR Panel also provides a number of refinements (ToR 2) and recommendations (ToR 3) to
133 improve future epidemiological studies that will benefit the risk assessment. The quality and relevance
134 of epidemiologic research can be enhanced by a) an adequate assessment of exposure, preferentially
135 by using personal exposure monitoring or biomarker concentrations of specific pesticides at an
136 individual level, reported in a way that minimizes misclassification of exposure and allows for dose-
137 response assessment; b) a reasonably valid and reliable outcome assessment (well defined clinical
138 entities or validated surrogates); c) adequately accounting for potentially confounding variables
139 (including exposure to multiple chemicals); and d) conducting and reporting subgroup analysis (e.g.,
140 stratification by gender, age, ...). A number of reporting guidelines and checklists developed
141 specifically for studies on environmental epidemiology are of interest for epidemiological studies
142 assessing pesticide exposures. This is the case for extensions of the modified STROBE (STrengthening
143 the Reporting of OBservational studies in Epidemiology) criteria, among others, which includes
144 recommendations on what should be included in an accurate and complete report of an observational
145 study.

146 Exposure assessment can also be improved at the population level by using registered data that can
147 then be linked to electronic health records. This will provide studies with unprecedented sample size
148 and information on exposure and subsequent disease. Geographical information systems (GIS) and
149 small area studies might also serve as an additional way to provide estimates of residential exposures.
150 The development of omic technologies also presents intriguing possibilities for improving exposure
151 assessment through measurement of a wide range of molecules, from xenobiotics and metabolites in
152 biological matrices (metabolomics) to complexes with DNA and proteins (adductomics). Omics have
153 the potential to measure profiles or signatures of the biological response to the cumulative exposure
154 to complex chemical mixtures and allows a better understanding of biological pathways. Health
155 outcomes can be refined by using validated biomarkers of effect, that is, a quantifiable biochemical,
156 physiological or any other change that, is related to level of exposure, is associated with a health
157 impairment and also helps to understand a mechanistic pathway of the development of a disease.

158 The incorporation of epidemiological studies into regulatory risk assessment (ToR 4) represents a
159 major challenge for scientists, risk assessors and risk managers. The findings of the different
160 epidemiological studies can be used to assess associations between potential health hazards and
161 adverse health effects, thus contributing to the risk assessment process. Nevertheless, and despite the
162 large amount of available data on associations between pesticide exposure and human health
163 outcomes, the impact of such studies in regulatory risk assessment is still limited. The fact that
164 epidemiologic research is often not driven by regulatory need strongly influences the discrepancies
165 between epidemiological studies. Human data can be used for many stages of risk assessment;
166 however, single epidemiological studies, by themselves, should not be used for hazard
167 characterisation, unless they are high quality studies. This implies that guidance should be developed
168 for optimal design and reporting of epidemiological studies to support regulatory assessment of
169 pesticides. Evidence synthesis techniques, such as systematic reviews and meta-analysis (where
170 appropriate) offer a useful complementary approach. These tools allow generation of summary data,
171 increased statistical power and precision of risk estimates by combining the results of all individual
172 studies meeting the selection criteria. Systematic reviews and meta-analysis of observational studies
173 provide information that strengthens the understanding of the potential hazards of pesticides,
174 exposure scenarios and methods for assessing exposure, exposure-response characterization and risk
175 characterization.

176 Study evaluation should be performed within a best evidence synthesis framework as it provides an
177 indication on the nature of the potential biases each specific study may have and an assessment of
178 overall confidence in the epidemiological database. This Opinion reports the study quality parameters

179 to be evaluated in single epidemiological studies and the associated weight (low, medium, high) for
180 each parameter. Three basic categories are proposed as a first tier to organize human data with
181 respect to risk of bias and quality: a) low risk of bias and high/medium reliability; b) medium risk of
182 bias and medium reliability; c) high risk of bias and low reliability because of serious methodological
183 limitations or flaws that reduce the validity of results or make them largely uninterpretable for a
184 potential causal association. Risk assessment should not be based on results of epidemiological studies
185 that do not meet well-defined data quality standards.

186 Epidemiological studies provide complementary data that can be integrated together with data from *in*
187 *vivo* laboratory animal studies, mechanistic *in vitro* models and ultimately *in silico* technology for risk
188 assessment (ToR 4). The combination of all these lines of evidence can contribute to a Weight-of-
189 Evidence (WoE) analysis in the characterization of human health risks with the aim of improving
190 decision making. Although the different sets of data can be complementary and confirmatory and thus
191 serve to strengthen the confidence of one line of evidence on another, they may individually be
192 insufficient and pose challenges for characterizing properly human health risks.

193 The first consideration is how well the health outcome under consideration is covered by existing
194 toxicological and epidemiological studies on pesticides. When both types of studies are available for a
195 given outcome/endpoint, both should be assessed for strengths and weaknesses before being used for
196 risk assessment. Once the reliability of available human evidence (observational epidemiology and
197 vigilance data) and experimental evidence (animal and *in vitro* data) has been evaluated, the next
198 step involves weighting the two sources of data. This opinion has developed an integrated approach
199 where both lines of evidence are considered in an overall WoE framework to better support the risk
200 assessment.

201 A simple method is proposed for evaluating and ranking human and experimental studies in order to
202 be incorporated into risk assessment. For a comparative interpretation of both lines of evidence, this
203 framework should rely on a number of principles highlighting when one line should take precedence
204 over another. The concordance or discordance between human and experimental data should be
205 assessed as well in order to determine which dataset should be given precedence. Although the
206 totality of evidence should be assessed, the more reliable data should be given more weight,
207 regardless of whether the data comes from human or animal studies. When the reliability of any of
208 these lines of evidence is considered low, hazard and risk assessments need to be conducted with
209 great caution. If study results are not concordant, an appropriate decision may be that no risk
210 assessment should be based on the outcomes.

211 Human data can help verify the validity of estimations made based on extrapolation from the full
212 toxicological database regarding target organs, dose-response relationships and the reversibility of
213 toxic effects, and to provide reassurance on the extrapolation process without direct effects on the
214 definition of reference values. Thus, epidemiologic data can form part of the overall WoE of available
215 data using modified Bradford Hill criteria as an organizational tool to increase the likelihood of an
216 underlying causal relationship.

217

218 **Table of contents**

219

220

221	Abstract.....	1
222	Summary	3
223	1. Introduction.....	8
224	1.1. Regulatory data requirements regarding human health in pesticide risk assessment.....	8
225	1.2. Background and Terms of Reference as provided by the requestor.....	9
226	1.3. Interpretation of the Terms of Reference.....	10
227	1.4. Additional information	11
228	2. General framework of epidemiological studies on pesticides.....	12
229	2.1. Study design.....	12
230	2.2. Population and sample size.....	13
231	2.3. Exposure	14
232	2.4. Health outcomes	14
233	2.5. Statistical analysis and reporting	15
234	2.5.1. Descriptive statistics	15
235	2.5.2. Modelling exposure-health relationship	15
236	2.6. Study validity	19
237	3. Key limitations of the available epidemiological studies on pesticides.....	21
238	3.1. Limitations identified by the authors of the EFSA external scientific report	21
239	3.2. Limitations in study designs	22
240	3.3. Relevance of study populations.....	22
241	3.4. Challenges in exposure assessment.....	23
242	3.5. Inappropriate or non-validated surrogates of health outcomes.....	23
243	3.6. Statistical analyses and interpretation of results	24
244	4. Proposals for refinement to future epidemiological studies for pesticide risk assessment.....	25
245	4.1. Assessing and reporting the quality of epidemiological studies	25
246	4.2. Study design.....	29
247	4.3. Study populations	29
248	4.4. Improvement of exposure assessment	30
249	4.5. Health outcomes	34
250	5. Contribution of vigilance data to pesticides risk assessment.....	35
251	5.1. General framework of case incident studies	35
252	5.2. Key limitations of current framework of case incident reporting.....	35
253	5.3. Proposals for improvement of current framework of case incident reporting	37
254	6. Proposed use of epidemiological studies and vigilance data in support of the risk assessment of pesticides	38
255	6.1. The risk assessment process.....	38
256	6.2. Assessment of the reliability of individual epidemiological studies	39
257	6.3. Assessment of strength of evidence of epidemiological studies.....	42
258	6.3.1. Synthesis of epidemiological evidence	42
259	6.3.2. Meta-analysis as a tool to explore heterogeneity across studies	43
260	6.3.3. Usefulness of meta-analysis for hazard identification	45
261	6.3.4. Pooling data from similar epidemiologic studies for potential dose-response modelling	47
262	7. Integrating the diverse streams of evidence: human (epidemiology and vigilance data) and experimental information.....	47
263	7.1. Sources and nature of the different streams of evidence Comparison of experimental and epidemiological approaches	48
264	7.2. Principles for weighting of human observational and laboratory animal experimental data	50
265	7.3. Weighting all the different sources of evidence	51
266	7.4. Biological mechanisms underlying the outcomes	52
267	7.5. Adverse Outcome Pathways (AOPs)	53
268	7.6. Novel tools for identifying biological pathways and mechanisms underlying toxicity	54
269	7.7. New data opportunities in epidemiology	55

273	8.	Overall recommendations	55
274	8.1.	Recommendations for single epidemiological studies:	56
275	8.2.	Surveillance	58
276	8.3.	Meta-analysis of multiple epidemiological studies	59
277	8.4.	Integration of epidemiological evidence with other sources of information	59
278	9.	Conclusions	60
279	References.....		63
280	Annex A – Pesticide epidemiological studies reviewed in the EFSA External Scientific Report and other reviews.....		70
281			
282	Annex B – Human biomonitoring project outsourced by EFSA.....		85
283	Annex C – Experience of international regulatory agencies in regards to the integration of epidemiological studies for hazard identification		87
284			
285	References.....		95
286	Annex D – Effect size magnification/inflation.....		97
287	References.....		107
288	Glossary [and/or] Abbreviations		109
289			

DRAFT

290 **1. Introduction**

291

292 **1.1. Regulatory data requirements regarding human health in pesticide**
 293 **risk assessment**

294 Regulatory authorities in developed countries conduct a formal human risk assessment for each
 295 registered pesticide based on mandated toxicological studies, done according to specific study
 296 protocols, and estimates of likely human exposure.

297 In the EU the procedure for the placing of plant protection products (PPP) on the market is laid down
 298 by Commission Regulation No 1107/2009². Commission Regulations No 283/2013 and 284/20134
 299 set the data requirements for the evaluation and re-evaluation of active substances and their
 300 formulations.

301 The data requirements regarding mammalian toxicity of the active substance are described in part A
 302 of Commission Regulation (EU) No 283/2013 for chemical active substances and in part B for
 303 microorganisms including viruses. With regard to the requirements for chemical active substances,
 304 reference to the use of human data may be found in different chapters of section 5 related to different
 305 end-points. For instance, data on toxicokinetics and metabolism that include in vitro metabolism
 306 studies on human material (microsomes or intact cell systems) belong to chapter 5.1 that deals with
 307 studies of absorption, distribution, metabolism and excretion in mammals; in vitro genotoxicity studies
 308 performed on human material are described in chapter 5.4 on genotoxicity testing and specific studies
 309 such as acetylcholinesterase inhibition in human volunteers are found in chapter 5.7 on neurotoxicity
 310 studies. Chapter 5.8 refers to supplementary studies on the active substance, and some specific
 311 studies, such as pharmacological or immunological investigations.

312 The requirements relating to human data are mainly found in chapter 5.9 "Medical data". It includes
 313 medical reports following accidental, occupational exposure or incidents of intentional self-poisoning;
 314 monitoring studies such as on surveillance of manufacturing plant personnel and others. The
 315 information may be generated and reported through official reports from national poison control
 316 centres as well as epidemiological studies published in the open literature. The Regulation requires
 317 that relevant information on the effects of human exposure, where available, shall be used to confirm
 318 the validity of extrapolations regarding exposure and conclusions with respect to target organs, dose-
 319 response relationships, and the reversibility of adverse effects.

320 Regulation (EU) No 1107/2009 equally states that, "where available, and supported with data on
 321 levels and duration of exposure, and conducted in accordance with recognised standards,
 322 epidemiological studies are of particular value and must be submitted". However, it is clear that there
 323 is no obligation for the petitioners to conduct epidemiological studies specific for the active substance
 324 undergoing the approval or renewal process. Rather, according to Regulation (EC) No 1107/2009,
 325 applicants submitting dossiers for approval of active substances shall provide "scientific peer-reviewed
 326 public available literature [...]. This should be on the active substance and its relevant metabolites
 327 dealing with side-effects on health [...] and published within the last ten years before the date of
 328 submission of the dossier".

329 In particular, epidemiological studies should be retrieved from the literature according to the EFSA
 330 Guidance entitled "Submission of scientific-peer reviewed open literature for the approval of pesticide
 331 active substances under Regulation (EC) No 1107/2009" (EFSA 2011a), which follows the principles of
 332 the Guidance "Application of systematic review methodology to food and feed safety assessments to
 333 support decision making" (EFSA 2010). As indicated in the EFSA Guidance, "the process of identifying

² Regulation (EC) No 1107/2009 of the European Parliament and of the Council of 21 October 2009 concerning the placing of plant protection products on the market and repealing Council Directives 79/117/EEC and 91/414/EEC. OJ L 309, 24.11.2009, p. 1-50.

³ Commission Regulation (EU) No 283/2013, of 1 March 2013, setting out the data requirements for active substances, in accordance with Regulation (EC) No 1107/2009 of the European Parliament and of the Council concerning the placing of plant protection products on the market. OJ L 93, 3.4.2013, p. 1-84.

⁴ Commission Regulation (EU) No 284/2013 of 1 March 2013 setting out the data requirements for plant protection products, in accordance with Regulation (EC) No 1107/2009 of the European Parliament and of the Council concerning the placing of plant protection products on the market. OJ L 93, 3.4.2013, p. 85-152.

334 and selecting scientific peer-reviewed open literature for active substances, their metabolites, or plant
335 protection products" is based on a literature review which is systematic in the approach.

336 The submission of epidemiological studies and more generally of human data by the applicants in
337 Europe has especially previously sometimes been incomplete and/or has not been performed in
338 compliance with current EFSA Guidance (EFSA 2011a). This is probably owing to the fact that a
339 mandatory requirement to perform an (epidemiological) literature search according to specific EFSA
340 Guidance is relatively recent, e.g. introduced for AIR-3 substances (Regulation AIR-3: Reg. (EU) No
341 844/2012; Guidance Document SANCO/2012/11251 – rev.4).

342 The integration of epidemiological data with toxicological findings in the peer review process of
343 pesticides in the EU should be encouraged but is still lacking. A recent and controversial example is
344 the one related to the evaluation of glyphosate in which significant efforts were made to include
345 epidemiological studies in the risk assessment, but the conclusion was that these studies provided
346 very limited evidence of an association between glyphosate and health outcomes.

347 In the case of the peer review of 2,4-D, most of epidemiological data were not used in the risk
348 assessment because it was critical to know the impurity profile of the active substance and this
349 information was not available in the publications (as happens frequently in epidemiological studies). In
350 conclusion, within the European regulatory system there is no example of an active substance
351 approval being influenced by epidemiological data.

352 Now that a literature search including epidemiological studies is mandatory and guidance is in place
353 (EFSA 2011a), a more consistent approach can facilitate risk assessment. However no framework has
354 been established on how to assess such epidemiological information in the regulatory process. In
355 particular, none of the classical criteria used for the evaluation of these studies is included in the
356 current regulatory framework (e.g. study design, use of odd ratios and relative risks, potential
357 confounders, multiple comparisons, assessment of causality). It follows that specific criteria or
358 guidance for the appropriate use of epidemiological findings in the process of writing and peer
359 reviewing Draft Assessment Reports (DARs) or Renewal Assessment Reports (RAR) is warranted. The
360 EFSA Stakeholder Workshop (2015) anticipated that the availability of more robust and
361 methodologically sound studies presenting accurate information on exposure would bolster the
362 regulation of pesticides in the European Union.

363 Another potential challenge is synchronisation between the process of renewal of active substances
364 and the output of epidemiological studies. Indeed, the planning, conduct, and analysis of
365 epidemiological studies often require a substantial amount of time, especially where interpretation of
366 data is complex.

367

368 **1.2. Background and Terms of Reference as provided by the requestor**

369 In 2013, EFSA published an External scientific report 'Literature review on epidemiological studies
370 linking exposure to pesticides and health effects' carried out by the University of Ioannina Medical
371 School (Ntzani et al., 2013). The report is based on a systematic review of epidemiological studies
372 published between 2006 and 2012 and summarises the association between pesticide exposure and
373 any health outcome examined (23 major categories of human health outcomes). A statistically
374 significant association was observed through fixed and random effect meta-analyses between
375 pesticide exposure and the following health outcomes; liver cancer, breast cancer, stomach cancer,
376 amyotrophic lateral sclerosis, asthma, type II diabetes, childhood leukaemia and Parkinson's disease.

377 Despite the large number of research articles and analyses (>6,000) available, the authors of the
378 report could not draw any firm conclusions for the majority of the health outcomes. This observation is
379 in line with previous studies assessing the association between the use of pesticides and the
380 occurrence of human health adverse effects which all acknowledge that such epidemiological studies
381 suffer from many limitations and large heterogeneity of data. The authors especially noted that broad
382 pesticides definitions in the epidemiological studies limited the value of the results of meta-analyses.
383 Also, the scope of the report, which focused on description of all available associations between
384 pesticide exposure and any health outcome within a five-year window, did not allow the in-depth
385 associations between pesticide and specific health outcomes. Nonetheless, the report highlights a

386 number of disease outcomes where further research is needed to draw firmer conclusions regarding
 387 the possible associations between pesticide exposures and occurrence of disease.

388 Nevertheless, the outcomes of the External scientific report are in line with other similar studies
 389 published in Europe^{5,6} and raise a number of questions and concerns, with regard to pesticide
 390 exposure and the associations with human health outcomes. Furthermore, the results of the report
 391 open the way for discussion on how to integrate results from epidemiological studies into pesticide risk
 392 assessments. This is particularly important for the peer-review team at EFSA dealing with the
 393 evaluation of approval of plant protection products for which the peer-review needs to evaluate
 394 epidemiological findings according to EU Regulation No 283/2013. The regulation states that
 395 applicants must submit relevant epidemiological studies, where available.

396 For the Scientific Opinion, the PPR Panel will discuss the associations between pesticide exposure and
 397 human health effects observed in the External scientific report (Ntzani et al., 2013) and how these
 398 findings could be interpreted in a regulatory pesticide risk assessment context. Hence, the PPR Panel
 399 will systematically assess the epidemiological studies collected in the report by addressing major data
 400 gaps and limitations of the studies and provide related recommendations.

401 The PPR Panel will specifically:

- 402 1. Collect and review all sources of gaps and limitations, based on (but not necessarily limited to)
 403 those identified in the External scientific report in regard to the quality and relevance of the
 404 available epidemiological studies.
- 405 2. Based on the gaps and limitations identified in point 1, propose potential refinements for
 406 future epidemiological studies to increase the quality, relevance and reliability of the findings
 407 and how they may impact pesticide risk assessment. This may include study design, exposure
 408 assessment, data quality and access, diagnostic classification of health outcomes, and
 409 statistical analysis.
- 410 3. Identify areas in which information and/or criteria are insufficient or lacking and propose
 411 recommendations for how to conduct pesticide epidemiological studies in order to improve
 412 and optimize the application in risk assessment. These recommendations should include
 413 harmonisation of exposure assessment (including use of biomonitoring data), vulnerable
 414 population sub-groups and/or health outcomes of interest (at biochemical, functional,
 415 morphological and clinical level) based on the gaps and limitations identified in point 1.
- 416 4. Discuss how to make appropriate use of epidemiological findings in risk assessment of
 417 pesticides during the peer review process of draft assessment reports, e.g. weight-of-evidence
 418 as well as integrating the epidemiological information with data from experimental toxicology,
 419 adverse outcome pathways, mechanism of actions, etc.

420 The PRAS Unit will consult the Scientific Committee on the consensual approach to EFSA's overarching
 421 scientific areas⁷, including the integration of epidemiological studies in risk assessment.

422

423 **1.3. Interpretation of the Terms of Reference**

424 In the Terms of Reference, EFSA requested the PPR Panel to write a scientific Opinion on the follow
 425 up of the results from the External Scientific Report on a systematic review of epidemiological studies
 426 published between 2006 and 2012 linking exposure to pesticides and human health effects (Ntzani et
 427 al., 2013). According to EU Regulation No 283/2013, the integration of epidemiological data into
 428 pesticide risk assessment is important for the peer review process of Draft Assessment Reports (DAR)
 429 and Renewal Assessment Reports (RAR) of active substances for EU approval and their intended use
 430 as plant protection products.

⁵ France: INSERM report 2013: Pesticides – effets sur la santé

⁶ UK: COT report 2011: Statement on a systematic review of the epidemiological literature on para-occupational exposure to pesticides and health outcomes other than cancer, and COT report 2006: Joint Statement on Royal Commission on Environmental Pollution report on crop spraying and the health of residents and bystanders

⁷ According to article 28 of Regulation (EC) No 178/2002

431 In its interpretation of the terms of reference, the PPR Panel will then develop a Scientific Opinion to
432 address the methodological limitations identified in epidemiological studies on pesticides and to make
433 recommendations to the sponsors of such studies on how to improve them in order to facilitate their
434 use for regulatory pesticide risk assessment, particularly for substances in the post-approval period.

435 This Scientific Opinion is intended to assist the peer review process during the renewal of pesticides
436 under Regulation 1107/2009 where the evaluation of epidemiological studies, along with clinical cases
437 and poisoning incidents following any kind of human exposure, if available, represent a data
438 requirement. Epidemiological data concerning exposures to pesticides in Europe will not be available
439 before first approval of an active substance (with the exception of incidents produced during the
440 manufacturing process, which are expected to be very unlikely) and so will not be expected to
441 contribute to a DAR. However there is the possibility that earlier prior approval has been granted for
442 use of an active substance in another jurisdiction and epidemiological data from that area may be
443 considered relevant. Regulation (EC) No 1107/2009 requires a search of the scientific peer-reviewed
444 open literature, where it is expected to retrieve existing epidemiological studies. It is therefore
445 recognised that epidemiological studies are more suitable for the renewal process of active
446 substances, also in compliance with the provision of the EC regulation 1141/2010 indicating that "The
447 dossiers submitted for renewal should include new data relevant to the active substance and new risk
448 assessments to reflect any changes in data requirements and any changes in scientific or technical
449 knowledge since the active substance was first included in Annex I to Directive 91/414/EEC".

450 The PPR Panel will specifically address the following topics:

- 451 1. Review inherent weaknesses affecting the quality of epidemiological studies (including gaps
452 and limitations of the available pesticide epidemiological studies) and their relevance in the
453 context of regulatory pesticide risk assessment. How can these weaknesses be addressed?
- 454 2. What are potential contributions of epidemiological studies that complement classical
455 toxicological studies conducted in laboratory animal species in the area of pesticide risk
456 assessment?
- 457 3. Discuss and propose a methodological approach specific for pesticide active substances on
458 how to make appropriate use of epidemiological studies, focusing on how to improve the gaps
459 and limitations identified.
- 460 4. Propose refinements to practice and recommendations for better use of the available
461 epidemiological evidence for risk assessment purposes. Discuss and propose a methodology
462 for the integration of epidemiological information with data from experimental toxicology.

463

464 **1.4. Additional information**

465 In order to fully address topics 1-4 above (section 1.3) attention has been paid to a number of
466 relevant reviews of epidemiological studies and the experience of other National and International
467 bodies with knowledge of epidemiology in general and in applying epidemiology to pesticide risk
468 assessment specifically. Detailed attention has been given to these studies in Annex A and drawn from
469 the experience of the authors that have contributed constructively to understanding in this area. Also
470 Annex A records published information that has been criticised for its lack of rigour showing how
471 unhelpful some published studies may be. The lessons learned from such good (and less-good)
472 practice have been incorporated into the main text by cross-referring to Annex A. In this way this
473 Scientific Opinion has the aim of clearly distilling and effectively communicating the arguments in the
474 main text without overwhelming the reader with all the supporting data which is nevertheless
475 accessible.

476 In addition, Annex B contains a summary of the main findings of a project that EFSA outsourced in
477 2015 to further investigate the role of human biological monitoring (HBM) in occupational health and
478 safety strategies as a tool for refined exposure assessment in epidemiological studies and to
479 contribute to the evaluation of potential health risks from occupational exposure to pesticides.

480

481 2. General framework of epidemiological studies on pesticides

482

483 This chapter introduces the basic elements of epidemiological studies on pesticides and contrasts them
484 with other types of studies.

485

486 2.1. Study design

487 Epidemiology studies the distribution and determinants of diseases in human or other target species
488 populations, to ascertain how, when and where diseases occur. This can be done through
489 observational studies and intervention studies (i.e., clinical trials)⁸. Both types of studies are carried
490 out in a natural setting, which is a less controlled environment than laboratories. To identify disease
491 determinants that are associated with either the presence of disease (prevalence) or with the
492 occurrence of new cases of disease over time (incidence). This is done by comparing study groups
493 subject to differing exposure to a potential risk factor.

494 Information on cases of disease occurring in a natural setting can also be systematically recorded in
495 the form of case reports or case series of exposed individuals only. Although case series/reports do
496 not compare study groups according to differing exposure they may provide useful information,
497 particularly on acute effects following high exposures, which makes them potentially relevant for risk
498 assessment.

499 In clinical trials the exposure of interest is randomly allocated to subjects and, whenever possible,
500 these subjects are blinded to their treatment, thereby eliminating potential bias due to their
501 knowledge about their exposure to a particular treatment. This is why they are called intervention
502 studies. Observational epidemiological studies differ from clinical studies in that the exposure of
503 interest is not randomly assigned to the subjects enrolled and participants are often not blinded to
504 their exposure. This is why they are called observational. As a result, randomized clinical trials rank
505 higher in terms of design as they provide unbiased estimates of average treatment effects.

506 The lack of random assignment of exposure in observational studies represents a key challenge, as
507 other risk factors that are associated with the occurrence of disease may be unevenly distributed
508 between those exposed and non-exposed. This means that known confounders need to be measured
509 and accounted for. However, there is always the possibility that unknown confounders are left
510 unaccounted for (automatically accounted for in randomised clinical trials by their design).
511 Furthermore the fact that study participants are often aware of their current or past exposure or may
512 not recall these accurately in observational studies (e.g. second-hand smoke, dietary intake or
513 occupational hazards) may result in biased estimates of exposure if it is based on self-report. As an
514 example it is not unlikely that when cancer cases and controls are asked whether they have previously
515 been exposed to a pesticide the cancer cases may report their exposure differently from controls, even
516 in cases where the past exposures did not differ between the two groups.

517 Traditionally, designs of observational epidemiological studies are classified as either ecological, cross-
518 sectional, case-control or cohort studies. This approach is based on the quality of exposure
519 assessment and the ability to assess directionality from exposure to outcome. These differences
520 largely determine the quality of the study (Pearce 2012; Rothman and Greenland 1998).

521

- 522 **Ecological studies** are observational studies where either exposure, outcome or both are
523 measured on a group but not at individual level and the correlation between the two is then
524 examined. Most often, exposure is measured on a group level while the use of health
525 registries often allows for extraction of health outcomes on an individual level (cancer,
526 mortality). These studies are often used when direct exposure assessment is difficult to
527 achieve and in cases where large contrast in exposures are needed (comparing levels between
different countries or occupations). Given the lack of exposure and/or outcome on an

⁸ In this opinion, "human data" includes observational studies, also called epidemiological studies, where the researcher is observing natural relationships between factors and health outcomes without acting upon study participants. Vigilance data also fall under this concept. In contrast, interventional studies are outside the scope of this Opinion. These studies also called experimental studies or randomized clinical trials, and their main feature is that the researcher intercedes as part of the study design.

528 individual level, these studies are useful for hypothesis generation but results generally need
529 to be followed up using more rigorous design in either humans or use of experimental
530 animals.

- 531 • In **cross-sectional studies** exposure and health status are assessed at the same time, and
532 prevalence rates (or incidence over a limited recent time) in groups varying in exposure are
533 compared. In such studies, the temporal relationship between exposure and disease cannot
534 be established since the current exposure may not be the relevant time window that leads to
535 development of the disease. Cross-sectional studies may nevertheless be useful for risk
536 assessment if exposure and effect occur more or less simultaneously or if exposure does not
537 change over time.
- 538 • **Case-control studies** examine the association between estimates of past exposures among
539 individuals that already have been diagnosed with the outcome of interest (e.g., cases) to a
540 control group of undiagnosed subjects from the same population. In population-based incident
541 case-control studies, cases are obtained from a well-defined population, with matched controls
542 selected from members of the population who are disease free at the time a case is incident.
543 The advantages of case-control studies are that they require less sample sizes, time and
544 resources compared to prospective studies when studying rare outcomes such as some types
545 of cancer. In case-control studies past exposure is most often not assessed based on 'direct'
546 measurement but rather through less certain measurements such as a recall captured through
547 interviewer or self-administered questionnaires or proxies such as job descriptions titles or
548 task histories. Besides the main limitation that case control studies are prone to is recall-bias
549 when estimating exposure, other challenges include the selection of appropriate controls; as
550 well as the need for appropriate confounder control.
- 551 • In **cohort studies** the population under investigation consists of individuals who are at risk of
552 developing a specific disease or health outcome at some point in the future. At baseline and at
553 later follow-ups (prospective cohort studies) relevant exposures, confounding factors and
554 health outcomes are assessed. After an appropriate follow-up period the frequency of
555 occurrence of the disease is compared among those differently exposed to the previously
556 assessed risk factor of interest. Cohort studies are therefore by design prospective as the
557 assessment of exposure to the risk factor and covariates of interest are measured before the
558 health outcome has occurred. Thus they can provide better evidence for causal associations
559 compared to the other designs mentioned above. In some cases, cohort studies may be based
560 on estimates of past exposure. Such retrospective exposure assessment is less precise than
561 direct measure and prone to recall-bias. As a result the quality of evidence from cohort studies
562 varies according to the actual method used to assess exposure and the level of detail by which
563 information on covariates were collected. Cohort studies are particularly useful for the study of
564 relatively common outcomes. If sufficiently powered in terms of size, they can also be used to
565 appropriately address relatively rare exposures and health outcomes. Prospective cohort
566 studies are also essential to study different critical exposure windows. An example of this is
567 longitudinal birth cohorts that follow children at regular intervals until adult age. Cohort
568 studies may require a long observation period when outcomes have a long latency prior to
569 onset of disease. Thus, such studies are both complex and expensive to conduct and are
570 prone to loss of follow-up.

571

572 2.2. Population and sample size

573 A key strength of epidemiological studies is that they study diseases in the very population about
574 which conclusions are to be drawn, rather than a proxy species. However, only rarely will it be
575 possible to study the whole population. Instead a sample will be drawn from the reference population
576 for the purpose of the study. As a result the observed effect size in the study population may differ
577 from that in the population if the former does not accurately reflect the latter. However, observations
578 made in a non-representative sample may still be valid within that sample but care should then be
579 made when extrapolating findings to the general population. Representative samples can be achieved
580 through use of appropriate sampling schemes.

581 Having decided how to select individuals for the study, it is also necessary to decide how many
582 participants should minimally be enrolled. The sample size of a study should be large enough to
583 warrant sufficient statistical power (e.g. 80%). This is the likelihood that an effect of a magnitude that
584 is considered biologically relevant or relevant from a regulatory perspective will also be statistically
585 significant. For example, a power of 80% means that the study will confirm a true association with a
586 probability of 80%. Also, small samples are likely to constitute an unrepresentative sample. The
587 statistical power is also closely related to risk inflation, which needs to be given special attention when
588 interpreting results from small or underpowered studies (see Annex D).

589 Epidemiological studies, like toxicological studies in laboratory animals, are often designed to examine
590 multiple endpoints unlike clinical trials that are designed and conducted to test one single hypothesis,
591 e.g. efficacy of a medical treatment. To put this in context, for laboratory animal toxicology test
592 protocols, OECD guidance for pesticides may prescribe a minimum number of animals to be enrolled in
593 each treatment group. This does not guarantee adequate power for any of the multitude of other
594 endpoints being tested in the same study. It is thus important to ascertain the power of a study post-
595 hoc both in epidemiology and laboratory studies.

596

597 **2.3. Exposure**

598 The quality of the exposure measurements influences the ability of a study to correctly ascertain the
599 causal relationship between the (dose of) exposure and a given adverse health outcome.

600

601 In toxicological studies in laboratory animals the 'treatment regime' i.e. dose, frequency, duration and
602 route are well defined beforehand and its implementation can be verified. This often allows expression
603 of exposure in terms of external dose administered daily via oral route for example in a 90-day study,
604 by multiplying the amount of feed ingested every day by a study animal with the intended (and
605 verified) concentration of the chemical present in the feed. Also, in the future, the internal exposure
606 has to be determined in the pivotal studies.

607 In the case of pesticides, estimating exposure in a human observational setting is difficult as the dose,
608 its frequency and duration over time and the route of exposure are not controlled and not even well
609 known.

610 Measuring the intensity, frequency and duration of exposure is often necessary for investigating
611 meaningful associations. Exposure may involve a high dose over a relatively short period of time, or a
612 low-level prolonged dose over a period from weeks to years. While the effects of acute, high-dose
613 pesticide exposure may appear within hours or days, the effects of chronic, low-dose exposures may
614 not appear until years later. Also a disease may require a minimal level of exposure but increase in
615 probability with longer exposure.

616 There may be differences in absorption and metabolism via different routes (dermal, inhalation and
617 oral). While dermal or inhalation are often the routes exposure occurs in occupational settings,
618 ingestion (food, water) may be the major route of pesticide exposure for the general population.

619

620 **2.4. Health outcomes**

621 The term health outcome refers to a disease state, event, behaviour or condition associated with
622 health that is under investigation. Health outcomes are those clinical events (usually represented as
623 diagnosis codes, i.e. International Classification of Diseases ICD-10) or outcomes (i.e., death) that are
624 the focus of the research. Use of health outcomes requires a well-defined case definition, a system to
625 report and record the cases and a measure to express the frequency of these events.

626 A well-defined case definition is necessary to ensure that cases are consistently diagnosed, regardless
627 of where, when and by whom they were identified and thus avoid misclassification. A case definition
628 involves a standard set of criteria, which can be a combination of clinical symptoms/signs, which can
629 be supplemented by confirmatory diagnostic tests with their known sensitivity and specificity. The

630 sensitivity of the whole testing procedure (i.e. the probability that a person with an adverse health
631 condition is truly diagnosed) must be known to estimate the true prevalence or incidence.

632 The clinical criteria often involve a combination of symptoms and possibly other characteristics (e.g.
633 age, occupation) that are associated with increased disease risk. At the same time, appropriately
634 measured and defined phenotypes or hard clinical outcomes add validity to the results.

635 Mortality, cancer and other nation-wide health registries generally meet the case-definition
636 requirements and provide (almost) exhaustive data on the incident cases within a population. These
637 health outcomes are recorded and classified in national health statistics databases, which depend on
638 accepted diagnostic criteria that are evolving and differ from one authority to another. Also, diagnoses
639 can be recorded in refined or relatively crude format. This may confound attempts to pool data
640 usefully for social benefit.

641 Although the disease status is typically expressed as a dichotomous variable, it may also be measured
642 as an ordinal variable (e.g., severe, moderate, mild or no disease) or as a quantitative variable for
643 example by measuring molecular biomarkers of toxic response in target organs or physiological
644 measures such as blood pressure or serum concentration of lipids or specific proteins.

645 The completeness of the data capture and its consistency are key contributors to the reliability of the
646 study. Harmonisation of diagnostic criteria, data storage and utility would bring benefits to the quality
647 of epidemiological studies.

648 A surrogate endpoint is used as substitute for a well-defined disease endpoint, an outcome measure,
649 commonly a laboratory measurement (biomarker of response). These measures are considered to be
650 on the causal pathway for the clinical outcome. In contrast to overt clinical disease, such biological
651 markers of health may allow to detect subtle, subclinical toxicodynamic processes. For such outcomes,
652 detailed analytical protocols for quantification should be specified to enable comparison or replication
653 across laboratories. The use of adverse outcome pathways can highlight differences in case definitions
654 (EFSA 2017).

655 Although surrogate outcomes may offer additional information, the suitability of the surrogate
656 outcome examined needs to be carefully assessed. In particular, the validity of surrogate outcomes
657 may represent a major limitation to their use (Ia Cour et al., 2010). Surrogate endpoints that have not
658 been validated should thus be avoided.

659 When the health status is captured in other ways, such as from self-completed questionnaires or
660 telephone interviews, from local records (medical or administrative databases) or through clinical
661 examination only, these should be validated to demonstrate that they reflect the underlying case
662 definition.

663

664 **2.5. Statistical analysis and reporting**

665 Reporting in detail materials, methods and results, and conducting appropriate statistical analyses are
666 key steps to ensure quality of epidemiological studies. Regarding statistical analysis, one can
667 distinguish between descriptive statistics and modelling of exposure-health relationships.

668 **2.5.1. Descriptive statistics**

669 Descriptive statistics aim to summarize the important characteristics of the study groups, such as
670 exposure measures, health outcomes, possible confounding factors and other relevant factors. The
671 descriptive statistics often include frequency tables and measures of central tendency (e.g. means and
672 medians) and dispersion (e.g. variance and interquartile range) of the parameters or variables studied.

673 **2.5.2. Modelling exposure-health relationship**

674 Modelling of the exposure-health relationship aims to assess the possible relationship between the
675 exposure and the health outcome under consideration. In particular, it can evaluate how this
676 relationship may depend on dose and mode of exposure and other possible intervening factors.

677 Statistical tests determine the probability that the observations found in scientific studies may have
678 occurred as a result of chance. This is done by summarising the results from individual observations
679 and evaluating whether if these summary estimates differ significantly between, e.g. exposed and
680 non-exposed groups, after taking into consideration random errors in the data.

681 For dichotomous outcomes, the statistical analysis compares study groups by assessing whether there
682 is a difference in disease frequency between the exposed and control populations. This is usually done
683 using a relative measure. The relative risk (RR) in cohort studies estimates the relative magnitude of
684 an association between exposure and disease comparing those that are exposed with those that are
685 not. It indicates the likelihood of developing the disease in the exposed group relative to those who
686 are not exposed. An odds ratio (OR), generally an outcome measure in case-control and cross-
687 sectional studies, represents the ratio of the odds of exposure between cases and controls (or
688 diseased and non-diseased in a cross-sectional study) and is often the relative measure used in
689 statistical testing. Different levels or doses of exposure can be compared in order to see if there is a
690 dose-response relationship. For continuous outcome measures, median or mean change in the
691 outcome are often examined across different level of exposure; either through analyses of variance or
692 through other parametric statistics, if the outcome is normally distributed.

693 While the statistical analysis will show that observed differences are significantly different or not
694 significantly different, both, merit careful reflection (Greenland et al., 2016).

695 **Interpretation of the absence of statistically significant difference.** Failure to reject the null
696 hypothesis does not necessarily mean that no association is present because the study may not have
697 sufficient power to detect it. The power depends on the following factors:

- 698 • sample size: with small sample sizes, statistical significance is more difficult to detect, even if true;
- 699 • variability in individual response or characteristics, either by chance or by non-random factors: the
700 larger the variability, the more difficult to demonstrate statistical significance;
- 701 • effect size or the magnitude of the observed difference between groups: the smaller the size of the
702 effect, the more difficult to demonstrate statistical significance.

703 **Interpretation of statistically significant difference.** Statistical significance means that the
704 observed difference is not likely due to chance alone. However, such a result still merits careful
705 consideration.

706 • Biological relevance. Rejection of the null hypothesis does not necessarily mean that the
707 association is biologically meaningful, nor does it mean that the relationship is causal (Skelly,
708 2011). The key issue is whether the magnitude of the observed difference (or "effect size") is
709 large enough to be considered biologically relevant. Thus, an association that is statistically
710 significant may be or may be not biologically relevant and vice versa. Increasingly, researchers
711 and regulators are looking beyond statistical significance for evidence of a "minimal biologically
712 important difference" for commonly used outcomes measures. Factoring biological significance
713 relevance into study design and power calculations and reporting results in terms of biological as
714 well as statistical significance will become increasingly important for risk assessment (Skelly,
715 2011). This is the subject of an EFSA Scientific Committee guidance document outlining generic
716 issues and criteria to be taken into account when considering biological relevance (EFSA 2017a);
717 also a framework is being developed to consider biological relevance at three main stages related
718 to the process of dealing with evidence (EFSA 2017b).

719 • Random error. Evaluation of statistical precision involves consideration of random error within the
720 study. Random error is the part of the study that cannot be predicted because that part is
721 attributable to chance. Statistical tests determine the probability that the observations found in
722 scientific studies have occurred as a result of chance. In general, as the number of study
723 participants increases, precision (often expressed as standard error) of the estimate of central
724 tendency (e.g. the mean) is increased and the ability to detect a statistically significant difference,
725 if there is a real difference between study groups, i.e. the study's power, is enhanced. However,
726 there is always a possibility, at least in theory, that the results observed are due to chance only
727 and that no true differences exist between the compared groups (Skelly, 2011). Very often this
728 rate is set at 5%.

729 • Multiple testing. As mentioned previously when discussing sample size, modelling of the exposure-
730 health relationship is in principle hypothesis-driven, i.e. it is to be stated beforehand in the study

731 objectives what will be tested. However, in reality, epidemiological studies (and toxicological
732 studies in laboratory animals) often explore a number of different health outcomes in relation to
733 the same exposure. If many statistical tests are conducted, some 5% of them will be statistically
734 significant without having any biological relevance (by chance). Such testing of multiple endpoints
735 (hypotheses) increases the risk of false positives and this can be controlled for by use of
736 Bonferroni, Sidak, or Benjamini-Hochberg corrections or other suitable methods. But this is often
737 omitted. Thus, when researchers carry out many statistical tests on the same set of data, they can
738 conclude that there are real differences where in fact there are none. Therefore, it is important to
739 consider large number of statistical results as preliminary indications that require further
740 validation. The EFSA opinion on statistical significance and biological significance notes that the
741 assumptions derived from a statistic analysis should be related to the study design. Analyses
742 should not be carried out independently of such information in order to avoid biased or unreliable
743 results (EFSA 2011b). Ultimately the choice of method for evaluating exposure-health relationship
744 and the number of hypotheses tested impact the overall study quality and its contribution to
745 weight of evidence (ECETOC, 2009).

746 **Effect size magnification.** An additional source of bias, albeit one that is lesser known, is that
747 which may result from small sample sizes and the consequent low statistical power. This lesser known
748 type of bias is “effect size magnification” which can result from low powered studies. While it is
749 generally widely-known that small, low-powered studies can result in false negatives since the study
750 power is inadequate to reliably detect a meaningful effect size, it is less well known that these studies
751 can result in inflation of effect sizes if those estimated effects pass a statistical threshold (e.g., the
752 common $p < 0.05$ threshold used to judge statistical significance). This effect –also known as effect size
753 magnification– is a phenomenon by which a “discovered” association (i.e., one that has passed a
754 given threshold of statistical significance) from a study with sub-optimal power to make that discovery
755 will produce an observed effect size that is artificially –and systematically– inflated. This is because
756 smaller, low-powered studies are more likely to be affected by random variation among individuals
757 than larger ones. Mathematically: conditional on a result passing some pre-determined threshold of
758 statistical significance, the estimated effect size is a biased estimate of the true effect size, with the
759 magnitude of this bias inversely related to power of the study.

760 As an example: if a trial were run thousands of times, there will be a broad distribution of observed
761 effect sizes, with smaller trials systematically producing a wider variation in observed effect sizes than
762 larger trials, but the median of these estimated effect sizes is close to the true effect size. However, in
763 a small and low powered study, only a small proportion of observed effects will pass any given (high)
764 statistical threshold of significance –and these will be only the ones with the greatest of effect sizes–.
765 Thus: when these smaller, low powered studies with greater random variation do indeed find a
766 significance-triggered association as a result of passing a given statistical threshold, they are more
767 likely to overestimate the size of that effect. What this means is that research findings of small and
768 significant studies are biased in favour of finding inflated effects. In general, the lower the background
769 (or control or natural) rate, the lower the effect size of interest, and the lower the power of the study,
770 the greater the tendency toward and magnitude of inflated effect sizes.

771 It is important to note, however, that this phenomenon is only present when a “pre-screening” for
772 statistical significance is done. The bottom line is that if it is desired to estimate a given quantity such
773 as an odds ratio or relative risk, “pre-screening” a series of effect sizes for statistical significance will
774 result in an effect size that is systematically biased away from the null (larger than the true effect
775 size). To the extent that regulators, decision-makers, and others are acting in this way –looking for
776 statistically significant results in what might be considered a sea of comparisons and then using those
777 that cross a given threshold of statistical significance to evaluate and judge the magnitude of the
778 effect– will likely result in an exaggerated sense of the magnitude of the hypothesized association.
779 Additional details and several effect size simulations are provided in Annex D of this document.

780 **Confounding** occurs when the relationship between the exposure and disease is to some extent
781 attributable to the effect of another risk factor, i.e., the confounder. There are several traditionally
782 recognized requirements for a risk factor to actually act as a confounder as described by McNamee
783 (2003) and illustrated below. The factor must:

784 • be a cause of the disease, or a surrogate measure of the cause, in unexposed people; factors
785 satisfying this condition are called ‘risk factors’; and

786 • be correlated, positively or negatively, with exposure in the study populations independently
787 from the presence of the disease. If the study population is classified into exposed and
788 unexposed groups, this means that the factor has a different distribution (prevalence) in the
789 two groups; and
790 • not be an intermediate step in the causal pathway between the exposure and the disease

791 Confounding can result in an over- or underestimation of the relationship between exposure and
792 disease and occurs because the effects of the two risk factors have not been separated or
793 "disentangled". In fact –if strong enough– confounding can also reverse an apparent association.

794 A number of procedures are available for controlling confounding, both in the design phase of the
795 study or in the analytical phase. For large studies, control in the design phase is often preferable. In
796 the design phase, the epidemiological researcher can limit the study population to individuals that
797 share a characteristic which the researcher wishes to control. This is known as "restriction" and in fact
798 removes the potential effect of confounding caused by the characteristic which is now eliminated. A
799 second method in the design phase through which the researcher can control confounding is by
800 "matching". Here, the researcher matches individuals based on the confounding variable which
801 ensures that the confounding variable is evenly distributed between the two comparison groups.

802 Beyond the design phase –at the analysis stage– control for confounding can be done by means of
803 either stratification or statistical modelling. One means of control is by stratification in which the
804 association is measured separately, under each of the confounding variables (e.g., males and females,
805 ethnicity, or age group). The separate estimates can be "brought together" statistically –when
806 appropriate– to produce a common OR, Relative Risk (RR) or other effect size measure by weighting
807 the estimates measured in each stratum (e.g., using Mantel-Haenszel approaches). This can be done
808 at the cost of reducing sample size. Although relatively easy to perform, there can be difficulties
809 associated with the inability of this stratification to deal with multiple confounders simultaneously. For
810 these situations, control can be achieved through statistical modelling (e.g., multiple logistic
811 regression).

812 Regardless of the approaches available for control of confounding in the design and analysis phases of
813 the study described above, it is important –prior to any epidemiological studies being initiated in the
814 field– that careful consideration be given to confounders because researchers cannot control for a
815 variable which they have not considered in the design or for which they have not collected data.

816 Epidemiological studies –published or not– are often criticised for ignoring potential confounders that
817 may possibly either falsely implicate or inappropriately negate a given risk factor. Despite these
818 critiques, rarely is an argument presented on the likely size of the impact of the bias from such
819 possible confounding. It should be emphasized that a confounder must be a relatively strong risk
820 factor for the disease to be strongly associated with the exposure of interest to create a substantial
821 distortion in the risk estimate. It is not sufficient to simply raise the possibility of confounding; one
822 should make a persuasive argument explaining why a risk factor is likely to be a confounder, what its
823 impact might be, and how important that impact might be to the interpretation of findings. It is
824 important to consider the magnitude of the association as measured by the relative risk, odds ratio,
825 risk ratio, regression coefficient, etc. since strong relative risks are unlikely to be due to unmeasured
826 confounding, while weak associations may be due to residual confounding by variables that the
827 investigator did not measure or control in the analysis (US-EPA, 2010b).

828 **Effect modification.** Effects of pesticides, and other chemicals, on human health can hardly be
829 expected to be identical across all individuals. For example, the effect that any given active substance
830 might have on adult healthy subjects may not be the same as that it may have on infants, elderly, or
831 pregnant women. Thus, some subsets of the population are more likely to develop a disease when
832 exposed to a chemical because of an increased sensitivity. For this the term 'vulnerable subpopulation'
833 has been used, which means children, pregnant women, the elderly, individuals with a history of
834 serious illness and other subpopulations identified as being subject to special health risks from
835 exposure to environmental chemicals (i.e., because of genetic polymorphisms of drug-metabolizing
836 enzymes, transporters or biological targets). The average treatment effect measures the effect of an
837 exposure averaged over all subpopulations. However, there may be heterogeneity in the strength of
838 an association between various subpopulations. For example, the magnitude of the association
839 between exposure to chemical A and health outcome B may be stronger in children than in healthy
840 adults, and absent in those wearing protective clothing at the time of exposure or in those of different

841 genotype. If heterogeneity is truly present, then any single summary measure of an overall
842 association would be deficient and possibly misleading. The presence of heterogeneity is assessed by
843 testing for the presence of statistically significant interaction between the factor and the effect in the
844 various subpopulations. But in practice this requires large sample size.

845 Investigating the effect in subpopulations defined by relevant factors may advance knowledge on the
846 effect on human health of the risk factor of interest.

847

848 **2.6. Study validity**

849 When either a statistically significant association or no such significant association between e.g.
850 pesticide exposures and a health outcome is observed, there is a need to also evaluate the validity of
851 a research study, assessing factors that might distort the true association and/or influence its
852 interpretation. These imperfections relate to systematic sources of error that result in a
853 (systematically) incorrect estimate of the association between exposure and disease.

854 **Temporal sequence.** Any claim of causation must involve the cause preceding in time the presumed
855 effect. Rothman (2002) considered temporality as the only criterion that is truly causal, such that lack
856 of temporality rules out causality. While the temporal sequence of an epidemiological association
857 implies the necessity for the exposure to precede the outcome (effect) in time, measurement of the
858 exposure is not required to precede measurement of the outcome. This requirement is easier met in
859 prospective study designs (i.e. cohort studies), than when exposure is assessed retrospectively (case-
860 control studies) or assessed at the same time than the outcome (cross-sectional studies). However,
861 also in prospective studies the time sequence for cause and effect and the temporal direction might be
862 difficult to ascertain if a disease developed slowly and initial forms of disease were difficult to measure
863 (Höfler, 2011).

864 While the random error discussed previously is considered a precision problem and is affected by
865 sampling variability, **bias** is considered a validity issue. More specifically: bias issues generally involve
866 methodological imperfections in study design or study analysis that affect whether the correct
867 population parameter is being estimated. The main types of bias include selection bias, information
868 bias (including recall bias and interviewer/observer bias), and confounding. An additional potential
869 source of bias is effect size magnification, which has already been mentioned.

870 **Selection bias** concerns a systematic error relating to validity that occurs as a result of the
871 procedures and methods used to select subjects into the study, the way that subjects are lost from
872 the study or otherwise influence continuing study participation.

873 Typically, such a bias occurs in a case control study when inclusion (or exclusion) of study subjects on
874 the basis of disease is somehow related to the prior exposure status being studied. One example
875 might be the tendency for initial publicity or media attention to a suspected association between an
876 exposure and a health outcome to result in preferential diagnosis of those that had been exposed
877 compared to those that had not. Selection bias can also occur in cohort studies if the exposed and
878 unexposed groups are not truly comparable as when, for example, those that are lost from the study
879 (loss to follow-up, withdrawn or non-response) are different in status to those who remain. Selection
880 bias can also occur in cross-sectional studies due to selective survival: only those that have survived
881 are included in the study. These types of bias can generally be dealt with by careful design and
882 conduct of a study.

883 The “healthy worker effect” (HWE) is a commonly recognized selection bias that illustrates a specific
884 bias that can occur in occupational epidemiology studies: workers tend to be healthier than individuals
885 from the general population overall since they need to be employable in a workforce and can thus
886 often have a more favourable outcome status than a population-based sample obtained from the
887 general population. Such a HWE bias can result in observed associations that are masked or lessened
888 compared to the true effect and thus can lead to the appearance of lower mortality or morbidity rates
889 for workers exposed to chemicals or other deleterious substances.

890 **Information bias** concerns a systematic error when there are systematic differences in the way
891 information regarding exposure or the health outcome are obtained from the different study groups
892 that result in incorrect or otherwise erroneous information being obtained or measured with respect to
893 one or more covariates being measured in the study. Information bias results in misclassification
894 which in turn leads to incorrect categorization with respect to either exposure or disease status and
895 thus the potential for bias in any resulting epidemiological effect size measure such as an OR or RR.

896 Misclassification of exposure status can result from imprecise, inadequate, or incorrect measurements;
897 from a subject's incorrect self-report; or from incorrect coding of exposure data.

898 Misclassification of disease status can for example arise from laboratory error, from detection bias,
899 from incorrect or inconsistent coding of the disease status in the database, or from incorrect recall.
900 Recall bias is a type of information bias that concerns a systematic error when the reporting of disease
901 status is different, depending on the exposure status (or vice versa). Interviewer bias is another kind
902 of information bias that occurs where interviewers are aware of the exposure status of individuals and
903 may probe for answers on disease status differentially –whether intended or not– between exposure
904 groups. This can be a particularly pernicious form of misclassification –at least for case-control
905 studies– since a diseased subject may be more likely to recall an exposure that occurred at an earlier
906 time period than a non-diseased subject. This will lead to a bias away from null value (of no relation
907 between exposure and disease) in any effect measure.

908 Importantly, such misclassifications as described above can be “differential” or “non-differential” and
909 these relate to (i) the degree to which a person that is truly exposed (or diseased) is correctly
910 classified as being truly exposed or diseased and (ii) the degree to which an individual who is truly not
911 exposed (or diseased) is correctly classified in that way. The former is known as “sensitivity” while the
912 latter is referred to as “specificity” and both of these play a role in determining the existence and
913 possible direction of bias. Differential misclassification means that misclassification has occurred in a
914 way that depends on the values of other variables, while non-differential misclassification refers to
915 misclassifications that do not depend on the value of other variables.

916 What is important from an epidemiologic perspective is that misclassification biases –either differential
917 or non-differential– depend on the sensitivity and specificity of the study’s methods used to categorize
918 such exposures and can have a predictable effect on the direction of bias under certain (limited)
919 conditions: this ability to characterize the direction of the bias based on knowledge of the study
920 methods and analyses can be useful to the regulatory decision-maker since it allows the decision
921 maker to determine whether the epidemiological effect sizes being considered (e.g., OR, RR) are likely
922 underestimates or overestimates of the true effect size. While it is commonly assumed by some that
923 non-differential misclassification bias produces predictable biases toward the null (and thus
924 systematically under-predicts the effect size), this is not necessarily the case. Also, the sometimes-
925 common assumption in epidemiology studies that misclassification is non-differential (which is
926 sometimes also paired with the assumption that non-differential misclassification bias is always toward
927 the null) is not always justified (e.g., see Jurek et al, 2005).

928 **Sensitivity analysis.** When unmeasured confounders are thought to affect the results, researchers
929 should conduct sensitivity analyses to estimate the range of impacts and the resulting range of
930 adjusted effect measures (US-EPA 2010b). Quantitative sensitivity (or bias) analyses are however not
931 typically conducted in epidemiological studies, with most researchers instead describing various
932 potential biases qualitatively in the form of a narrative in the discussion section of a paper.

933 Although sensitivity analysis is rarely reported, it is often advisable that the epidemiologic investigator
934 performs this analysis to try and estimate the impact of biases, such as exposure misclassification or
935 selection bias, by known but unmeasured risk factors or to demonstrate the potential effects that a
936 missing or unaccounted for confounder may have on the observed effect sizes (see Gustafson and
937 McCandless, 2010). Sensitivity analyses should be incorporated in the list of criteria for reviewing
938 epidemiologic data for risk assessment purposes.

939

940

941 3. Key limitations of the available epidemiological studies on pesticides

942 3.1. Limitations identified by the authors of the EFSA external 943 scientific report

944 The EFSA External scientific report (Ntzani et al., 2013, summarized in Annex A) identified a plethora
945 of epidemiological studies which investigate diverse health outcomes. In an effort to systematically
946 appraise the epidemiological evidence, a number of methodological limitations were highlighted
947 including the lack of direct exposure assessment, use of generic pesticide definitions, multiple testing,
948 and heterogeneity of data. In the presence of these limitations, robust conclusions on causality based
949 on epidemiological evidence alone could not be drawn, but outcomes for which supportive evidence
950 from epidemiology existed were highlighted for future investigation. The main limitations identified
951 included:

- 952 • Weak study designs: Lack of prospective studies and frequent use of study designs that are
953 prone to bias (recall bias and reverse causation for case-control and cross-sectional studies).
954 In addition, many of the studies conducted appeared to be insufficiently powered.
- 955 • Lack of detailed exposure assessment, including lack of appropriate biomarkers. Instead many
956 studies relied on broad definition of exposure assessed through questionnaires (often not
957 validated). There was often also lack of information on specific pesticide exposure and co-
958 exposures.
- 959 • Deficiencies in outcome assessment (broad outcome definitions and use of self-reported
960 outcomes or surrogate outcomes).
- 961 • Deficiencies in reporting and analysis (interpretation of effect estimates, confounder control
962 and multiple testing).
- 963 • Selective reporting, publication bias and other biases (e.g. conflict of interest) were likely to
964 be prevalent in this literature.

965 In many cases the quality of the studies was suboptimal, and for many health outcomes too few
966 studies were available. The observed heterogeneity in the results within each studied outcome was
967 often large. However, heterogeneity is not always a result of biases and may be genuine and
968 consideration of a priori defined subgroup analysis and meta-regression should be part of evidence
969 synthesis efforts. Occupational studies, which are of particular importance to pesticide exposure, are
970 also vulnerable to the healthy worker effect, a bias resulting in lower morbidity and mortality rates
971 within the workforce than in the general population. The healthy worker effect tends to decline with
972 age of the population under study.

973 Good-quality studies with sufficient statistical power, detailed definition of pesticide exposure and
974 transparent reporting are rare. Apart from the Agricultural Health Study, there were no other large
975 studies with good quality data for many study outcomes. It is important to note that several of these
976 methodological limitations have not been limited to pesticide exposure studies and, most importantly,
977 are not specific in epidemiology and have been observed in other specific fields including in animal
978 studies (Tsilidis et al., 2013).

979 Given the wide range of pesticides with various definitions in the EFSA External scientific report, it is
980 difficult to harmonise this information across studies. Although heterogeneity of findings across studies
981 can be as informative as homogeneity, information needs to be harmonised such that replication can
982 be assessed and summary effect sizes be calculated. This does not mean that if there is genuine
983 heterogeneity the different studies cannot be pooled. Limited conclusions can be made from a single
984 study. Nonetheless, the report highlighted a number of associations between pesticides and health
985 effects that merit further consideration and investigation. Of interest is the fact that a considerable
986 proportion of the published literature focused on pesticides no longer approved for use in the EU and
987 in most developed countries e.g., studies focusing solely on DDT and its metabolites constituted
988 almost 10% of the eligible studies (Ntzani et al., 2013). These may still be appropriate since they may
989 persist as pesticide residues or because they continue to be used in developing countries. Also, the
990 report focused on epidemiological evidence in relation to any health outcome across a 5-year window.
991 Although the report is valuable in describing the field of epidemiological assessment of pesticide-

992 health associations, it is not able to answer specific disease-pesticide questions thoroughly. A more in-
993 depth analysis of specific disease endpoints associated with pesticides exposure is needed where this
994 information is available and studies published earlier than the 5-year window should be also included.

995 **3.2. Limitations in study designs**

996 For ethical reasons randomized controlled trials are not generally allowed to test the safety of low
997 dose pesticide exposure in the EU. Therefore, information on potential adverse health consequences in
998 humans has to be extracted using observational studies. Ideally such studies should be prospective
999 and designed so that the temporal separation between the exposure and the disease outcome is
1000 appropriate with respect to the time it takes to develop the disease. For outcomes such as cancer or
1001 cardiovascular diseases, which often have a long latency period (>10 years), exposure should be
1002 assessed more than once prior to the outcome assessment. Exposure at one time point may not
1003 accurately reflect long-term exposure. The problem is that the disease may not have been identified at
1004 the time of the exposure assessment so reverse causality is a problem. For this reason, sometimes the
1005 outcomes identified during the first 2 years of follow-up need to be excluded. For other outcomes with
1006 a shorter latency period such as immune function disturbances the appropriate temporal separation
1007 may be in the range of days or weeks and a single exposure assessment may be adequate. In short,
1008 the ideal design of a study depends on the latency period for the outcome under consideration. The
1009 expected latency period then determines both the length of follow-up and the frequency for which the
1010 exposure has to be quantified. Failure to consider these issues when designing a study means that the
1011 exposure and outcome cannot be reliably linked.

1012 Among the 795 studies reviewed in the Ntzani report 38% were case-control studies and 32% cross-
1013 sectional studies. As a result, evidence on potential adverse health consequences of pesticide
1014 exposure is largely based on studies that have sub-optimal design, at least for outcomes that have
1015 long latency periods. For the cross-sectional studies, directionality cannot be assessed and observed
1016 associations may often reflect reverse causation (is the disease caused by the exposure, or does the
1017 disease influence the exposure?). However for pesticides reverse causation could be observed.

1018 Although case-control studies are frequently used for rare outcomes, such as several cancers, their
1019 main limitation is that they are prone to recall bias and they have to rely on retrospective assessment
1020 of exposure. Alone, case-control studies generally provide rather weak evidence, but they can still
1021 provide useful information, especially for rare outcomes. It is important to examine whether results
1022 from case control and prospective studies converge. This was for example the case amongst studies
1023 that were conducted to examine associations between intake of trans-fatty acids and cardiovascular
1024 disease (EFSA 2004), where both case-control and prospective studies consistently reported positive
1025 associations. The effect estimates between the two study designs were systematically different with
1026 prospective studies reporting more modest effect sizes but both study designs reached similar
1027 conclusions.

1028 **3.3. Relevance of study populations**

1029 Because the environmentally relevant doses of pesticides to which individuals are exposed are lower
1030 than those required to induce observed toxicity in animal models, the associated toxic effects need to
1031 be understood in the context of vulnerable subpopulations. This is the case of genetic susceptibility,
1032 which represents a critical factor for risk assessment that should be accounted for (Gómez-Martin et
1033 al., 2015).

1034 One other subgroup of population of special interest are represented by children, because their
1035 metabolism, physiology, diet and exposure patterns to environmental chemicals differ from those of
1036 adults and can make them more susceptible to their harmful effects. The window(s) of biologic
1037 susceptibility remain unknown for the most part, and would be expected to vary by mechanism. Those
1038 subgroups are currently considered during the risk assessment process but may deserve more
1039 attention to provide additional protection.

1040 3.4. Challenges in exposure assessment

1041 Other limitations of epidemiological studies conducted on pesticides derive from uncertainty in
1042 exposure assessment. This represents a major limitation of studies on pesticides. Their specific
1043 limitations include the fact that most currently approved pesticides tend to have short elimination half-
1044 lives and that their use involves application of various formulations depending on the crop and season.
1045 As a result, accurate assessment needs to capture intermittent long-term exposure of these non-
1046 persistent chemicals as well as being able to quantify exposure to individual pesticides.

1047 Numerous studies have assessed internal exposure by measuring urinary non-active metabolites
1048 common for a large group of pesticides (for example dialkyl phosphates for organophosphates, 3-
1049 phenoxybenzoic acid for pyrethroids or 6-chloronicotinic acid for neonicotinoids). These data may
1050 create uncertainty and should not be utilized to infer any risk because: a) a fraction of these
1051 metabolites might reflect direct exposure through ingestion of preformed metabolites from food and
1052 other sources, rather than ingestion of the parent compound; and b) the potency of the different
1053 parent pesticides can vary by orders of magnitude. Thereby, HBM data based on those urine
1054 metabolites can be unhelpful unless they are paired with other data indicating the actual pesticide
1055 exposure.

1056 Ideally exposure should be quantified on an individual level using biomarkers of internal dose. As most
1057 available biomarkers reflect short term (few hours or days) exposure and given the cost and difficulty
1058 of collecting multiple samples over time, many studies quantify exposure in terms of external dose.
1059 Quantitative estimation of external dose needs to account for both frequency and duration of
1060 exposure and should preferably be done on an individual but no group level. Often external exposure
1061 is quantified using proxy measures such as:

- 1062 • subject- or relative-reported jobs, job titles, tasks or other lifestyle habits which are being
1063 associated with the potential exposure to or actual use of pesticides in general and/or
- 1064 • handling of a specific product or set of products and potential exposure to these as
1065 documented through existing pesticide records or diaries or estimated from crops grown;
- 1066 • environmental data: environmental pesticide monitoring e.g. in water, distance from and/or
1067 duration of residence in a particular geographical area considered to be a site of exposure;

1068 In many cases these proxy measures are recorded with use of questionnaires, which can be either
1069 interviewer-administered or based on self-report. The limitation here is that questionnaire data often
1070 rely on individual recall and knowledge and are thus potentially subject to both recall bias and bias
1071 introduced by the interviewer or study subjects. These sources of uncertainty can to some extent be
1072 quantified if the questionnaires are validated against biomarkers (that is, to what extent do individual
1073 questions predict biomarker concentrations in a sub-sample of participants). If the exposure is
1074 assessed retrospectively the accuracy of the recall is for obvious reasons more likely to be
1075 compromised and impossible to validate. When exposure is based on records, similar difficulties may
1076 occur due to e.g. incomplete or inaccurate records.

1077 In many previous studies, duration of exposure is often used as a surrogate of cumulative exposure,
1078 assuming that exposure is uniform and continuous over time (e.g. the employment period) but this
1079 assumption must be challenged for pesticides. Although for some chemicals the exposure patterns
1080 may be fairly constant, exposures for many pesticides will vary with season, by personal protective
1081 equipment, and by work practices, and in many cases uses are not highly repetitive. At an individual
1082 level, exposures can vary on a daily and even hourly basis, and often involve several pesticides. This
1083 temporal variability can result in particularly high variation in systemic exposures for pesticides with
1084 short biological half-lives and considerable uncertainty in extrapolating single or few measurements to
1085 individual exposures over a longer term. Hence, many repeated measurements over time may be
1086 required to improve exposure estimates.

1087 3.5. Inappropriate or non-validated surrogates of health outcomes

1088 Reliance on clinically manifested outcomes can increase the likelihood that individuals who have
1089 progressed along the toxicodynamic continuum from exposure to disease but have not yet reached an
1090 overt clinical disease state will be misclassified as not having the disease (Nachman et al., 2011).

1091 Thereby, delay in onset of clinical symptoms following exposure may cause underreporting where
1092 clinical assessment alone is used at an inappropriate point in time.

1093 Surrogate outcomes may seem an attractive alternative to clinically relevant outcomes since there may
1094 be various surrogates for the same disease and they may occur sooner and/or be easier to assess,
1095 thereby shortening the time to diagnosis. A valid surrogate endpoint must however be predictive of
1096 the causal relationship and accurately predict the outcome of interest. Although surrogate markers
1097 may correlate with an outcome, they may not capture the effect of a factor on the outcome. This may
1098 be because the surrogate may not be causally or strongly related to the clinical outcome, but only a
1099 concomitant factor, and thus may not be predictive of the clinical outcome. The validity of surrogate
1100 outcomes may thus represent a major limitation to their use (la Cour et al., 2010).

1101 Surrogate endpoints should thus be avoided unless they have been validated. Some criteria to assess
1102 the validity of a surrogate outcome include:

- 1103 • the surrogate has been shown to be in the causal pathway of the disease. This can be
1104 supported by the following evidence: correlation of biomarker response to pathology and
1105 improved performance relative to other biomarkers; biological understanding and relevance to
1106 toxicity (mechanism of response); consistent response across mechanistically different
1107 compounds and similar response across sex, strain and species; presence of dose-response
1108 and temporal relationship to the magnitude of response; specificity of response to toxicity;
1109 that is, the biomarker should not reflect the response to toxicities in other tissues, or to
1110 physiological effects without toxicity in the target organ.
- 1111 • at least one well conducted trial using both the surrogate and true outcome (Grimes and
1112 Schulz, 2005; la Cour et al., 2010). Several statistical methods are used to assess these
1113 criteria and if they are fulfilled the validity of the surrogate is increased. However, many times
1114 some uncertainty remains, making it difficult to apply surrogates in epidemiological studies (la
1115 Cour et al., 2010).

1116 **3.6. Statistical analyses and interpretation of results**

1117 The statistical analyses and the interpretation of scientific findings that appear in the epidemiologic
1118 literature on the relationship between pesticides and health outcomes do not substantially deviate
1119 from those reported in other fields of epidemiologic research. Therefore, the advantages and
1120 limitations of epidemiologic studies presented in section 2.5 also apply to the epidemiologic studies on
1121 pesticides.

1122 The few distinctive features of the epidemiologic studies on pesticides include the following: a) sparse
1123 use of appropriate statistical analyses in the presence of measurement errors when assessing
1124 exposure to pesticides and b) paucity of information on other important factors that may affect the
1125 exposure-health relationship. These features are expanded on in the following paragraphs.

1126 a) Statistical analyses in the presence of measurement errors

1127 The difficulties inherent in correctly measuring exposure are frequent in many areas of epidemiologic
1128 research, such as nutritional epidemiology and environmental epidemiology. It is not easy to gauge
1129 the short- and long-term exposure outside controlled laboratory experimental settings. In large
1130 populations, individuals are exposed to a variety of different agents in a variety of different forms for
1131 varying durations and with varying intensities.

1132 Unlike nutritional or environmental epidemiology, however, pesticide epidemiology has so far made
1133 little use of statistical analyses that would appropriately incorporate measurement errors, despite their
1134 wide availability and sizable literature on the topic. A direct consequence of this is that the inferential
1135 conclusions may not have been as accurate and as precise as they could have been if these statistical
1136 methods were utilized (Bengtson et al., 2016; Dionisio et al., 2016; Spiegelman, 2016).

1137 b) Information on other important factors of interest

1138 Identifying and measuring the other relevant factors that might affect an outcome of interest is a
1139 recurrent and crucial issue in all fields of science. For example, knowing that a drug effectively cures a
1140 disease on average may not suffice if such drug is indeed harmful to children or pregnant women.
1141 Whether or not age, pregnancy, and other characteristics affect the efficacy of a drug is an essential
1142 piece of information to doctors, patients, drug manufacturers, and drug-approval agencies alike.

1143 Pesticide epidemiology provides an opportunity for careful identification, accurate measuring and
1144 thorough assessment of possible relevant factors and their role in the exposure-health relationship.
1145 Most often, relevant factors have been screened as potential confounders. When confounding effects
1146 were detected, these needed to be adjusted for in the statistical analyses. This has left room for
1147 further investigations that would shed light on this important issue by reconsidering data that have
1148 already been collected and that may be collected in future studies. The statistical methods in the
1149 pesticide literature have been mainly restricted to standard applications of basic regression analyses,
1150 such as binary probability and hazard regression models. Potentially useful analytical approaches, such
1151 as propensity score matching, mediation analyses, and causal inference, does not seem to have been
1152 applied in pesticide epidemiology yet (Imbens and Rubin, 2015).

1153

1154 **4. Proposals for refinement to future epidemiological studies for 1155 pesticide risk assessment**

1156 This chapter is aimed at addressing methods for assessment of available studies and proposals for
1157 improvement of such studies.

1158 Most of the existing epidemiological studies on pesticides exposure and health effects suffer from a
1159 range of methodological limitations or deficiencies. Epidemiological studies would ideally generate
1160 semi-quantitative data or be able to have greater relevance to quantitative risk assessment with
1161 respect to the output from prediction models. This would allow epidemiological results to be expressed
1162 in terms more comparable to the quantitative risk assessments, which are more typically used in
1163 evaluating the risks of pesticides. The question arises how such epidemiological data could be
1164 considered for risk assessment when judged in comparison to the predictive models. A precisely
1165 measured quantitative dose-response relationship is presently extremely rarely attainable as a result
1166 of epidemiological studies.

1167 The quality, reliability and relevance of the epidemiological evidence in relation to pesticide exposure
1168 and health effects can be enhanced by improving (a) the quality of each individual study and (b) the
1169 assessment of the combined evidence accrued from all available studies.

1170 **4.1. Assessing and reporting the quality of epidemiological studies**

1171 The quality and relevance of epidemiologic research should be considered when selecting
1172 epidemiological studies from the literature for use in risk assessment. The quality of this research can
1173 be enhanced by (Hernández et al., 2016; US-EPA, 2012):

- 1174 a) an adequate assessment of exposure, preferentially biomarker concentrations at individual
1175 level reported in a way which will allow for a dose-response assessment;
- 1176 b) a reasonably valid and reliable outcome assessment (well defined clinical entities or validated
1177 surrogates);
- 1178 c) an adequate accounting for potentially confounding variables (including exposure to multiple
1179 chemicals); and
- 1180 d) the conduct and reporting of subgroup analysis (e.g., stratification by gender, age, ethnicity).

1181

1182 It is widely accepted that biomedical research is subject to and suffers from diverse biases. Chalmers
1183 and Glasziou (2009) have estimated that approximately 85% of research investment in this area is

1184 wasted. An assessment of weaknesses in the design, conduct, and analysis of biomedical and public
 1185 health research studies is essential to identify potentially misleading results and identify reliable data.

1186 Guidelines and checklists help individuals meet certain standards by providing sets of rules or
 1187 principles that guide towards the best behaviour in a particular area. Several tools and guidelines have
 1188 been developed to aid the assessment of epidemiological evidence; however, there is no specific tool
 1189 for assessing studies on pesticides. These studies have special considerations around exposure
 1190 assessment that require specific attention; nonetheless standard epidemiological instruments for
 1191 critical appraisal of existing studies may apply. Existing reporting guidelines usually specify a minimum
 1192 set of information needed for a complete and clear account of what was done and what was found
 1193 during a research study focusing on aspects that might have introduced bias into the research (Simera
 1194 et al., 2010).

1195 A number of reporting guidelines and checklists developed specifically for studies on environmental
 1196 epidemiology and toxicology could be of particular interest for epidemiological studies assessing
 1197 pesticide exposures. For example, the RTI (Research Triangle Institute) international item bank is a
 1198 checklist of 29 questions for evaluating the risk of bias and precision of epidemiological studies of
 1199 chemical exposures. In addition, data quality assessment for biomonitoring, environmental
 1200 epidemiology, and short-lived chemicals has recently been developed (LaKind et al., 2014). Two
 1201 earlier efforts to develop evaluative schemes focused on epidemiology research on environmental
 1202 chemical exposures and neurodevelopment (Amler et al., 2006; Youngstrom et al., 2011).

1203 The Enhancing the QUAlity and Transparency Of health Research (EQUATOR) Network, officially
 1204 launched in June 2008, is an international initiative that promotes transparent and accurate reporting
 1205 of health research studies. It currently lists over 90 reporting guidelines with some of them being
 1206 specific for observational epidemiological studies (Strengthening the Reporting of OBservational
 1207 studies in Epidemiology, STROBE). STROBE includes recommendations on what should be included in
 1208 an accurate and complete report of an observational study including cross-sectional, case-control and
 1209 cohort studies using a checklist of 22 items (the [STROBE Statement](#)) that relate to the title, abstract,
 1210 introduction, methods, results, and discussion sections of articles (von Elm et al., 2007). The STROBE
 1211 statement has been endorsed by a growing number of biomedical journals which refer to it in their
 1212 instructions for authors. Table 1 presents a summary of the main features that STROBE proposes to
 1213 be taking into account when assessing the quality of epidemiological studies. Extensions to STROBE
 1214 are available including the STROBE Extension to Genetic Association studies (STREGA) initiative and
 1215 the STROBE-ME statement for assessment of molecular epidemiology studies. Since the STROBE
 1216 checklist mentions only in a general way exposure and health outcomes, the PPR Panel recommends
 1217 that an extension of the STROBE statement be developed, for inclusion in the EQUATOR network
 1218 library, specifically relevant to the area of pesticide exposure and health outcomes. This would greatly
 1219 assist researchers and regulatory bodies in the critical evaluation of study quality.

1220

1221 **Table 1:** Main features of the STROBE tool for quality appraisal of epidemiological studies.

1222

STROBE Statement Items		
Factor	Item	Recommendation
Title and Abstract		
	1	(a) Indicate the study's design with a commonly used term in the title of the abstract
		(b) Provide in the abstract an informative and balanced summary of what was done and what was found
Introduction		
Background/ rationale	2	Explain the scientific background and rationale for the investigation being reported
Objectives	3	State specific objectives, including pre-specified hypotheses

STROBE Statement Items		
Factor	Item	Recommendation
Methods		
Study design	4	Present key elements of study design early in the paper
Setting	5	Describe the setting, locations, and relevant dates, including periods of recruitment, exposure, follow-up, and data collection
Participants	6	<p>(a) Cohort study – Give the eligibility criteria, and the sources and methods of selection of participants. Describe methods of follow-up Case-control study – Give the eligibility criteria, and the sources and methods of case ascertainment and control selection. Give the rationale for the choice of cases and controls Cross-sectional study - Give eligibility criteria, and the sources and methods of selection of participants</p> <p>(b) Cohort study – For matched studies, give matching criteria and the number of exposed and unexposed Case-control study – For matched studies, giving matching criteria and the number of controls per case</p>
Variables	7	Clearly define all outcomes, exposures, predictors, potential confounders, and effect modifiers. Give diagnostic criteria, if applicable
Data sources/ measurements	8*	For each variable of interest, give sources of data and details of methods of assessment (measurement). Describe comparability of assessment methods if there is more than one group
Bias	9	Describe any efforts to address potential sources of bias
Study size	10	Explain how the study size was arrived at
Quantitative variables	11	Explain how quantitative variables were handled in the analyses. If applicable, describe which groupings were chosen and why
Statistical methods	12	<p>(a) Describe all statistical methods, including those used to control for confounding</p> <p>(b) Describe any methods used to examine subgroups and interactions</p> <p>(c) Explain how missing data were addressed</p> <p>(d) Cohort study—If applicable, explain how loss to follow-up was addressed Case-control study—If applicable, explain how matching of cases and controls was addressed Cross-sectional study—If applicable, describe analytical methods taking account of sampling strategy</p> <p>(e) Describe any sensitivity analyses</p>
Results		
Participants	13*	<p>(a) Report numbers of individuals at each stage of study—e.g. numbers potentially eligible, examined for eligibility, confirmed eligible, included in the study, completing follow-up, and analysed</p> <p>(b) Give reasons for non-participation at each stage</p> <p>(c) Consider use of a flow diagram</p>
Descriptive data	14*	<p>(a) Give characteristics of study participants (e.g. demographic, clinical, social) and information on exposures and potential confounders</p> <p>(b) Indicate number of participants with missing data for each variable of interest</p> <p>(c) <i>Cohort study</i>—Summarise follow-up time (e.g., average and total amount)</p>

STROBE Statement Items		
Factor	Item	Recommendation
Outcome data	15*	<i>Cohort study</i> —Report numbers of outcome events or summary measures over time <i>Case-control study</i> —Report numbers in each exposure category, or summary measures of exposure <i>Cross-sectional study</i> —Report numbers of outcome events or summary measures
Main results	16	(a) Give unadjusted estimates and, if applicable, confounder-adjusted estimates and their precision (e.g., 95% confidence interval). Make clear which confounders were adjusted for and why they were included (b) Report category boundaries when continuous variables were categorized (c) If relevant, consider translating estimates of relative risk into absolute risk for a meaningful time period
Other analyses	17	Report other analyses done—e.g. analyses of subgroups and interactions, and sensitivity analyses

STROBE Statement Items		
Factor	Item	Recommendation
Discussion		
Key results	18	Summarise key results with reference to study objectives
Limitations	19	Discuss limitations of the study, taking into account sources of potential bias or imprecision. Discuss both direction and magnitude of any potential bias
Interpretation	20	Give a cautious overall interpretation of results considering objectives, limitations, multiplicity of analyses, results from similar studies, and other relevant evidence
Generalisability	21	Discuss the generalisability (external validity) of the study results
Other information		
Funding	22	Give the source of funding and the role of the funders for the present study and, if applicable, for the original study on which the present article is based
<p>*Give information separately for cases and controls in case-control studies and, if applicable, for exposed and unexposed groups in cohort and cross-sectional studies.</p>		

1223

1224

1225 Standardization of reporting of epidemiological studies could improve selective reporting as has been
 1226 proposed for clinical trials. In this regard, the STROBE statement and similar efforts are useful tools.
 1227 Investigators should avoid the selective reporting of significant results and high-risk estimates.
 1228 Although some epidemiological research will remain exploratory and *post hoc* in nature, this should be
 1229 clarified in the publications and selective reporting minimized, so that epidemiological findings could
 1230 be interpreted in the most appropriate perspective (Kavvoura et al., 2007).

1231 Data quality assessment of formal epidemiological studies is based solely on the methodological
 1232 features of each individual study rather than on the results, regardless of whether they provide
 1233 evidence for or against an exposure/outcome association. However, for risk assessment it is important
 1234 to assess not only the quality of study methods but also the quality of the information they provide.
 1235 Indeed, good studies may be let down by the poor reporting of the information.

1236

1237 **4.2. Study design**

1238 Well conducted prospective studies with appropriate exposure assessment provide the most reliable
 1239 information and are less prone to biases. When prospective studies are available, results from less
 1240 well-designed studies can give additional support. In the absence of prospective studies the results
 1241 from cross-sectional and case-control studies should be considered but interpreted with caution.

1242

1243 **4.3. Study populations**

1244 The EU population, which exceeds 500 million people, can be assumed to be fairly heterogeneous and
 1245 so expected to include a number of more sensitive individuals that may be affected at lower doses of
 1246 pesticide exposure. To address this, in stratified sampling the target population is divided in subgroups
 1247 following some key population characteristics (e.g. sex and age), and a random sample is taken within
 1248 each subgroup. This allows subpopulations to be represented in a balanced manner in the study
 1249 population.

1250 Vulnerable populations should then be examined in epidemiological studies either through subgroup or
 1251 sensitivity analysis. However, such analyses need to be defined *a priori* or, if an agnostic approach is
 1252 taken forward, analyses should take this into account. Replication of results revealing these signals is
 1253 essential. Evidence of vulnerable subpopulations would ideally involve prospective studies that include
 1254 assessment of biomarkers of exposure, subclinical endpoints and disease incidence over time.

1255 It may be impossible to find a threshold of a toxic-induced increase in disease in the population
1256 because a large number of people are in a preclinical state and would be sensitive to the low end of
1257 the dose-response curve. For that to be evident, the epidemiology data would need to characterize
1258 the relationship between chemical exposure and risk of disease in a broad cross-section of the
1259 population (or look at precursor lesions or key events) and allow a robust examination of a low-dose
1260 slope.

1261 On the basis of the degree of evidence relevant to a vulnerable subpopulation, consideration should
1262 be given to whether dose-response assessment will focus on the population as a whole or will involve
1263 separate assessments for the general population and susceptible subgroups. If it is the population as a
1264 whole, the traditional approach is to address variability with uncertainty factors; it may also be
1265 possible to analyse the effect of variability on risk by evaluating how the risk distribution of the
1266 disease shifts in response to the toxicant. In essence, the risk distribution based on a subclinical
1267 biomarker is an expression of toxicodynamic variability that can be captured in dose-response
1268 assessment.

1269 The alternative approach is to address vulnerable subpopulations as separate from the general
1270 population and assign them unique potencies via dose-response modelling specific to the groups that
1271 might be based on actual-dose response data for the groups, on adjustments for specific toxicokinetic
1272 or toxicodynamic factors, or on more generic adjustment or uncertainty factors. For a pesticide, if it is
1273 known that a particular age group, disease (or disease-related end-point), genetic variant or co-
1274 exposure creates unique vulnerability, efforts should be made to estimate the potency differences
1275 relative to the general population and on that basis to consider developing separate potency values or
1276 basing a single value on the most sensitive group or on the overall population with adjustments for
1277 vulnerable groups.

1278

1279 **4.4. Improvement of exposure assessment**

1280 The difficulties often associated with pesticide exposure assessment in epidemiological studies have
1281 been highlighted above. The description of pesticide exposure (in particular quantitative information
1282 on exposure to individual pesticides) is generally poorly reported and this limitation is difficult to
1283 overcome, especially for diseases with a long latency period (e.g., many cancers and
1284 neurodegenerative disorders).

1285 It is noteworthy that the methods necessary to conduct exposure monitoring are to be submitted by
1286 the applicant in the dossier. The regulation requirements do ask for validated methods that can be
1287 used for determining exposure. The Commission Regulation (EU) No 283/2013, setting out the data
1288 requirements for active substances, in accordance with Regulation (EC) No 1107/2009 of the
1289 European Parliament and of the Council concerning the placing of PPP on the market addresses
1290 information on methods of analysis required to support both pre-approval studies and post-approval
1291 monitoring. In this context the post-approval requirements are the most relevant and the regulation
1292 states:

1293 "4.2. Methods for post-approval control and monitoring purposes -- Methods, with a full description,
1294 shall be submitted for:

- 1295 a) the determination of all components included in the monitoring residue definition as submitted
1296 in accordance with the provisions of point 6.7.1 in order to enable Member States to
1297 determine compliance with established maximum residue levels (MRLs); they shall cover
1298 residues in or on food and feed of plant and animal origin;
- 1299 b) the determination of all components included for monitoring purposes in the residue
1300 definitions for soil and water as submitted in accordance with the provisions of point 7.4.2;
- 1301 c) the analysis in air of the active substance and relevant breakdown products formed during or
1302 after application, unless the applicant shows that exposure of operators, workers, residents or
1303 bystanders is negligible;
- 1304 d) the analysis in body fluids and tissues for active substances and relevant metabolites.

1305 As far as practicable these methods shall employ the simplest approach, involve the minimum cost,
1306 and require commonly available equipment. The specificity of the methods shall be determined and
1307 reported. It shall enable all components included in the monitoring residue definition to be
1308 determined. Validated confirmatory methods shall be submitted if appropriate. The linearity, recovery
1309 and precision (repeatability) of methods shall be determined and reported.

1310 Data shall be generated at the LOQ and either the likely residue levels or ten times the LOQ. The LOQ
1311 shall be determined and reported for each component included in the monitoring residue definition.
1312 For residues in or on food and feed of plant and animal origin and residues in drinking water, the
1313 reproducibility of the method shall be determined by means of an independent laboratory validation
1314 (ILV) and reported."

1315 From this it can be concluded that the requirements exist, but are somewhat less stringent for human
1316 biomonitoring than for monitoring of residues in food and feed.

1317 Failure to use these existing methods restricts the potential for the use of epidemiological evidence in
1318 the regulation of specific pesticides. It is therefore important that those contemplating future studies
1319 carefully consider approaches to be used to avoid misclassification of exposure, and to conduct
1320 appropriate detailed exposure assessments for specific pesticides, which allow for sound dose-
1321 response analyses, and demonstrate the validity of the methods used.

1322 A given exposure may have a different health impact depending on the period in the lifespan when
1323 exposure takes place. Greater attention needs to be paid to exposures occurring during periods of
1324 potential susceptibility for disease development by ensuring that the exposure assessment adequately
1325 addresses such critical times. This may be particularly relevant for studies involving
1326 neurodevelopment, obesity, or allergic responses, which are complex multistage developmental
1327 processes that occur either prenatally or in the early postnatal life. For this reason, measurement of
1328 the exposure at one single time period may not properly characterise relevant exposures for all health
1329 effects of the environmental factors, and thus the possibility arises of needing to measure the
1330 exposure at several critical periods of biological vulnerability to environmental factors.

1331 There are advantages and disadvantages to all methods of measuring pesticide exposure, and specific
1332 study designs and aims should be carefully considered to inform a specific optimal approach.

1333 Exposure assessment can be improved at the *personal* level in observational research by using:

1334 a) **Personal exposure monitoring:** this can be used to document exposures as readings measure
1335 pesticide concentration at the point of contact. Personal exposure monitors have been costly and
1336 burdensome for study participants. However, technological advances have recently driven personal
1337 exposure monitoring for airborne exposures to inexpensive, easy to use devices and these are suitable
1338 for population research. Personal exposure monitors that are specific to pesticide exposure could
1339 involve sensors to measure airborne concentrations, "skin" patches to measure dermal concentrations,
1340 indoor home monitors that capture dust to measure other means of exposure. These mobile
1341 technology advances can be employed to provide observational studies with detailed and robust
1342 exposure assessments. Such equipment is now increasingly being adapted to serve large-scale
1343 population research and to capture data from large cohort studies. These coupled with other
1344 technological advances such as real time data transfers via mobile-phones and mobile-phone
1345 applications to capture lifestyle and other habits could bring next generation observational studies far
1346 more detailed and robust exposure assessments compared to current evidence. Ethics and personal
1347 data protection issue should however be taken into account, and local regulations may prevent
1348 extensive use of such technologies. However, use of such personal monitors only provides information
1349 for one of the different potential routes of exposure.

1350 b) **Biomarkers of exposure** (human biomonitoring). An alternative and/or complementary approach
1351 is to ascertain the internal dose, which is the result of exposure via different routes (dermal, inhalation
1352 and dietary exposure). These biomarkers have the potential to play an important role in assessing
1353 aggregate exposure to pesticides and informing cumulative risk assessment. Biomonitoring requires
1354 measurements in biological samples of concentrations of chemical under consideration (parent or
1355 metabolites) or markers of pathophysiologic effects thereof (such as adducts). However, they suffer
1356 from disadvantages including the cost and precision of measurement.

1357 Although biomonitoring has the potential to provide robust estimates of absorbed doses of
1358 xenobiotics, modern pesticides and their metabolites are eliminated from the body relatively quickly,
1359 with excretion half-lives typically measured in a few days (Oulhote and Bouchard, 2013).
1360 Consequently, use of biomarkers is both resource intensive and intrusive. The process is even more
1361 intrusive when it has to be conducted repeatedly on large numbers of individuals to monitor exposures
1362 over long durations.

1363 Nevertheless, because of the potential to provide accurate integrated estimates of absorbed doses,
1364 biological monitoring of pesticides and their metabolites can be usefully employed to calibrate other
1365 approaches of exposure assessment. A good example of such an approach is that used by the
1366 Agricultural Health Study (Thomas et al., 2010; Coble et al., 2011; Hines et al., 2011).

1367 Biomonitoring improves the precision in characterization of exposure and allows the investigation of
1368 changes that occur at environmentally relevant exposure concentrations. Data collected in large-scale
1369 biomonitoring studies can be useful in setting reference ranges to assist in exposure classification in
1370 further epidemiological studies. Biomonitoring data also provide critical information for conducting
1371 improved risk assessment and help to identify subpopulations at special risk for adverse outcomes.

1372 The results of measurements of metabolite levels in human matrices, e.g. urine, blood or hair do not
1373 provide the complete story with respect to the actual received dose. Additional assessment, possibly
1374 employing physiological-based pharmacokinetic (PBTK) approaches, may be required to estimate the
1375 total systemic or tissue/organ doses. A PBTK model is a physiologically based compartmental model
1376 used to characterize toxicokinetic behaviour of a chemical, in particular for predicting the fate of
1377 chemicals in humans. Data on blood-flow rates, metabolic and other processes that the chemical
1378 undergoes within each compartment are used to construct a mass-balance framework for the PBTK
1379 model. PBTK models cannot be used only to translate external exposures into an internal (target) dose
1380 in the body, but also to infer external exposures from biomonitoring data. Furthermore, PBPK models
1381 need to be validated.

1382 Toxicokinetic processes (ADME) determine the "internal concentration" of an active substance
1383 reaching the target and help to relate this concentration/dose to the observed toxicity effect. Studies
1384 have been prescribed by the current regulations, but it would be beneficial to survey all the evidence,
1385 be it from in vitro, animal or human studies, about toxicokinetic behaviour of an active substance.

1386 Exposure assessment can also be improved at the *population* level in observational research by using:

1387 a) Larger epidemiological studies that make use of novel technologies and big data availability, such
1388 as **registry data** or data derived from large databases (including administrative databases) on health
1389 effects and pesticide usage, could provide more robust findings that might eventually be used for
1390 informed decision-making and regulation. Much effort needs to concentrate around the use of
1391 registered data which may contain records of pesticide use by different populations, such as farmers
1392 or other professional users that are required to maintain⁹. Such data could be further linked to
1393 electronic health records (vide supra) and provide studies with unprecedented sample size and
1394 information on exposure and subsequent disease and will eventually be able to answer robustly
1395 previously unanswered questions. At the same time information on active substances needs to be
1396 better captured in these registries and large databases. Dietary pesticide residue exposure can be
1397 estimated more accurately by using spraying journal data in combination with supervised residue
1398 trials. This method has the advantage of including more comprehensive and robust source data, more

⁹ Regulation 1107/2009 Article 67 states:

Record-keeping

1. Producers, suppliers, distributors, importers, and exporters of plant protection products shall keep records of the plant protection products they produce, import, export, store or place on the market for at least 5 years. Professional users of plant protection products shall, for at least 3 years, keep records of the plant protection products they use, containing the name of the plant protection product, the time and the dose of application, the area and the crop where the plant protection product was used.

They shall make the relevant information contained in these records available to the competent authority on request. Third parties such as the drinking water industry, retailers or residents, may request access to this information by addressing the competent authority.

The competent authorities shall provide access to such information in accordance with applicable national or Community law.

1399 complete coverage of used pesticides and more reliable and precise estimates of residues below
1400 standard limit of quantification (LOQ) (Larsson et al., 2017).

1401 b) Novel sophisticated approaches to **geographical information systems** (GIS) and small area
1402 studies might also serve as an additional way to provide estimates of residential exposures. Exposure
1403 indices based on GIS (i.e. residential proximity to agricultural fields and crop surface with influence
1404 around houses), when validated, may represent a useful complementary tool to biomonitoring and
1405 have been used to assess exposure to pesticides with short biological half-lives (Cornelis et al., 2009).
1406 Also, these indices could be more representative, albeit non-specific, measures of cumulative exposure
1407 to non-persistent pesticides for long periods of time than biomonitoring data (González-Alzaga et al.,
1408 2015).

1409 The development of the so called -omic techniques, such as metabolomics and adductomics, also
1410 presents intriguing possibilities for improving exposure assessment through measurement of a wide
1411 range of molecules, from xenobiotics and metabolites recorded over time in biological matrices (blood,
1412 saliva, urine, hair, nails, etc.), to covalent complexes with DNA and proteins (adductomics) and
1413 understanding biological pathways. These methodologies could be used in conjunction with other
1414 tools. There is also both interest and the recognition that further work is required before such
1415 techniques can be applied in regulatory toxicology. The use of the exposome (the totality of exposures
1416 received by an individual during life) might be better defined by using 'omics' technologies and
1417 biomarkers appropriate for human biomonitoring. Nevertheless, important limitations have to be
1418 acknowledged because of the lack of validation of these methodologies and their cost, which limits
1419 their use at large scale.

1420 Environmental exposures are traditionally assessed following "one-exposure-one-health-effect"
1421 approach. In contrast, the exposome encompass the totality of human environmental exposures from
1422 conception onward complementing the genetics knowledge to characterize better the environmental
1423 components in disease aetiology. As such, includes not only any lifetime chemical exposures but also
1424 other external and or internal environmental factors, such as infections, physical activity, diet, stress
1425 and internal biological factors (metabolic factors, gut microflora, inflammation and oxidative stress). A
1426 complete exposome would have to integrate many external and internal exposures from different
1427 sources continuously over the life course. However, a truly complete exposome will likely never be
1428 measured. Although all these domains of the exposome need to be captured by using different
1429 approaches than the traditional ones, it is envisaged that no single tool will be enough to this end.

1430 The more holistic approach of exposure is not intended to replace the traditional "one-exposure-one-
1431 health-effect" approach of current epidemiological studies. However, it would improve our
1432 understanding of the predictors, risk factors and protective factors of complex, multifactorial chronic
1433 diseases. The exposome offers a framework that describes and integrates, holistically, the
1434 environmental influences or exposures over a lifetime (Nieuwenhuijsen, 2015).

1435 Collaborative research and integration of epidemiological or exploratory studies forming large
1436 consortia are needed to validate these potential biomarkers and eventually lead to improved exposure
1437 assessment. The incorporation of the exposome paradigm into traditional biomonitoring approaches
1438 offers a means to improve exposure assessment. Exposome-wide association studies (EWAS) allow to
1439 measurement of thousands of chemicals in blood from healthy and diseased people, test for disease
1440 associations and identify useful biomarkers of exposure that can be targeted in subsequent
1441 investigations to locate exposure sources, establish mechanisms of action and confirm causality
1442 (Rappaport, 2012). After identifying these key chemicals and verifying their disease associations in
1443 independent samples of cases and controls, the chemicals can be used as biomarkers of exposures or
1444 disease progression in targeted analyses of blood from large populations.

1445 In relation to the exposome concept, the -omics technologies have the potential to measure profiles or
1446 signatures of the biological response to the cumulative exposure to complex chemical mixtures. An
1447 important advance would be to identify a unique biological matrix where the exposome could be
1448 characterized without assessing each individual exposure separately in a given biological sample. The
1449 untargeted nature of omics data will capture biological responses to exposure in a more holistic way
1450 and will provide mechanistic information supporting exposure-related health effects. Importantly,
1451 omics tools could shed light on how diverse exposures act on common pathways to cause the same
1452 disease outcomes.

1453 While improved exposure assessment increases the power to detect associations, in any individual
1454 study it is necessary to maximise the overall power of the study by optimising the balance between
1455 the resource used for conducting an exposure assessment for each subject and the total number of
1456 subjects.

1457

1458 **4.5. Health outcomes**

1459 For pesticides, the health outcomes are broad as these chemicals have not shown a particular effect in
1460 relation to just one single disease area. For each health outcome, multiple definitions exist in the
1461 literature with a varying degree of validation and unknown reproducibility across different databases,
1462 which are limited by the lack of generalizability. A proper definition of a health outcome is critical to
1463 the validity and reproducibility of observational epidemiological studies, and the consistency and clarity
1464 of these definitions need to be considered across studies. While prospective observational studies
1465 have explicit outcome definitions, inclusion and exclusion criteria and standardized data collection,
1466 retrospective studies usually rely on identification of health outcomes based largely on coded data,
1467 and classification and coding of diseases may change over time. Detailed description of the actual
1468 codes used to define key health outcomes and the results of any validation efforts are valuable to
1469 future research efforts (Reich et al., 2013; Stang et al., 2012). An example of coded diseases is the
1470 ICD-10, which for instance can be used as a tool to standardise the broad spectrum of malignant
1471 diseases.

1472 In some surveillance studies it is preferable to use broader definitions with a higher sensitivity to
1473 identify all potential cases and then apply a narrower and more precise definition with a high positive
1474 predictive value to reduce the number of false positives and resulting in more accurate cases. In
1475 contrast, in formal epidemiological studies, a specific event definition is used and validated to
1476 determine its precision; however, the "validation" does not test alternative definitions, so it is not
1477 possible to determine sensitivity or specificity. The Observational Medical Outcomes Partnership
1478 (OMOP: <http://omop.fnih.org>), a public-private partnership, has tested multiple definitions to clarify
1479 this question. OMOP is a network of data sources intended to use existing observational databases to
1480 objectively explore key methodological issues impacting the monitoring of drug safety and efficacy.
1481 The library of health outcomes definitions under the OMOP can be used in observational studies.
1482 These are a subset of all conditions that are of importance due to their historical associations with
1483 drug toxicities, their medical significance, and/or public health implications (Stang et al., 2012).

1484 The data on health outcomes over the whole EU is potentially very extensive. If it can be managed
1485 effectively it will open the prospect of greater statistical power for epidemiological studies assessing
1486 deleterious effects using very large sample sizes. Necessary prerequisites for these studies which may
1487 detect new subtle effects, chronic effects or effects on sub-populations when stratified are beyond the
1488 remit of risk assessment. They include trans-national approaches to health informatics where
1489 harmonised diagnostics, data storage and informatics coupled with legally approved access to
1490 anonymised personal data for societal benefit are established. Health records should include adequate
1491 toxicology classification. The latter may in turn require improvements in medical and paramedical
1492 training to ensure the quality of the input data.

1493 Another opportunity for biological monitoring to be employed is where the investigation involves the
1494 so-called biomarkers of effect. That is a quantifiable biochemical, physiological, or other change that,
1495 depending on the magnitude, is associated with an established or possible health impairment or
1496 disease. Biomarkers of effect should reflect early biochemical modifications that precede functional or
1497 structural damage. Thus, knowledge of the mechanism ultimately leading to toxicity is necessary to
1498 develop specific and useful biomarkers, and vice versa, an effect biomarker may help to explain a
1499 mechanistic pathway of the development of a disease. Such biomarkers should identify early and
1500 reversible events in biological systems that may be predictive of later responses, so that they are
1501 considered to be preclinical in nature. Advances in experimental -omics technologies will show promise
1502 and provide sound information for risk assessment strategies, i.e. on mode of action, response
1503 biomarkers, estimation of internal dose and dose-response relationships (De Bord, 2015). These
1504 technologies must be validated to assess their relevance and reliability. Once validated, they can be
1505 made available for regulatory purposes.

1506 5. Contribution of vigilance data to pesticides risk assessment

1507

1508 In addition to the formal epidemiological studies discussed in Chapters 2-4, other human health data
1509 can be generated from *ad hoc* reports or as a planned process i.e. through monitoring systems that
1510 have been implemented at the national level by public health authorities or authorisation holders.
1511 Consistent with Chapters 2-4, this section first reviews how such a monitoring system should operate,
1512 what the current situation is regarding the monitoring of pesticides and what recommendations for
1513 improvement can be made.

1514 5.1. General framework of case incident studies

1515 A continuous process of collection, reporting and evaluation of adverse incidents has the potential to
1516 improve the protection of health and safety of users and others by reducing the likelihood of the
1517 occurrence of the same adverse incident in different places at later times, and also to alleviate
1518 consequences of such incidents. This obviously also requires timely dissemination of the information
1519 collected on such incidents. Such a process is referred to as vigilance¹⁰.

1520 For example in the EU, the safety monitoring of medicines is known as pharmacovigilance; the
1521 pharmacovigilance system operates between the regulatory authorities in Member States, the
1522 European Commission and the European Medicines Agency (EMA). In some Member States, regional
1523 centres are in place under the coordination of the national Competent Authorities. Manufacturers and
1524 health care professionals report incidents to the Competent Authority at the national level, which
1525 ensures that any information regarding adverse reactions is recorded and evaluated centrally and also
1526 notifies other authorities for subsequent actions. The records are then centralized by the EMA which
1527 supports the coordination of the European pharmacovigilance system and provides advice on the safe
1528 and effective use of medicines.

1529 5.2. Key limitations of current framework of case incident reporting

1530 Several EU regulations require the notification and/or collection and/or reporting of adverse events
1531 caused by pesticides in humans (occurring after acute or chronic exposure in the occupational setting,
1532 accidental or deliberate poisoning, etc.). These include:

- 1533 □ Article 56 of EC Regulation 1107/2009 requires that "The holder of an authorisation for a plant
1534 protection product shall immediately notify the Member States [...]. In particular, potentially harmful
1535 effects of that plant protection product, or of residues of an active substance, its metabolites, a
1536 safener, synergist or co-formulant contained in it on human health [...] shall be notified. To this
1537 end the authorisation holder shall record and report all suspected adverse reactions in humans, in
1538 animals and the environment related to the use of the plant protection product. The obligation to
1539 notify shall include relevant information on decisions or assessments by international organisations
1540 or by public bodies which authorise plant protection products or active substances in third
1541 countries."
- 1542 □ Article 7 of EC Directive 128/2009 establishing a framework for Community action to achieve the
1543 sustainable use of pesticides requires that: "2. Member States shall put in place systems for
1544 gathering information on pesticide acute poisoning incidents, as well as chronic poisoning
1545 developments where available, among groups that may be exposed regularly to pesticides such as
1546 operators, agricultural workers or persons living close to pesticide application areas. 3. To enhance
1547 the comparability of information, the Commission, in cooperation with the Member States, shall
1548 develop by 14 December 2012 a strategic guidance document on monitoring and surveying of
1549 impacts of pesticide use on human health and the environment". However, at the time of
1550 publishing this scientific opinion, this document has still not been released.

¹⁰ The concept of survey refers to a single effort to measure and record something, and surveillance refers to repeated standardized surveys to detect trends in populations in order to demonstrate the absence of disease or to identify its presence or distribution to allow for timely dissemination of information. Monitoring implies the intermittent analysis of routine measurements and observations to detect changes in the environment or health status of a population, but without eliciting a response. Vigilance is distinct from surveillance and mere monitoring as it implies a process of paying close and continuous attention, and in this context addresses specifically post marketing events related to the use of a chemical.

1551

1552 There are three additional regulations that apply, although indirectly, to pesticides and reporting:

1553 □ EC Regulation 1185/2009 concerning statistics on pesticides requires that Member States shall
1554 collect data on pesticide sales and uses according to a harmonised format. The statistics on the
1555 placing on the market shall be transmitted yearly to the Commission and the statistics on
1556 agricultural use shall be transmitted every 5 year.

1557 □ Article 50 of Regulation (EC) 178/2002, laying down the general principles and requirements of
1558 food law, set up an improved and broadened rapid alert system covering food and feed (RASFF).
1559 The system is managed by the Commission and includes as members of the network Member
1560 States, the Commission and the Authority. It reports on non-authorised occurrences of pesticides
1561 residues and food poisoning cases.

1562 □ Article 45 (4) of EC Regulation 1272/2008 (CLP Regulation): importers and downstream users
1563 placing hazardous chemical mixtures on the market of an EU Member State will have to submit a
1564 notification to the Appointed Body/Poison Centre of that Member State. The notification needs to
1565 contain certain information on the chemical mixture, such as the chemical composition and
1566 toxicological information, as well as the product category to which the mixture belongs. The
1567 inclusion of information on the product category in a notification allows Appointed Bodies/Poison
1568 Centres to carry out comparable statistical analysis (e.g. to define risk management measures), to
1569 fulfil reporting obligations and to exchange information among MS. The product category is
1570 therefore not used for the actual emergency health response as such, but allows the identification
1571 of exposure or poisoning trends and of possible measures to prevent future poisoning cases. When
1572 formally adopted, the new Regulation will apply as of 1st January 2020.

1573 While there are substantial legislative provisions, to this date a single unified EU
1574 "phytopharmacovigilance"¹¹ system akin to the pharmacovigilance system does not exist for PPP.
1575 Rather, a number of alerting systems have been developed within the EU to alert, notify, report and
1576 share information on chemical hazards that may pose a risk to public health in Member States. These
1577 systems cover different sectors including medicines, food stuffs, consumer products, industrial
1578 accidents, notifications under International Health Regulations (IHR) and events detected by EU
1579 Poisons Centres and Public Health Authorities. Each of these systems notify and distribute timely
1580 warnings to competent authorities, public organizations, governments, regulatory authorities and
1581 public health officials to enable them to take effective action to minimize and manage the risk to
1582 public health (Orford et al., 2014).

1583 In the EU, information on acute pesticide exposure/incident originates mainly from data collected and
1584 reported by Poison Control Centres (PCC's). PCC's collect both cases of acute and chronic
1585 exposure/poisoning they are aware of, in the general population and in occupational settings. Cases
1586 are usually well-documented and information includes circumstances of exposure/incident, description
1587 of the suspected causal agent, level and duration of exposure, the clinical course and treatment and
1588 an assessment of the causal relationship. In severe cases, the toxin and/or the metabolites are usually
1589 measured in blood or urine. However, follow-up of cases reported to the centres merits further
1590 attention to identify potential long-term protracted effects.

1591 There are two key obstacles to using Poison Centres data: official reports from national Poisons
1592 Centres are not always publicly available and when they are, there is a large heterogeneity in the
1593 format of data collections and coding, and assessment of the causal relationship. Indeed, each
1594 Member State has developed its own tools for collection activities resulting in difficulties for comparing
1595 and exchanging exposure data. In 2012, the European Commission funded a collaborative research
1596 and development project to support the European response to emerging chemical events: the Alerting
1597 and Reporting System for Chemical Health Threats, Phase III (ASHTIII) project. Among the various
1598 tools and methodologies that were considered, methods to exchange and compare exposure data
1599 from European PCC's were developed. As a feasibility study, work-package 5 included the
1600 development of a harmonized and robust coding system to enable Member States to compare

¹¹ "phytovigilance" would refer to a vigilance system for plants; as pesticides are intended to be "medicines" for crops, the term "phytopharmacovigilance" is considered to be the more appropriate one here. Furthermore it is a broad term used in France covering soil, water, air, environment, animal data, etc.

1601 pesticide exposure data. However, results of a consultation with the PCC community showed that
 1602 further coordination of data coding and collection activities is supported. It was concluded that more
 1603 support and coordination is required at the EU and Member States level so that exposures data can be
 1604 compared between Member States (Orford et al., 2015).

1605 In addition to data collected by PCC's, several Member States have set up programs dedicated to
 1606 occupational health surveillance¹². The purpose of these programs is to identify the kinds of jobs,
 1607 types of circumstances and pesticides that cause health problems in workers in order to learn more
 1608 about occupational pesticide illnesses and injuries and how to prevent them. They are based on
 1609 voluntary event notification by physicians (sometimes self-reporting by users) of any case of
 1610 suspected work-related pesticide injury or illness or poisoning. In addition to medical data, information
 1611 gathered includes data regarding type of crop, mode of application, temperature, wind speed, wearing
 1612 of personal protection equipment, etc. Once collected, these data are examined and a report is
 1613 released periodically; they provide a useful support to evaluate the safety of the products under re-
 1614 registration. These data also highlight emerging problems and allow definition of evidence-based
 1615 preventive measures for policy-makers. At EU level, the European Agency for Safety and Health at
 1616 Work (EU-OSHA)¹³ has very little in the way of monitoring of occupational pesticide-related illnesses
 1617 data. In the USA, a programme specifically dedicated to pesticides funded and administered by the
 1618 National Institute for Occupational Safety and Health (NIOSH) is in operation in a number of States¹⁴.

1619 In summary, currently human data may be collected in the form of case reports or case series, poison
 1620 centres information, coroner's court findings, occupational health surveillance programmes or post
 1621 marketing surveillance programmes. However, not all this information is present in the medical data
 1622 submitted by applicants.

- 1623 • Data collected through occupational health surveillance of the plant production workers or if
 1624 they do so, the medical data are quite limited being typically basic clinical blood
 1625 measurements, physical examinations, potentially with simple indications of how and where
 1626 exposed took place, and there usually is no long term follow up. Furthermore, worker
 1627 exposures in modern plants (especially in the EU) are commonly very low, and often their
 1628 potential exposure is to a variety of pesticides (unless it is a facility dedicated to a specific
 1629 chemical).
- 1630 • Moreover, the reporting of data from occupational exposure to the active substances during
 1631 manufacture is often combined with results from observations arising from contact with the
 1632 formulated plant protection product as the latter information results from case reports on
 1633 poisoning incidents and epidemiological studies of those exposed as a result of PPP use.
 1634 Indeed, the presence of co-formulants in a plant protection product can modify the acute
 1635 toxicological profile. Thus, to facilitate proper assessment, when reporting findings collected in
 1636 humans it should be clearly specified whether it refers to the active substance per se or a PPP.

1637 With regard to the requirements of specific data on diagnoses of poisoning by the active substance or
 1638 formulated plant protection products and proposed treatments, which are also part of chapter 5.9 of
 1639 the EC Regulation 283/2013, information is often missing or limited to those cases where the toxic
 1640 mode of action is known to occur in humans and a specific antidote has been identified.

1641 **5.3. Proposals for improvement of current framework of case incident 1642 reporting**

1643 In order to avoid duplication and waste of effort, a logical next step would be to now develop, with all
 1644 concerned public and private sector actors, an EU "phytopharmacovigilance" system for chemicals
 1645 similar to the ones that have been put in place for medicines. In fact, while much experience has
 1646 already been gained on how to gradually build such a system, it is nevertheless envisioned that this
 1647 will take a number of years to be put in place.

¹² For example: Phyt'attitude in France is a vigilance programme developed by the Mutualité Sociale Agricole: <http://www.msa.fr/lfr/sst/phyt-attitude>

¹³ <https://osha.europa.eu/en/about-eu-osha>

¹⁴ SENSOR programme: <https://www.cdc.gov/niosh/topics/pesticides/overview.html>

1648 Such a system may not merit being established solely for chemicals that are (predominantly) used as
1649 pesticides. However, given the legislative provisions already in place for pesticides, its development
1650 may need to be prioritised for pesticides.

1651 In conclusion, European Commission together with the Member States should initiate the development
1652 of an EU-wide vigilance framework for pesticides. These should include:

- 1653 - harmonization of human incident data collection activities at the EU level;
- 1654 - coordination of the compilation of EU-wide databases;
- 1655 - improving the collaboration between Poison Centres and regulatory authorities at national
1656 level in order to collect all the PPP poisonings produced in each Member State;
- 1657 - guidance document on monitoring the impact of pesticide use on human health with
1658 harmonization of data assessment for causal relationships; and
- 1659 - regular EU-wide reports.

1660

1661 **6. Proposed use of epidemiological studies and vigilance data in 1662 support of the risk assessment of pesticides**

1663 This chapter briefly reviews the risk assessment process (section 6.1) based on experimental studies
1664 and discusses what information epidemiological studies could add to that process. Next, the
1665 assessment of the reliability of epidemiological studies is addressed in section 6.2. In section 6.3 the
1666 relevance of one or more studies found to be reliable is assessed.

1667

1668 **6.1. The risk assessment process**

1669 Risk assessment is the process of evaluating risks to humans and the environment from chemicals or
1670 other contaminants and agents that can adversely affect health. For regulatory purposes the process
1671 used to inform risk managers consists of four steps (EFSA, 2012). On the one hand, information is
1672 gathered on the nature of toxic effects (hazard identification) and the possible dose-response
1673 relationships between the pesticide and the toxic effects (hazard characterisation). On the other hand,
1674 information is sought about the potential exposure of humans (consumers, applicators, workers,
1675 bystanders and residents) and of the environment (exposure assessment). These two elements are
1676 weighed in the risk characterisation to estimate that populations be potentially exposed to quantities
1677 exceeding the reference dose values, that is, to estimate the extra risk of impaired health in the
1678 exposed populations. Classically this is used to inform risk managers for regulatory purposes.

1679 a) *Step 1. Hazard identification.*

1680 Epidemiological studies and vigilance data are relevant for hazard identification as they can point to
1681 potential link between pesticide exposure and health. In this context epidemiological data can provide
1682 invaluable information in "scanning the horizon" for effects not picked up in experimental models.
1683 Importantly these studies also provide information about potentially enhanced risks for vulnerable
1684 population subgroups, sensitive parts of the lifespan, and gender selective effects.

1685 b) *Step 2. Hazard characterisation (Dose-Response assessment).* As previously discussed a classic
1686 dose-response framework is not normally considered when using epidemiological data as the exposure
1687 dose is not assigned. The challenge presented when high quality epidemiological studies are available
1688 is to see whether these can best be integrated into the scheme as numerical input. A dose-response
1689 framework is rarely considered when using epidemiological data for risk assessment of pesticides.
1690 However, previous scientific opinions of the EFSA CONTAM Panel have used epidemiology as basis for
1691 setting reference values, particularly in the case of cadmium, lead, arsenic and mercury, which are the
1692 most well-known and data rich (EFSA 2009 a,b; EFSA 2010 b; EFSA 2012 b). Even when they may not
1693 form the basis of a dose-response assessment, vigilance and epidemiological data may provide
1694 supportive evidence to validate or invalidate a dose-response study carried out in laboratory animals.
1695 Characterisation of the relationships between varying doses of a chemical and incidences of adverse

1696 effects in exposed populations requires characterisation of exposure or dose, assessment of response
1697 and selection of a dose-response model to fit the observed data in order to find a no-effect level. This
1698 raises two questions: can a dose-response be derived from epidemiological data to identify a no-effect
1699 level. If not, can epidemiological information otherwise contribute to the hazard characterisation?

1700 Understanding dose-response relationships could also be relevant where adverse health outcomes are
1701 demonstrated to be associated with uses with higher exposures than EU good plant protection
1702 practice would give rise to, but where no association is observed from uses with lower exposures. It is
1703 clear that in this context the statistical summary of an epidemiological study defining RR or OR is
1704 potentially useful quantitative information to feed into the hazard characterisation process, when the
1705 study design meets the necessary standards.

1706 c) Step 3. *Exposure assessment.* Data concerning the assessment of exposure are often hard to
1707 estimate in complex situations where a variety of uncontrolled "real-world" factors confound the
1708 analysis. As discussed previously, contemporary biological monitoring is rarely carried out in the
1709 general human population for practical reasons including high cost, test availability and logistics.
1710 However, it is anticipated that in the near future biomonitoring studies and data on quantitative
1711 exposure to pesticides will increase.

1712 Step 4. *Risk characterisation.* In this final step, data on exposure are compared with health-based
1713 reference values to estimate the extra risk of impaired health in the exposed populations. Human data
1714 can indeed help verify the validity of estimations made based on extrapolation from the full
1715 toxicological database regarding target organs, dose-response relationships and the reversibility of
1716 toxic effects, and to provide reassurance on the extrapolation process without direct effects on the
1717 definition of reference values (London et al., 2010).

1718 Epidemiological data might also be considered in the context of UFs. An UF of 10 is generally used on
1719 animal data to account for interspecies variability of effects and this is combined with a further factor
1720 of 10 to account for variation in susceptibility of different parts of the human population. However
1721 there are cases where only human data are considered (when this is more critical than animals data)
1722 and a single factor of 10 for intraspecies variability will apply. It is noted that at this moment
1723 Regulation (EC) No 1107/2009 Article 4(6) stipulates that: "In relation to human health, no data
1724 collected on humans shall be used to lower the safety margins resulting from tests on animals". The
1725 implication of this is that currently for risk assessment epidemiological data may only be used to
1726 increase the level of precaution used in the risk assessment, and not to decrease UFs even where
1727 relevant human data are available.

1728

1729 **6.2. Assessment of the reliability of individual epidemiological studies**

1730 Factors to be considered in determining how epidemiology should be considered for a WoE
1731 assessment are described below and have been extensively outlined by available risk of bias tools for
1732 observational epidemiological studies (<https://www.ncbi.nlm.nih.gov/books/NBK154464/> and
1733 Cochrane handbook). The following examples represent factors to look for not an exhaustive list:

- 1734 • *Study design and conduct.* Was the study design appropriate to account for the expected
1735 distributions of the exposure and outcome, and population at risk? Was the study conducted
1736 primarily in a hypothesis generating or a hypothesis-testing mode?
- 1737 • *Population.* Did the study sample the individuals of interest from a well-defined population? Did
1738 the study have adequate statistical power and precision to detect meaningful differences for
1739 outcomes between exposed and unexposed groups?
- 1740 • *Exposure assessment.* Were the methods used for assessing exposure valid, reliable and
1741 adequate? Was a wide range of exposures examined? Was exposure assessed at quantitative level
1742 or in a categorical or dichotomous (e.g. ever versus never) manner? Was exposure assessed
1743 prospectively or retrospectively?
- 1744 • *Outcome assessment.* Were the methods used for assessing outcomes valid, reliable and
1745 adequate? Was a standardized procedure used for collecting data on health outcomes? Were
1746 health outcomes ascertained independently from exposure status to avoid information bias?

1747	<ul style="list-style-type: none"> • <i>Confounder control</i>: were potential confounding factors appropriately identified? Were the methods used to document these factors valid, reliable and adequate? 		
1748	<ul style="list-style-type: none"> • <i>Statistical analysis</i>. Did the study estimate quantitatively the independent effect of an exposure on a health outcome of interest? Were confounding factors appropriately controlled in the analyses of the data? 		
1749	<ul style="list-style-type: none"> • Is the <i>reporting</i> of the study adequate and following the principles of the STROBE statement (or similar tools)? 		
1750	<p>1754 The nature and the specificity of the outcome with regards to other known risk factors can influence 1755 the evaluation of human data for risk assessment purposes, particularly in case of complex health 1756 endpoints such as chronic effects with long induction and latency periods.</p>		
1751	<p>1757 Study evaluation should provide an indication on the nature of the potential biases each specific study 1758 may have and an assessment of overall confidence in the epidemiological database. Table 2 shows the 1759 main parameters to be evaluated in single epidemiological studies and the associated weight (low, 1760 medium, high) for each parameter. Specific scientific considerations should be applied on a case-by- 1761 case basis, but it would be unrealistic to implement these criteria in a rigid and unambiguous manner.</p>		
1762			
1763	<p>Table 2. Study quality considerations for weighting epidemiological observational studies ¹⁵</p>		
1764			
Parameter	High	Moderate	Low
Study design and conduct	Prospective studies. Pre-specified hypothesis (compound and outcome specific).	Case-control studies or prospective studies not adequately covering exposure or outcome assessment	Cross-sectional, ecological studies. Case-control studies not adequately covering exposure or outcome assessment
Population	<p>Random sampling. Sample size large enough to warrant sufficient power</p> <p>Population characteristics well defined (including vulnerable subgroups)</p>	<p>Questionable study power, not justified in detail.</p> <p>Non-representative sample of the target population.</p> <p>Population characteristics not sufficiently defined</p>	<p>No detailed information on how the study population was selected.</p> <p>Population characteristics poorly defined</p>
Exposure assessment	<p>Accurate and precise quantitative exposure assessment (human biomonitoring or external exposure).</p> <p>Adequate assessment of exposure, preferentially biomarker concentrations at individual level.</p> <p>Validated questionnaire and/or interview for chemical-specific exposure answered by</p>	<p>Non-valid surrogate or biomarker in a specified matrix and external exposure.</p> <p>Questionnaire and/or interview for chemical-specific exposure answered by subjects or proxy individuals</p>	<p>Poor surrogate</p> <p>Low-quality questionnaire and/or interview; information collected for groups of chemicals.</p> <p>No chemical-specific exposure information collected; ever/never use of pesticides in general evaluated</p>

¹⁵ Adapted from US EPA (2016), based in turn on Munoz-Quezada et al. (2013) and LaKind et al. (2014)

Parameter	High	Moderate	Low
	subjects		
Outcome Assessment	<p>Valid and reliable outcome assessment. Standardized and validated in study population.</p> <p>Medical record or diagnosis confirmed</p>	<p>Standardized outcome, not validated in population, or screening tool; or, medical record non-confirmed</p>	<p>Non-standardised and non-validated health outcome.</p> <p>Inappropriate or self-reported outcomes</p>
Confounder control	<p>Good control for important confounders relevant to scientific question, and standard confounders</p> <p>Careful consideration is given to clearly indicated confounders</p>	<p>Confounders are partially controlled for.</p> <p>Moderately control of confounders and standard variables.</p>	<p>No control of potential confounders and effect modifiers in the design and analysis phases of the study</p>
Statistical Analysis	<p>Appropriate to study design, supported by adequate sample size, maximizing use of data, reported well (not selective).</p> <p>Statistical methods to control for confounding are used and adjusted and unadjusted estimates are presented. Subgroups and interaction analysis are conducted.</p>	<p>Acceptable methods, analytic choices that lose information, not reported clearly</p> <p>Post-hoc analysis conducted but clearly indicated</p>	<p>Only descriptive statistics or questionable bivariate analysis are made</p> <p>Comparisons not performed or described clearly.</p> <p>Deficiencies in analysis (e.g. multiple testing).</p>
Reporting	<p>Key elements of the Material and Methods, and results are reported with sufficient detail</p> <p>Numbers of individuals at each stage of study is reported</p> <p>A plausible mechanism for the association under investigation is provided</p>	<p>Some elements of the Material and Methods or results are not reported with sufficient detail.</p> <p>Interpretation of results moderately addressed.</p>	<p>Deficiencies in reporting (interpretation of effect estimates, confounder control).</p> <p>Selective reporting.</p> <p>Paucity of information on relevant factors that may affect the exposure-health relationship.</p> <p>Misplaced focus of the inferential objectives.</p> <p>Not justified conclusions.</p>

1765 ^aOverall study quality ranking based on comprehensive assessment across the parameters.

1766

1767 If the above assessment is part of the evidence synthesis exercise, where epidemiological research is
1768 being assessed and quantitatively summarised, it permits more accurate estimation of absolute risk
1769 related to pesticide exposure and further quantitative risk assessment.

1770 In the particular case of pesticide epidemiology data, three basic categories are proposed as a first tier
1771 to organize human data with respect to risk of bias and reliability: a) low risk of bias and high
1772 reliability (all or most of the above quality factors have been addressed with minor methodological
1773 limitations); b) medium risk of bias and medium reliability (many of the above quality factors have
1774 been addressed with moderate methodological limitations); c) high risk of bias and low reliability,
1775 because of serious methodological limitations or flaws that reduce the validity of results or make them
1776 largely uninterpretable for a potential causal association (Figure 1). These studies are considered
1777 unacceptable for risk assessment mainly because of poor exposure assessment, misclassification of
1778 exposure and/or health outcome, or lack of statistical adjustment for relevant confounders. Risk
1779 assessment should not be based on results of epidemiological studies that do not meet well-defined
1780 data quality standards.

1781

1782 **6.3. Assessment of strength of evidence of epidemiological studies**

1783 This section briefly discusses some important issues specifically related to combining and summarizing
1784 results from different epidemiological studies on the association between pesticides and human
1785 health.

1786 The approach for weighting epidemiological studies is mainly based on the modified Bradford Hill
1787 criteria, which are a group of conditions that provide evidence bearing on a potentially causal
1788 relationship between an incidence and a possible consequence (strength, consistency, specificity,
1789 temporality, biological gradient, plausibility, coherence, experiment and analogy) (Höfner, 2005).
1790 Clearly, the more of these criteria that are met the stronger the basis for invoking the association as
1791 evidence for a meaningful association. However, Bradford Hill was unwilling to define what causality
1792 was and never saw the criteria as sufficient or even absolutely necessary but simply of importance to
1793 consider in a common-sense evaluation.

1794 For predictive causality, care must be taken to avoid the logical fallacy *post hoc ergo propter hoc* that
1795 states "Since event Y followed event X, event Y must have been caused by event X". Höfner (2005)
1796 quotes a more accurate "counterfactual" definition as follows "but for E, D will not occur or would not
1797 have occurred, but given E it will/would have occurred". Yet more detailed descriptions using symbolic
1798 logic are also available (Maldonado 2002). Rothman and Greenland (2002) stated that "the only *sine*
1799 *qua non* for a counterfactual effect is the condition that the cause must precede the effect. If the
1800 event proposed as a result or "effect" precedes its cause, there may be an association between the
1801 events but certainly no causal relationship.

1802

1803 **6.3.1. Synthesis of epidemiological evidence**

1804 Systematic reviews and meta-analysis of observational studies can provide information that
1805 strengthens the understanding of the potential hazards of pesticides, exposure-response
1806 characterization, exposure scenarios and methods for assessing exposure, and ultimately risk
1807 characterization (van den Brandt, 2002). Evidence synthesis is however challenging in the field of
1808 pesticide epidemiology as standardisation and harmonisation is difficult. Nonetheless, evidence
1809 synthesis should play a pivotal role in assessing the robustness and relevance of epidemiological
1810 studies.

1811 Statistical tools have been developed that can help assess this evidence. When multiple studies on
1812 nearly identical sets of exposures and outcomes are available, these can provide important scientific
1813 evidence. Where exposure and outcomes are quantified and harmonized across studies, data from
1814 individual epidemiological studies with similar designs can be combined to gain enough power to

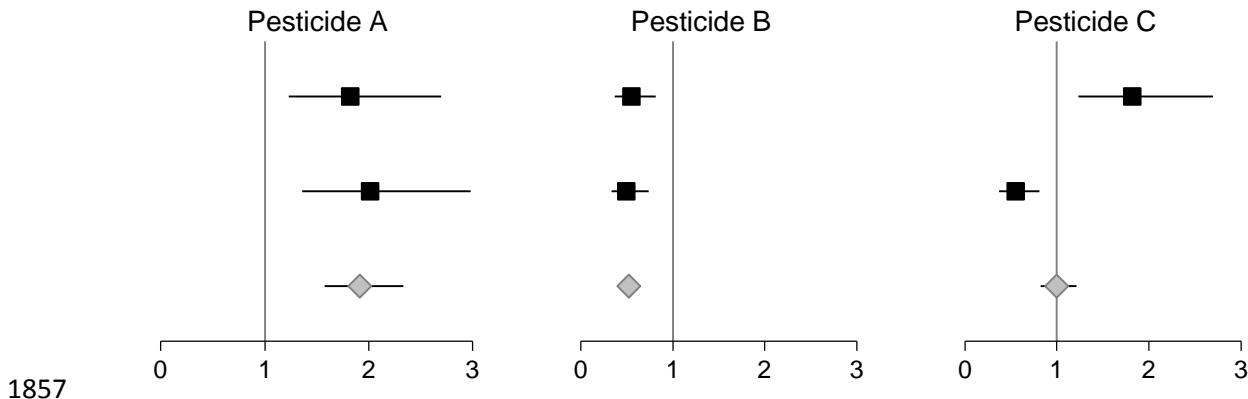
1815 obtain more precise risk estimates and to facilitate assessment of heterogeneity. Appropriate
1816 systematic reviews and quantitative synthesis of the evidence needs to be performed regularly (e.g.
1817 see World Cancer Research Fund approach to continuous update of meta-analysis for cancer risk
1818 factor¹⁶). Studies should be evaluated according to previously published criteria for observational
1819 research and carefully examine possible selection bias, measurement error, sampling error,
1820 heterogeneity, study design, and reporting and presentation of results.

1821 Meta-analysis is the term generally used to indicate the collection of statistical methods for combining
1822 and contrasting the results reported by different studies. Meta-analysis techniques could be used to
1823 examine the presence of diverse biases in the field such as small study effects and excess significance
1824 bias. Meta-analyses, however, do not overcome the underlying biases associated with each study
1825 design (i.e., confounding, recall bias or other sources of bias are not eliminated).

1826 In addition to summarizing the basic study characteristics of the literature reviewed, a typical meta-
1827 analysis should include the following components: a) the average effect size and effect size
1828 distribution for each outcome of interest and an examination of the heterogeneity in the effect size
1829 distributions; b) subgroup analysis in which the variability present in the effect size distribution is
1830 systematically analysed to identify study characteristics that are associated with larger or smaller
1831 effect sizes; and c) publication bias analysis and other sensitivity analyses to assess the validity of
1832 conclusions drawn (Wilson et al., 2014).

1833 In a meta-analysis, it is important to specify a model that adequately describes the effect-size
1834 distribution of the underlying population of studies. Meta-analysis using meaningful effect size
1835 distributions will help to integrate quantitative risk into risk assessment models. The conventional
1836 normal fixed- and random-effects models assume a normal effect-size population distribution,
1837 conditionally on parameters and covariates. For estimating the overall effect size, such models may be
1838 adequate, but for prediction they surely are not if the effect size distribution exhibits a non-normal
1839 shape (Karabatsos et al., 2015).

1840


1841 **6.3.2. Meta-analysis as a tool to explore heterogeneity across studies**

1842 When evaluating the findings of different studies many aspects should be carefully evaluated.
1843 Researchers conducting meta-analyses may tend to limit the scope of their investigation to the
1844 determination of the size of association averaged over the considered studies. The motivation often is
1845 that aggregating the results yields greater statistical power and precision for the effect of interest.
1846 Because individual estimates of effect vary by chance, some variation is expected. However, estimates
1847 must be summarised only when meaningful. An important aspect that is often overlooked is
1848 heterogeneity of the strength of associations across subgroups of individuals. Heterogeneity between
1849 studies needs to be assessed and quantified when present (Higgins, 2008). In meta-analysis,
1850 heterogeneity among results from different studies may indeed be as informative as homogeneity.
1851 Exploring the reasons underlying any observed inconsistencies of findings is generally conducive of
1852 great understanding.

1853 Figure 1 shows three forest plots from a fictitious example in which each of three pesticides (A, B, C)
1854 is evaluated in meta-analysis of two studies. It is assumed that both studies for each pesticide are of
1855 the highest quality and scientific rigor. No biases are suspected.

1856

¹⁶ World Cancer Research Fund International. Continuous Update Project (CUP) <http://www.wcrf.org/int/research-website/continuous-update-project-cup>

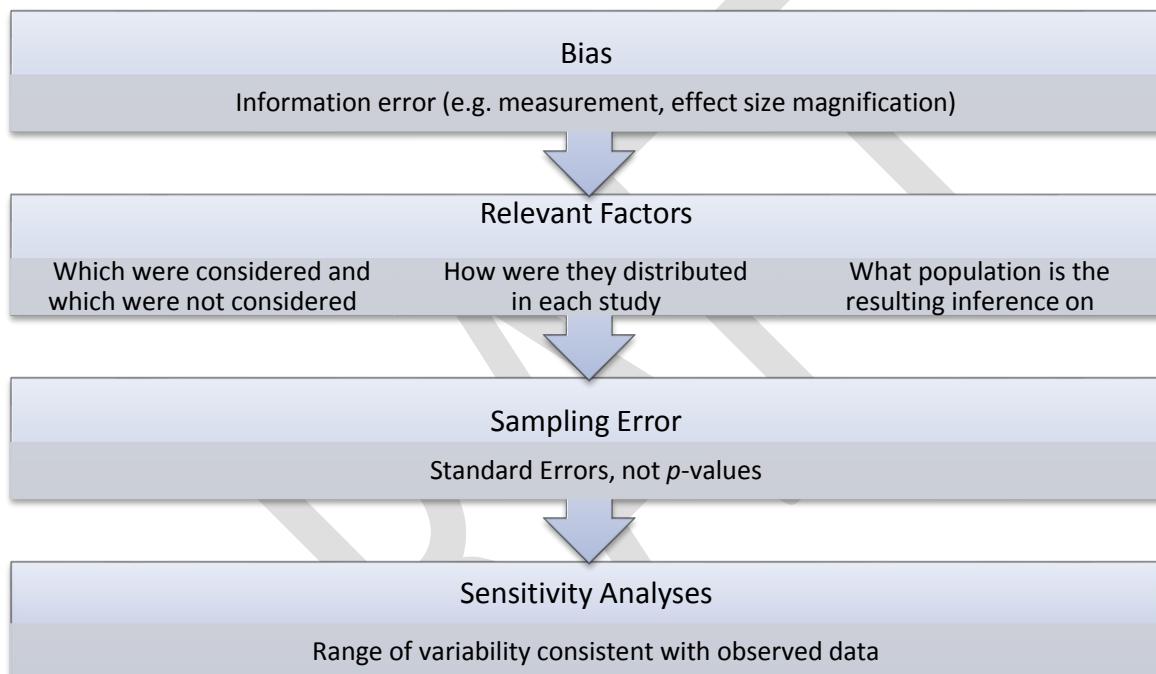
1857
 1858 **Figure 1:** Forest plots from a fictitious example in which each of three pesticides (A, B, C) is
 1859 evaluated in a meta-analysis of two studies. The x-axis in each plot represents the
 1860 estimated risk ratio of the disease of interest comparing exposed and unexposed
 1861 individuals. The squares denote the estimated risk ratio in each study and the grey
 1862 diamonds the summarized risk ratio. The horizontal lines indicate 95% confidence
 1863 intervals.

1864
 1865 The following text contains short comments on the interpretation of the results in Figure 1, one
 1866 pesticide at a time.

1867 Exposure to pesticide A seems to double the risk of the disease. The results are consistent between
 1868 the two studies and the confidence intervals do not contain the null value, one. These results,
 1869 however, do not imply that (a) the risk ratio would be about 2 in any other study that was conducted
 1870 on the same exposure and disease; or that (b) the risk ratio is two in any group of individuals (e.g.
 1871 males or females, young or old).

1872 Exposure to pesticide B seems to halve the risk of the disease. The results are consistent between the
 1873 two studies and the confidence intervals do not contain the null value, one. These results, however,
 1874 do not imply that (a) the risk ratio would be about a half in any other study that was conducted on the
 1875 same exposure and disease; or that (b) the risk ratio is about a half in any group of individuals (e.g.
 1876 males or females, young or old).

1877 Exposure to pesticide C seems to double the risk of the disease in one study and to halve the risk in
 1878 the other. The results are inconsistent between the two studies and the confidence intervals do not
 1879 contain the null value, one. These results, however, do not imply that (a) the risk ratio would be about
 1880 one in any other study that was conducted on the same exposure and disease; or that (b) the risk
 1881 ratio is about one in any group of individuals (e.g. males or females, young or old).


1882 What evidence can the results shown in Figure 2 provide?

1883 The risk ratio reported by any study can be generalized to other populations only if all the relevant
 1884 factors have been controlled for (Bottai 2014). In this context, relevant factors are variables that are
 1885 stochastically dependent with the health outcome of interest. For example, cardiovascular diseases are
 1886 more prevalent among older subjects than among younger individuals. Age is therefore a relevant
 1887 factor for cardiovascular diseases. The evidence provided by the results shown in Figure 1 are
 1888 potentially valid only if this step was taken in each of the studies considered. If that was the case for
 1889 the studies, then there is evidence that exposure to pesticide A doubles the risk in the specific group
 1890 of individuals considered by each of the two studies. If the risk ratios are summary measures over the
 1891 respective study populations, then none of the findings should be generalized. However, if the risk
 1892 ratios for pesticide A were not adjusted for any factor, and the underlying populations were very
 1893 different across the two studies, then there would still be evidence that there may be no relevant
 1894 factors and pesticide A doubles the risk in any subgroup of individuals. Pesticide B appears to halve
 1895 the risk, and the estimated confidence intervals are narrower for pesticide B than for pesticide A.
 1896 Generalizability of the findings, however, holds for pesticide B under the conditions stated above for
 1897 pesticide A. As for pesticide C, the forest plot provides evidence that exposure to this pesticide raises
 1898 the risk of the disease in the group of individuals in one of the studies and decreases it in the group

1899 considered in the other study. Again, if the risk ratios are summary measures over the respective
 1900 study populations, then none of the findings should be generalized. Investigating the reasons behind
 1901 the inconsistency between the two studies on pesticide C can provide as much scientific insight as
 1902 investigating the reasons behind the similarity between the studies on pesticide A or pesticide B.

1903 In general, the overall summary measures provided by forest plots, such as the silver diamonds in
 1904 each of the three panels of Figure 1, are of little scientific interest. When evaluating the findings of
 1905 different studies many aspects should be carefully evaluated. An important aspect that is often
 1906 overlooked is heterogeneity of the strength of associations across subgroups of individuals. When
 1907 information about subgroup analysis is provided in the publications that describe a study, this should
 1908 be carefully evaluated. Sensitivity analyses should complement the results provided by different
 1909 studies. These should aim to evaluate heterogeneity and the possible impact of uncontrolled for
 1910 relevant factors along with information and sampling error. A synoptic diagram is displayed in Figure
 1911 2.

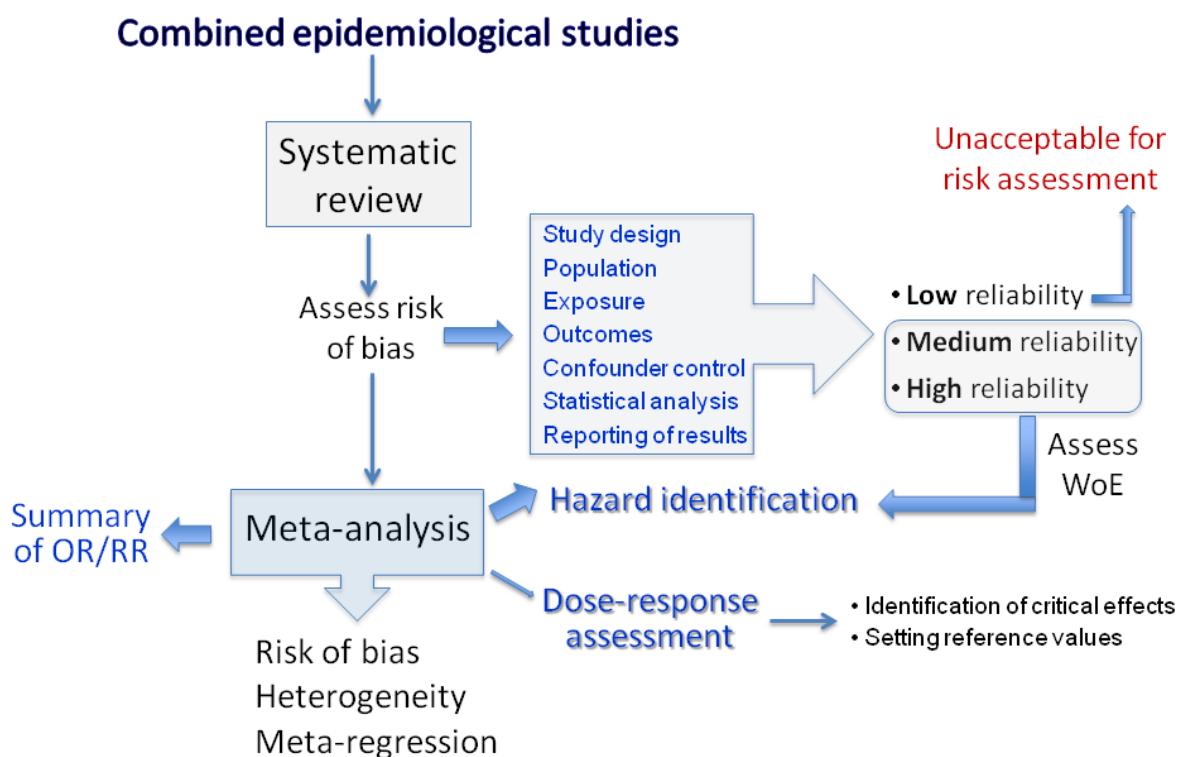
1912

1913

1914

1915 **Figure 2:** Items to consider when evaluating and comparing multiple studies.

1916


1917 **6.3.3. Usefulness of meta-analysis for hazard identification**

1918 Human data can be used for many stages of risk assessment. Single epidemiological studies, by
 1919 themselves, should not be used as a sole source for hazard identification, unless they are high quality
 1920 studies (according to criteria shown in Table 2). Evidence synthesis techniques which bring together
 1921 many studies, such as systematic reviews and meta-analysis (where appropriate) should be utilized
 1922 instead (Figure 3). Although many meta-analyses have been carried out for the quantitative synthesis
 1923 of data related to chronic diseases, their relevance for risk assessment modelling is still limited.

1924 Importantly, evidence synthesis will provide a methodological assessment and a risk of bias
 1925 assessment of the current evidence highlighting areas of uncertainties and identifying associations
 1926 with robust and credible evidence.

1927 Figure 3 shows a simple methodology proposed for the application of epidemiological studies into risk
 1928 assessment. The first consideration is the need of combining different epidemiological studies
 1929 addressing the same outcome. This can be made following criteria proposed by EFSA guidance for

1930 systematic reviews (EFSA, 2010). Then, the risk of bias is assessed based on the factors described in
 1931 section 6.2 for a WoE assessment, namely: study design and conduct, population, exposure
 1932 assessment, outcome assessment, confounder control, statistical analysis and reporting of results.
 1933 Those studies categorised as of low reliability will be considered unacceptable for risk assessment. The
 1934 remaining studies will be weighted and used for hazard identification.

Figure 3: Methodology for utilization of human data for risk assessment.

If quantitative data are available, a meta-analysis can be conducted to create summary data and to improve the statistical power and precision of risk estimates (OR, RR) by combining the results of all individual studies available or meeting the selection criteria. As meta-analyses determine the size of association averaged over the considered studies, they provide a stronger basis for hazard identification. Moreover, under certain circumstances, there is the possibility to move towards risk characterization metrics because these measured differences in health outcomes (OR, RR) can be converted to dose-response relationships (Nachman et al., 2011). Although quite unusual in practice, this would allow for the identification of critical effects in humans and/or setting reference values without the need of using animal extrapolation.

Since heterogeneity is common in meta-analyses, there is a need to assess which studies could be combined quantitatively. Heterogeneity can be genuine, representing diverse effects in different subgroups, or might represent presence of bias. If heterogeneity is high (I^2 greater than 50%), individual studies should not be combined to obtain a summary measure because of the high risk of aggregating bias from different sources. Sources of heterogeneity should be explored through sensitivity analysis and/or meta-regression. Furthermore, the presence of diverse biases in the meta-analysis should be examined, such as small study effects, publication bias and excess significance bias. It is important to find models that adequately describe the effect-size distribution of the underlying studied populations.

1957

1958 6.3.4. Pooling data from similar epidemiologic studies for potential dose-response modelling

1959
1960 As in other fields of research, findings from a single epidemiological study merit verification through
1961 replication. When the number of replications is abundant, it may be worthwhile to assess the entire
1962 set of replicate epidemiological studies through a meta-analysis and ascertain whether, for key
1963 outcomes, findings are consistent across studies. Such an approach will provide more robust
1964 conclusions about the existence of cause-effect relationships.

1965 Once a hazard has been identified, the next step in risk assessment is to conduct a dose-response
1966 assessment to estimate the risk of the adverse effect at different levels of exposure and/or the
1967 concentration level below which no appreciable adverse health effect can be assumed for a given
1968 population.

1969 However, this step requires fully quantitative (or at least semi-quantitative) exposure data at individual
1970 level. Summary estimates resulting from quantitative synthesis would be more informative for risk
1971 assessment if they present OR for a given change in the continuous variable of exposure (or per a
1972 given percentile change in exposure) as this allows for relative comparisons across studies and could
1973 be of help to derive health-based reference values. Only within such a framework can data from
1974 human studies with similar designs be merged to gain enough power to model proper dose-response
1975 curves (Greenland and Longnecker, 1992; Orsini et al., 2012).

1976 Conversely, meta-analytical approaches may be of limited value if a combined OR is calculated based
1977 on meta-analyses interpreting exposure as a 'yes' or a 'no' because exposures are not necessarily to
1978 active ingredients in the same proportion in all studies included. Even though in these cases meta-
1979 analyses may consistently find an increased risk associated with pesticide exposure, for risk
1980 assessment the exposure needs to characterise the effect of specific pesticide classes or even better
1981 individual pesticides (Hernández et al., 2016).

1982 This approach would allow points of departure to be identified (e.g., benchmark doses -BMD-) and
1983 would be relevant for the integration of epidemiological studies into quantitative risk assessment.
1984 Although BMD modelling is currently used for analysing dose-response data from experimental
1985 studies, it is possible to apply this approach to data from observational epidemiological studies. The
1986 EFSA Scientific Committee confirmed that the BMD approach is a scientifically more advanced method
1987 compared to the NOAEL approach for deriving a Reference Point, since it makes extended use of the
1988 dose-response data from experimental and epidemiological studies to better characterise and quantify
1989 potential risks. This approach, in principle, can be applicable to human data (EFSA 2017b).

1990 Dose-response data from observational epidemiological studies may differ from typical animal toxicity
1991 data in several respects and these differences are relevant to BMD calculations. Exposure data often
1992 do not fall into a small number of well-defined dosage groups. Unlike most experimental studies,
1993 observational studies may not include an unexposed control group, because all individuals may be
1994 exposed to some extent to a chemical contaminant. In this case, the BMD approach still applies since
1995 fitting a dose-response curve does not necessarily require observations at zero exposure. However,
1996 the response at zero exposure would then need to be estimated by low-dose extrapolation. Hence the
1997 BMD derived from epidemiological data can be strongly model-dependent (Budtz-Jørgensen et al.,
1998 2001).

1999

2000 7. Integrating the diverse streams of evidence: human (epidemiology 2001 and vigilance data) and experimental information

2002

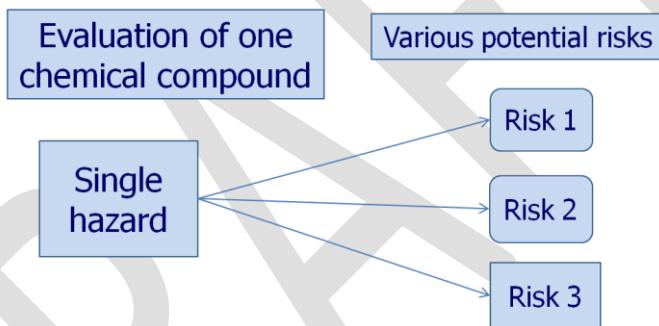
2003 This chapter first considers in 7.1 the different nature of the main streams of evidence, i.e. originating
2004 either from experimental studies or from epidemiological studies. The approach used is that
2005 recommended by the Scientific Committee Opinion on WoE (2017b), which distinguishes 3 successive
2006 phases to assess and integrate these different streams of information: reliability, relevance and

2007 consistency. The first step, consists in the assessment of the reliability of individual studies be they
2008 epidemiological (addressed in chapter 6) or experimental. Then, the relevance (strength of evidence)
2009 of one or more studies found to be reliable is assessed using principles of epidemiology (addressed in
2010 chapter 6) and toxicology. Next, section 7.2 considers how to bring together different streams of
2011 relevant information from epidemiological and experimental studies, which is considered in a WoE
2012 approach, to assess consistency and biological plausibility for humans.

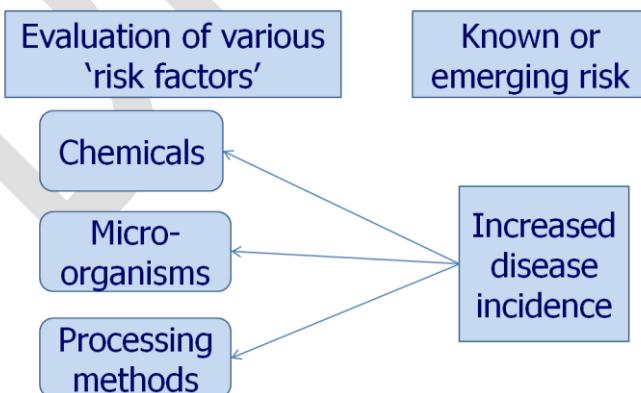
2013

2014 **7.1. Sources and nature of the different streams of evidence**
2015 **Comparison of experimental and epidemiological approaches**

2016 In the regulatory risk assessment of pesticides, the information on the toxic effects is based on the
2017 results of a full set of experiments as required by Regulation (EC) 283/2013 and 284/2013, and
2018 conducted according to OECD guidelines. They are carried out *in vivo* or *in vitro*. A number of
2019 categories are established for rating the reliability of each stream of evidence according to the EFSA
2020 peer review of active substances: acceptable, supplementary and unacceptable. The data quality and
2021 reliability of *in vivo* or *in vitro* toxicity studies should be assessed using evaluation methods that better
2022 provide more structured support for determining a study's adequacy for hazard and risk assessments.
2023 Animal (*in vivo*) studies conducted according to standardized test guidelines and good laboratory
2024 practices (e.g. OECD TG) are by default attributed higher reliability than other research studies.
2025 Notwithstanding, since there is no evidence that studies conducted under such framework have a
2026 lower risk of bias (Vandenberg et al., 2016), evidence from all relevant studies, both GLP and non-
2027 GLP, should also be considered and weighted. Besides, the internal validity of *in vitro* toxicity studies
2028 should be evaluated as well to provide a better support for determining a study's adequacy for hazard
2029 and risk assessments. *In silico* modelling can be used to derive structure-activity relationships (SAR)
2030 and to complement current toxicity tests for the identification and characterization of the mode or
2031 mechanisms of action of the active substance in humans. These alternative toxicity testing approaches
2032 could be helpful in the absence of animal data, e.g. to screen for potential neurodevelopmental or
2033 endocrine disruption effects of pesticides, and to increase confidence in animal testing.


2034 Besides toxicity data on the active substance, such data may also be required on metabolites or
2035 residues if human exposure may occur through the diet or drinking water. Results from these studies
2036 are then considered in relation to expected human exposures estimated through food consumption
2037 and other sources of exposure. The strength of this approach is that experimental studies in
2038 laboratory animals are controlled studies where confounding is eliminated by design, which is not the
2039 case with epidemiological studies. Animals used in regulatory studies are, however, typically inbred,
2040 genetically homogeneous and due to the controlled environment they lack the full range of
2041 quantitative and qualitative chemical susceptibility profiles.

2042 Many experimental models do not capture complex multifactorial diseases making animal-to-human
2043 extrapolation subject to considerable uncertainty. Current risk assessment is therefore by its nature
2044 predictive and may be insufficient because it is chemical-specific and humans are exposed to a large
2045 number of chemicals from environmental, dietary and occupational sources or because of different
2046 toxicokinetic differences. In recognition of the uncertain nature of animal-to-human extrapolation the
2047 regulatory risk assessment advice does not just consider the relevant point(s) of departure (NOAEL,
2048 LOAEL or BMDL) that have been identified as safe but lowers these values using uncertainty factors
2049 (UFs) to propose safe reference dose values, either for acute or chronic toxicity.


2050 In contrast, epidemiological studies examine associations between actual exposures in humans with
2051 disease. Epidemiological studies incorporate the true (or estimated) range of population exposures,
2052 which usually are intermittent and at inconsistent doses instead of occurring at a consistent rate and
2053 dose magnitude (Nachman et al., 2011). Since epidemiological studies are based on real-world
2054 exposures, they provide insight into actual human exposures that can then be linked to diseases,
2055 avoiding the uncertainty associated with extrapolation across species. Hence, it can be said that they
2056 address the requirements of Regulation 1107/2009 Article 4, which stipulates that the risk assessment
2057 should be based on good plant protection practice and realistic use conditions. Thus, epidemiological
2058 studies assist problem formulation and hazard/risk characterization whilst avoiding the need for high
2059 dose extrapolation (US-EPA 2010).

2060 Epidemiological studies therefore provide the opportunity to a) identify links with specific human
 2061 health endpoints that are difficult to detect in animal models; b) affirmation of the human relevance of
 2062 effects identified in animal models; and c) ability to evaluate health effects for which animal models
 2063 are unavailable or limited (Raffaele et al., 2011). However, in epidemiological studies there are always
 2064 a variety of factors that may affect the disease outcome and confound the results. For example, when
 2065 epidemiological data suggest that exposures to pesticide formulations are harmful they usually cannot
 2066 identify what component may be responsible due to the complexity of accurately assessing human
 2067 exposures to pesticides. In addition confounding by unmeasured factor(s) associated with the
 2068 exposure can never be fully excluded. As many diseases are known to be associated with multiple risk
 2069 factors; a hazard-by-hazard approach is usually considered for evaluating the consequences of
 2070 individual pesticide hazards on vulnerable systems (Figure 4A). Specifically, single-risk analysis allows
 2071 a determination of the individual risk arising from one particular hazard and process occurring under
 2072 specific conditions, while it does not provide an integrated assessment of multiple risks triggered by
 2073 different environmental stressors (either natural or anthropogenic) (Figure 4B). Risk assessment would
 2074 benefit by developing procedures for evaluating evidence for co-occurrence of multiple adverse
 2075 outcomes (Nachman et al., 2011), which is more in line with what happens in human setting. For
 2076 these reasons, if appropriately conducted, epidemiological studies can be highly relevant for the risk
 2077 assessment process.

**A Classical single hazard approach:
driven by regulatory frameworks**

B Multiple hazards: Epidemiological approach: *what makes people ill?*

Figure 4: Role of epidemiological studies when compared to classical toxicological studies.

2078

2079

2080

2081

2082

2083

2084

In parallel with epidemiological data, vigilance data can provide an additional stream of evidence, especially for acute toxicity. Cases are usually well-documented and information can be used at different steps of the risk assessment; these include: level and duration of exposure, clinical course and assessment of the causal relationship. In severe cases, the toxin and/or the metabolites are

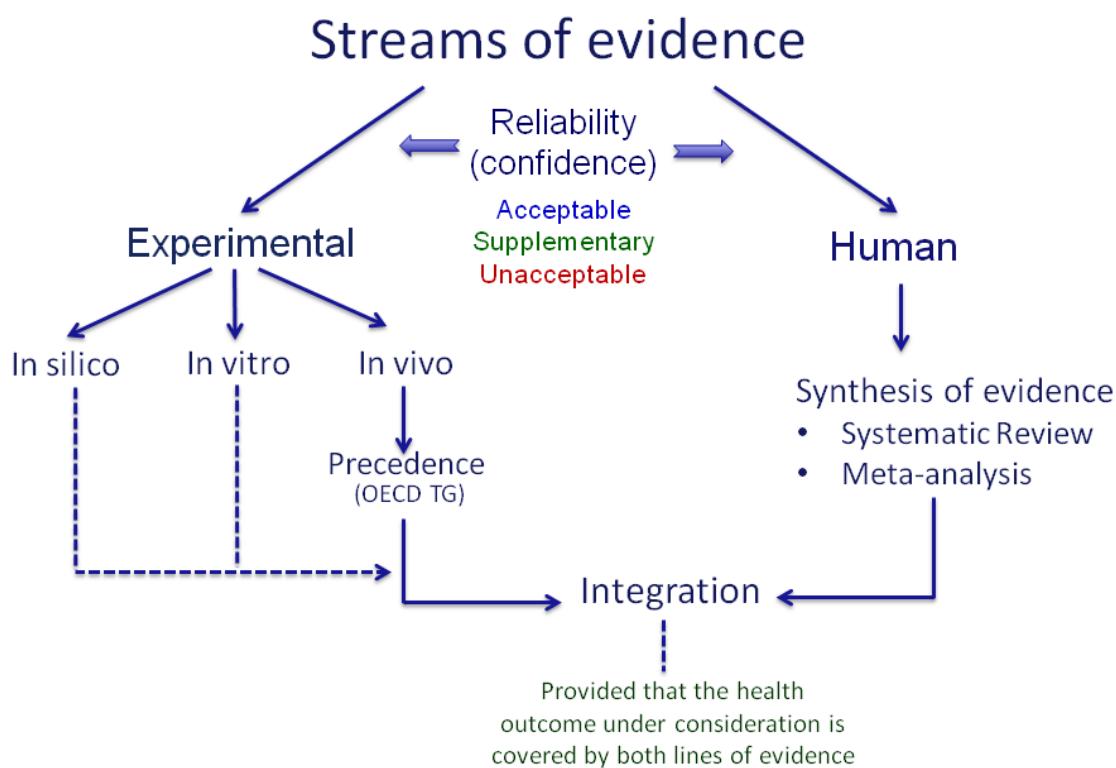
2085 usually measured in blood or urine which allows for comparison with animal data and in some cases
2086 for setting toxicological values.

2087 In summary, experimental studies or epidemiological studies and vigilance data represent two
2088 different approaches to collect and assess evidence i.e. one emanating from controlled exposures
2089 (usually to a single substance) using experimental study design and a relatively homogeneous
2090 surrogate population, the other reflecting the changes observed in a heterogeneous target population
2091 from mixed (and varying) exposure conditions using non-experimental study design (ECETOC, 2009).
2092 This makes both streams of evidence complementary.

2093

2094 **7.2. Principles for weighting of human observational and laboratory** 2095 **animal experimental data**

2096 Following the identification of reliable human (epidemiological or vigilance) studies and the
2097 assessment of the relevance of the pooled human studies, the separate lines of evidence that were
2098 found to be relevant need to be integrated with other lines of evidence that were equally found to be
2099 relevant.


2100 The first consideration is thus how well the health outcome under consideration is covered by
2101 toxicological and epidemiological studies. When both animal and human studies are considered to be
2102 available for a given outcome/endpoint, this means that individual studies will first have been
2103 assessed for reliability and strength of evidence (sections 6.2 and 6.3 for epidemiological studies,
2104 respectively) prior to the weighting of the various sources of evidence. Although the different sets of
2105 data can be complementary and confirmatory, individually they may be insufficient and pose
2106 challenges for characterizing properly human health risks. Where good observational data are lacking,
2107 experimental data have to be used. Conversely, when no experimental data is available, or the
2108 existing experimental data were found not to be relevant to humans, the risk assessment may have to
2109 rely on the available and adequate observational studies.

2110 A simple method is proposed for weighting human and experimental studies in order to incorporate
2111 them into risk assessment (Figure 5). For a comparative interpretation of human and animal data,
2112 this framework should rely on the following principles (adapted from ECETOC, 2009; Lavelle et al.,
2113 2012):

- 2114 • Although the totality of evidence should be assessed, only the studies that are found to be
2115 reliable (those categorised as acceptable or supplementary evidence) are considered further.
2116 If the data from the human or the experimental studies is considered to be of low reliability
2117 (categorised as unacceptable), no risk assessment can be conducted.
- 2118 • A WoE approach should be followed where several lines of evidence are found to be relevant.
2119 For pesticide active substances, experimental studies following OECD test guidelines are
2120 deemed high reliability unless there is evidence to the contrary. The strength of evidence from
2121 animal studies can be upgraded if there is high confidence in alternative pesticide toxicity
2122 testing methods (e.g., *in vitro* and *in silico* studies). As for epidemiological evidence, the
2123 conduct of meta-analysis provides a more precise estimate of the magnitude of the effect than
2124 individual studies and also allows for examining variability across studies (see section 6.3).
- 2125 • Next, the studies that are found to be more relevant for the stage being assessed are to be
2126 given more weight, regardless of whether the data comes from human or animal studies.
2127 Where human data are of highest relevance, they should take precedence for each stage of
2128 the risk assessment. When human and experimental data are of equal or similar relevance, it
2129 is important to assess their concordance (consistency across the lines of evidence) in order to
2130 determine whether and which dataset may be given precedence.
 - 2131 ✓ In case of concordance between human and animal data, the risk assessment should
2132 use all the data as both yield similar results in either hazard identification (e.g. both
2133 indicate the same hazard) or hazard characterisation (e.g. both suggest similar safe

2134 dose levels). Thus, both can reinforce each other and similar mechanisms may be
 2135 assumed in both cases.

2136 ✓ In case of non-concordance, the framework needs to account for this uncertainty. For
 2137 hazard identification, the data suggesting the presence of a hazard should generally
 2138 take precedence. For dose-response the data resulting in the lower acceptable level
 2139 should take precedence. In every situation of discordance, the reasons for this
 2140 difference should be considered. If the reason is related to the underlying biological
 2141 mechanisms, then confidence in the risk assessment will increase. Conversely, if the
 2142 reason cannot be understood or explained, then the risk assessment may be less
 2143 certain. In such cases, efforts should be made to develop a better understanding of
 2144 the biological basis for the contradiction.

2145
 2146 **Figure 5:** Methodology for the integration of human and animal data for risk assessment.
 2147

2148 Epidemiological studies provide complementary data to analyse risk and should be contextualised in
 2149 conjunction with well-designed toxicological *in vivo* studies and mechanistic studies. The strength of
 2150 evidence from experimental studies can be upgraded if there is high confidence in the *in vitro* and *in*
 2151 *silico* studies. The overall strength of the evidence achieved from integrating multiple lines of evidence
 2152 will be at least as high as the highest evidence obtained for any single line. This integrated approach
 2153 provides explicit guidance on how to weigh and integrate toxicological and epidemiological evidence.
 2154 This is a complex task that becomes even more difficult when epidemiological data deal with multi-
 2155 factorial, multi-hit, chronic diseases for which toxicological models, or disease-specific animal models,
 2156 are limited.

2157 **7.3. Weighting all the different sources of evidence**

2158 The WHO/IPCS defines the WoE approach as a process in which all of the evidence considered
 2159 relevant for risk assessment is evaluated and weighted (WHO/IPCS, 2009). The WoE approach, taking

2160 the risk assessment of chemical substances as an example, requires the evaluation of distinct lines of
2161 evidence (*in vivo*, *in vitro*, *in silico*, population studies, modelled and measured exposure data, etc.).
2162 The challenge is to weight these types of evidence in a systematic, consistent and transparent way
2163 (SCENIHR, 2012). The weighting may be formally quantitative or rely on categorisation according to
2164 criterion referencing of risk.

2165 An EFSA Working Group was established to provide transparent criteria for the use of the WoE
2166 approach for the evaluation of scientific data by EFSA's Panels and Scientific Committee (EFSA 2015b).
2167 The aim of this Working Group was to provide support to stakeholders on how individual studies
2168 should be selected and weighted, how the findings integrated to reach the final conclusions and to
2169 identify uncertainties regarding the conclusions.

2170 The WoE approach is not consistently considered in the risk assessment of pesticides in the peer
2171 review process of DAR or RAR. Expert judgment alone, without a structured WoE approach, has been
2172 more commonly used. A few examples can be found, such as the peer review of glyphosate (EFSA
2173 2015c), where the Rapporteur Member State (RMS) considered all the data either from industry or
2174 from public literature, including epidemiological data, and took a specific WoE approach with
2175 established *ad hoc* criteria and considering all data available for proposing an 'overall' NOAEL for each
2176 endpoint of toxicity explored.

2177 The US-EPA has recently applied specific criteria for the WoE approach to the peer review of the
2178 pesticide chlorpyrifos by following the "Framework for incorporating human epidemiologic & incident
2179 data in health risk assessment". In this specific case, a WoE analysis has been conducted to integrate
2180 quantitative and qualitative findings across many lines of evidence including experimental toxicology
2181 studies, epidemiology studies and physiologically-based pharmacokinetic and pharmacodynamic
2182 (PBPK-PD) modelling. Chlorpyrifos was also used as an example for the EFSA Guidance on literature
2183 search under Regulation (EC) No 1107/2009. In addition, an EFSA conclusion (2014) took into
2184 consideration the US-EPA review (2011) to revise its first conclusion produced in 2011.

2185 In sum, a broader WoE approach can be applied to evaluate the available scientific data using
2186 modified Bradford Hill criteria as an organizational tool to increase the likelihood of an underlying
2187 causal relationship. Although epidemiology increasingly contributes to establishing causation, an
2188 important step to this end is the establishment of biological plausibility (Adami et al., 2011; Buonsante
2189 et al., 2014; US-EPA, 2010).

2190

2191 **7.4. Biological mechanisms underlying the outcomes**

2192 A biological mechanism describes the major steps leading to a health effect following interaction of a
2193 pesticide with its biological targets. The mechanism of toxicity is described as the major steps leading
2194 to an adverse health effect. An understanding of all steps leading to an effect is not necessary, but
2195 identification of the key events following chemical interaction is required to describe a mechanism (of
2196 toxicity in the case of an adverse health effect). While many epidemiological studies have shown
2197 associations between pesticide exposures and chronic diseases, complementary experimental research
2198 is needed to provide mechanistic support and biological plausibility to the human epidemiological
2199 observations. Establishing biological plausibility as part of the interpretation of epidemiological studies
2200 is relevant and should take advantage of modern technologies and approaches (section 7.6). In this
2201 context, the AOP framework can be used as a tool for systematically organizing and integrating
2202 complex information from different sources to investigate the biological mechanisms underlying toxic
2203 outcomes and to inform the causal nature of links observed in both experimental and observational
2204 studies (section 7.5).

2205 The use of data to inform specific underlying biological mechanisms or pathways of the potential toxic
2206 action of pesticides is limited since only selected pesticide chemicals have been investigated for
2207 biological function in relation to a specific health outcome. It may be possible to formulate a MoA
2208 hypothesis, particularly where there is concordance between results of comparable animal studies or
2209 when different chemicals show the same pattern of toxicity. It is essential to identify the toxicant and
2210 the target organ as well as the dose-response curve of the considered effect and its temporal
2211 relationship. If the different key events leading to toxicity and a MoA hypothesis can be identified, it is
2212 sometimes possible to evaluate the plausibility of these events to humans (ECETOC, 2009).

2213 Sulfoxaflor is an example where MoA has been extensively studied and has been also widely used as
2214 an example during the ECHA/EFSA MOA/HRF workshop held in November 2014. Sulfoxaflor induced
2215 hepatic carcinogenicity in both rats and mice. Studies to determine the MoA for these liver tumours
2216 were performed in an integrated and prospective manner as part of the standard battery of toxicology
2217 studies such that the MoA data were available prior to, or by the time of, the completion of the
2218 carcinogenicity studies. The MoA data were evaluated in a WoE approach indicate that the identified
2219 rodent liver tumour MoA for sulfoxaflor would not occur in humans. For this reason, sulfoxaflor is
2220 considered not to be a potential human liver carcinogen.

2221 In the case of exposure to multiple pesticides, the decision to combine risks can be taken if the
2222 pesticides share a common mechanism of toxicity (act on the same molecular target at the same
2223 target tissue, act by the same biochemical mechanism of action, and share a common toxic
2224 intermediate) which may cause the same critical effect or just based on the observation that they
2225 share the same target organ.

2226

2227 **7.5. Adverse Outcome Pathways (AOPs)**

2228 The AOP methodology provides a framework to collect and evaluate relevant chemical, biological and
2229 toxicological information in such a way that is useful for risk assessment (OECD 2013). An AOP may
2230 be defined as the sequence of key events following the interaction of a chemical with a biological
2231 target (molecular initiating event, MIE) to the *in vivo* adverse outcome relevant to human health. All
2232 these key events are necessary elements of the MoA and should be empirically observable or
2233 constitute biologically-based markers for such an event. An AOP is therefore a linear pathway from
2234 one MIE to one adverse outcome at a level of biological organization relevant to risk assessment. The
2235 goal of an AOP is to provide a flexible framework to describe the cascade of key events that lead from
2236 a MIE to an adverse outcome in a causal linkage (EFSA 2017c). The 'key events' must be
2237 experimentally measurable and the final adverse effect is usually associated with an *in vivo* OECD Test
2238 Guideline. However, in some cases the adverse outcome may be at a level of biological organization
2239 below that of the apical endpoint described in a test guideline (OECD 2013).

2240 A particular MIE may lead to several final adverse effects and, conversely, several MIEs may converge
2241 in the same final adverse effect. However, each AOP will have only one MIE and one final adverse
2242 effect, but may involve an unlimited number of intermediate steps (Vinken, 2013). It should be noted
2243 that key events at different levels of biological organization provide a greater WoE than multiple
2244 events at the same level of organization (OECD, 2013).

2245 The essential biochemical steps involved in a toxic response are identified and retrieved from an in-
2246 depth survey of relevant scientific literature or from experimental studies. Any type of information can
2247 be incorporated into an AOP, including structural data, "omics-based" data and *in vitro*, *in vivo* or *in*
2248 *silico* data. However, *in vivo* data are preferred over *in vitro* data and endpoints of interest are
2249 preferred to surrogate endpoints (Vinken, 2013). The AOPs identified must not be incompatible with
2250 normal biological processes, since they need to be biologically plausible.

2251 Qualitative AOPs (intended as an AOP including the assembly and evaluation of the supporting WoE
2252 following the OECD guidance for AOP development) should be the starting and standard approach in
2253 the process of integration of epidemiology studies into risk assessment by supporting (or identifying
2254 the lack of support for) the biological plausibility of the link between exposure to pesticides affecting
2255 the pathway and the adverse outcome. Accordingly, qualitative AOPs may be developed solely for the
2256 purpose of hazard identification, to support biological plausibility of epidemiological studies based on
2257 mechanistic knowledge (EFSA 2017c).

2258 For the purpose of analysing the biological plausibility, AOPs can serve as an important tool,
2259 particularly when the regulatory animal toxicological studies are negative but the evaluation of the
2260 apical endpoint (or relevant biomarkers) is considered inadequate based on the AOP (EFSA 2017c).

2261 The AOP framework is a flexible and transparent tool for the review, organization and interpretation of
2262 complex information gathered from different sources. This approach has the additional advantage of
2263 qualitatively characterizing the uncertainty associated with any inference of causality and identifying
2264 whether additional mechanistic studies or epidemiological research would be more effective in

2265 reducing uncertainty. The AOP framework is therefore a useful tool for risk assessment to explore
2266 whether an adverse outcome is biologically plausible or not. By means of mechanistically describing
2267 apical endpoints, the AOP contributes to the hazard identification and characterization steps in risk
2268 assessment. As the AOP framework is chemically agnostic, if complemented by the MoA and/or
2269 Integrated Approach on Testing and Assessment (IATA) framework, it will support the chemical
2270 specific risk assessment (EFSA 2017c).

2271 AOP and MoA data can be used to assess the findings of epidemiological studies to weight their
2272 conclusions. Whether those findings are inconsistent with deep understanding of biological
2273 mechanisms, or simply empirical, they should be given less weight than other findings that are
2274 consistent with AOP or MoA frameworks once established.

2275 AOPs are thus a critical element to facilitate moving towards a mechanistic-based risk assessment
2276 instead of the current testing paradigm relying heavily on apical effects observed in animal studies.
2277 Shifting the risk assessment paradigm towards mechanistic understanding would reduce limitations of
2278 the animal data in predicting human health effects for a single pesticide, and also support the current
2279 efforts being made on cumulative risk assessment of pesticide exposure (EFSA 2017c).

2280

2281 **7.6. Novel tools for identifying biological pathways and mechanisms 2282 underlying toxicity**

2283 The elucidation of toxicity pathways brings the opportunity of identifying novel biomarkers of early
2284 biological perturbations in the toxicodynamic progression towards overt disease, particularly from
2285 advances in biomonitoring, in 'omics technologies and systems biology (toxicology). The revolution of
2286 omics in epidemiology holds the promise of novel biomarkers of early effect and offers an opportunity
2287 to investigate mechanisms, biochemical pathways and causality of associations. The growing
2288 recognition of the value of biomonitoring data in epidemiologic investigations may help to reduce
2289 misclassification by providing objective measures of exposure and outcome. As long as biomarker data
2290 for exposure, outcome and susceptibility are increasingly generated, epidemiology will have a greater
2291 impact in the understanding of toxicodynamic progression as a function of pesticide exposure and
2292 eventually in risk assessment. A challenge for risk assessors will be to acknowledge where subtle and
2293 early changes along the toxicodynamic pathway are indicative of increased potential for downstream
2294 effects (Nachman et al., 2011). Omics data can be used for gaining insight to the mode of action
2295 (MoA) by identifying pathways affected by pesticides and, as such can assist hazard identification, the
2296 first step in risk assessment. Transcriptomic, metabolomic, epigenomic and proteomic profiles of
2297 biological samples provide a detailed picture, sometimes at individual molecule resolution, of the
2298 evolving state of cells under the influence of environmental chemicals, thus revealing early
2299 mechanistic links with potential health effects.. Nowadays, the challenges and benefits that advances
2300 in -omics techniques can bring to regulatory toxicology are still being explored (Marx-Stoelting et al.,
2301 2015).

2302 Those -omic applications most relevant and advanced in the context of toxicology are analysis of
2303 mode of actions and the derivations of adverse outcome pathways (AOP), and biomarker
2304 identification, all of which potentially assist epidemiology too. For example, a) transcriptomics:
2305 comparing gene expression (mRNA) profiles can be used for biomarker discovery, grouping expressed
2306 genes into functional groups (Gene Ontology categories) or for Gene Set Analysis. Such techniques
2307 may provide varying information regarding biological mechanisms. b) Proteomics: studying the protein
2308 profile of samples, with sophisticated analysis of protein quantity and post-translational modifications
2309 which may be associated with changes in biological pathways following exposure and possible disease
2310 development, utilising informatics and protein databases for identification and quantification. c)
2311 Metabolomics uses nuclear magnetic resonance spectroscopy or mass-spectrometry based techniques
2312 to produce data which are analysed via software, and databases, to identify markers (molecular
2313 signatures and pathways) that correlate with exposure or disease. d) The use of the exposome (the
2314 totality of exposures received by an individual during life) might be better defined by using 'omics'
2315 technologies and biomarkers appropriate for human biomonitoring. Nevertheless, important limitations
2316 stemming from the lack of validation of these methodologies and their cost limit their use at large
2317 scale.

2318 The application of -omics technologies to environmental health research requires special consideration
2319 to study design, validation, replications, temporal variance and meta-data analysis (Vlaanderen et al.,
2320 2010). For larger studies, intra-individual variability in the molecular profiles measured in biological
2321 samples should show less variability than the inter-individual variation in profiles of gene expression,
2322 protein levels or metabolites, which are highly variable over time. It is important that these inter-
2323 individual variations should not be larger than variation related to exposure changes, but it is not
2324 certain if this will be true.

2325 The biologically meaningful omics signatures identified by performing omics-exposure and omics-
2326 health association studies provide useful data for advanced risk assessment. This approach supports
2327 moving away from apical toxicity endpoints towards earlier key events in the toxicity pathway resulting
2328 from chemical-induced perturbation of molecular/cellular responses (NRC, 2007).

2329

2330 **7.7. New data opportunities in epidemiology**

2331 The current technological landscape permits the digitization and storage of unprecedented amount of
2332 data from many sources, including smart phones, text messages, credit card purchases, online
2333 activity, electronic medical records, global positioning system (GPS) and supermarket purchasing data.
2334 Many of these data sources contain personal information both related and unrelated to health,
2335 including for example, electronic medical records, information from occupational or environmental
2336 questionnaires, geographic location, health or social security number. Various forms of health
2337 information are being easily created, stored, and accessed. Big data provide researchers with the
2338 ability to match or link records across a number of data sources. Linking of big data sources of health
2339 and heritable information offers great promise for understanding disease predictors (Salerno et al.,
2340 2017); however there are challenges in using current methods to process, analyse and interpret the
2341 data systematically and efficiently or to find relevant signals in potential oceans of noise¹⁷.

2342 In addition, medico-administrative data, such as drug reimbursements drawn from National Health
2343 Insurance or hospital discharge databases, can be cross-linked with data on agricultural activities
2344 drawn from agricultural census or geographical mapping.

2345 Biobanks also constitute new data sources from healthy or diseased populations. They consist of an
2346 organized collection of human biological specimens and associated information stored for diverse
2347 research purposes. These biosamples are available for application of novel technologies with potential
2348 for generating data valuable for exposure assessment or exposure reconstruction. If studies' design
2349 and conduct are harmonized, data and samples can be shared between biobanks to promote powerful
2350 pooled analyses and replications studies (Burton et al., 2010).

2351 Large scale epidemiological studies with Deep phenotyping provide also unprecedented opportunities
2352 to link well phenotyped study participants with the aforementioned data. For example, UK Biobank,
2353 has recruited over 500,000 individuals with questionnaire, medical history and physical measurements
2354 data as well as stored blood and urine samples with available genome wide association data for all
2355 500,000 participants, and linkage to Hospital Episode Statistics, national registry data and primary
2356 care records. To gain information on air pollution and noise levels, the postcode of participants has
2357 been linked to air pollution or noise estimates. In addition, piloting of personal exposure monitoring
2358 will take place in order to collect individual level data on these exposures. These approaches could be
2359 extended to gain information on pesticide exposure, either through geographical linkage, linkage with
2360 purchasing and occupational registries, and personal exposure monitoring. Similar biobanks exist in
2361 many other EU countries (<http://www.bbmri-eric.eu/BBMRI-ERIC> has collected most EU studies).

2362

2363 **8. Overall recommendations**

2364

¹⁷ National Academies of Sciences, Engineering, and Medicine; Division on Earth and Life Studies; Board on Environmental Studies and Toxicology; Committee on Incorporating 21st Century Science into Risk-Based Evaluations. Washington (DC): National Academies Press (US); 2017 Jan.

2365 **8.1. Recommendations for single epidemiological studies:**

2366

2367 **a) Study design** (including confounding)2368 1) The diverse epidemiological study designs differ in their potential biases. Since
2369 prospective epidemiological designs provide stronger evidence for causal inference, these
2370 studies are encouraged over the other designs for pesticide risk assessment.2371 2) Future epidemiological studies should be conducted using the appropriate sample size in
2372 order to properly answer the question under investigation.2373 3) Future studies should take into consideration heterogeneity, subpopulations, exposure
2374 windows and susceptibility periods and conditions (pregnancy, development, diseases,
2375 etc.).2376 4) A wide range of potential confounding variables (including co-exposure to other
2377 chemicals, lifestyle, socioeconomic factors, etc.) should be measured or accounted for
2378 during the design stage (matching) of the study.2379 5) Consideration of host factors that may influence toxicity and act as effect modifiers (e.g.,
2380 biomarkers of susceptibility). These will include genetic polymorphisms data, such as
2381 paraoxonase-1 type.2382 6) Collaboration between researchers is encouraged to build-up consortia that enhance the
2383 effectiveness of individual cohorts.2384 7) Collection and appropriately storage of relevant biological material should be undertaken
2385 for future exposure assessment, including the use of novel technologies.

2386

2387 **b) Exposure** (measurement, data transformation for reporting and statistical analysis):2388 1) Collection of specific information on exposure should avoid as far as possible broad
2389 definitions of exposure, non-specific pesticide descriptions and broad exposures
2390 classifications such as "never" vs. "ever" categories. Nevertheless, these categories may
2391 be valuable under certain circumstances, e.g. to anticipate a class effect.2392 2) Studies which only look at broad classes of pesticides (generic groups of unrelated
2393 substances), or "insecticides", "herbicides", etc. or even just "pesticides" in general are of
2394 much less use (and may even be pretty close to useless) for risk assessment. Studies
2395 that investigate specific named pesticides and co-formulants are more useful for risk
2396 assessment.2397 3) Pesticides belonging to the same chemical class or eliciting the same mode of action or
2398 toxicological effects might be grouped in the same category. Further refinement with
2399 information on frequency, duration and intensity of exposure might help in estimating
2400 exposure patterns.2401 4) In occupational epidemiology studies, operator and worker behaviour and proper use of
2402 personal protective equipment (PPE) should be adequately reported as these exposure
2403 modifiers may significantly change exposures and thereby potential associations.2404 5) Indirect measures of environmental exposure for wider populations, including records on
2405 pesticide use, registry data, GIS, geographical mapping, etc. as well as data derived from
2406 large databases (including administrative databases) may be valuable for exploratory
2407 studies. If these data are not available, records/registries should be initiated. Likewise,
2408 estimation of dietary exposure to pesticide from food consumption databases and levels
2409 of pesticide residues from monitoring programs can be used as well. As with direct
2410 exposure assessment, each method of indirect measurement should be reviewed for risk
2411 of bias and misclassification and weighted appropriately.2412 6) Whenever possible, exposure assessment to pesticides should use direct measurements
2413 of exposure in order to establish different levels of exposure (e.g., personal exposure

2414 metering/biological monitoring). New studies should explore novel ways of personal
2415 exposure monitoring.

2416 7) For quantitative risk assessment, there is a need to identify exposures to named
2417 pesticides and to categorise (or better yet quantify) exposure levels. Quantitative data on
2418 exposure to a single pesticide can be provided by using human biomonitoring methods
2419 and expressing results with standardized units to normalize exposure across populations.

2420 8) The use of the exposome concept and metabolomics in particular hold great promise for
2421 next-generation epidemiological studies both for better exposure measurement
2422 (biomarkers of exposure) for identification of vulnerable subpopulations and for biological
2423 interpretation of toxicity pathways (biomarkers of disease).

2424 9) Improved knowledge on exposure (and toxicity) to pesticide mixtures will be beneficial
2425 for comprehensive risk assessment. Consideration of the joint action of combined
2426 exposures to multiple pesticides acting on common targets, or eliciting similar adverse
2427 effects, is relevant for risk assessment. This requires all the components of the mixture to
2428 be known as well as an understanding of the mode of action, dose-response
2429 characteristics and potential interactions between components. Characterisation of the
2430 exposure is a key element for combined exposure to multiple pesticides where the
2431 pattern and magnitude of exposure changes over time.

2432

2433 **c) Adverse Outcomes** (measurement, data transformation for reporting and statistical
2434 analysis):

2435 1) Outcomes under study should be well defined and surrogate endpoints should be avoided
2436 unless they have been validated. Care must be taken when definitions of diseases and
2437 subclasses of diseases change over time, particularly for long latency diseases (cancer,
2438 neurodegenerative disorders, etc.).

2439 2) Use should be made of biological markers of early biological effect to improve the
2440 understanding of the pathogenesis of diseases. These quantitative biological parameters
2441 from mechanistic toxicology will enhance the usefulness of epidemiology because they
2442 improve the study sensitivity, reduce misclassification and enhance human relevance as
2443 compared to findings from studies in experimental animals. Since these refined endpoints
2444 are early events in the toxicodynamic pathway and often measured on a continuous scale,
2445 they might be preferable to more overt and traditional outcomes.

2446 3) The use of biomarkers of effect may be helpful in assessing aggregate exposure to
2447 pesticides and informing cumulative risk assessment.

2448 4) Developing read across methods allowing health outcomes to be identified using
2449 epidemiological studies and to link acute and chronic incidents records with experimental
2450 findings.

2451

2452 **d) Statistical** (descriptive statistics, modelling of exposure-effect relationship):

2453 1) Statistical analysis should be based on a priori defined analytical (statistical) protocols, to
2454 avoid *post hoc* analyses for exploratory studies and report all the results, regardless of
2455 whether they are statistically significant or not.

2456 2) Confounding should be controlled for using appropriate statistical methods that include
2457 sensitivity analysis.

2458 3) Data should be reported in such a way that permit, where appropriate, mathematical
2459 modelling to estimate individual/population exposures and dose-response assessment
2460 irrespective of whether direct or indirect measures are used.

2461 4) Reports should include both unadjusted and adjusted proportions and rates of outcome
2462 of interest across studies that are based on underlying populations with different
2463 structure of relevant factors and exposures.

2464 5) When the association between a given pesticide exposure and a disease is found to be
 2465 statistically significant, particularly in (presumed) low powered studies, it would be
 2466 general good practice to perform a power analysis to determine the degree to which the
 2467 statistically-significant effect size estimate (e.g., OR or RR) may be artificially inflated or
 2468 magnified¹⁸.

2469

2470 **e) Reporting of results:**

2471 1) These should follow practices of good reporting of epidemiological research outlined in
 2472 the STROBE statement and in the EFSA guideline on statistical reporting (2014) and
 2473 include the further suggestions identified in this Opinion including effect size inflation
 2474 estimates.

2475 2) Although some epidemiological research will remain exploratory and *post hoc* in nature,
 2476 this should be acknowledged and supported by appropriate statistical analysis.

2477 3) Epidemiology studies are encouraged to provide access to raw data for further
 2478 investigations and to deposit their full results and scripts or software packages used for
 2479 analyses.

2480 4) Report, or deposit using online sources, all results along with scripts and statistical tools
 2481 used to allow the reproducibility of results to be tested.

2482 5) Report all sources of funding and adequately report financial and other potential conflicts
 2483 of interest.

2484 As a general recommendation, the PPR Panel encourages development of guidance for
 2485 epidemiological research in order to increase its value, transparency and accountability¹⁹. An
 2486 increased quality of epidemiological studies, together with responsible research conduct and
 2487 scientific integrity, will benefit the incorporation of these studies into risk assessment.

2488

2489 **8.2. Surveillance**

2490 1) Increase the reporting of acute and chronic incidents by setting up post marketing
 2491 surveillance programmes (occupational and general population) as required by article 7 of
 2492 EU directive 2009/128; this should be fulfilled by developing surveillance networks with
 2493 occupational health physicians and by boosting the collaboration between national
 2494 authorities dealing with PPP and poison control information centres.

2495 2) Develop a valid method for assessing the weight/strength of the causal relationship
 2496 ("imputability") for acute and chronic incidents, and develop glossaries and a thesaurus
 2497 to support harmonized reporting between EU member states.

2498 3) Harmonised data from member states should be gathered at the EU level and examined
 2499 periodically by the Commission/EFSA and a report should be released focussing on the
 2500 most relevant findings.

2501 4) Develop an EU-wide vigilance framework for pesticides.

2502 5) There is scope for training improvements regarding pesticide toxicidromes in toxicology
 2503 courses for medical and paramedical staff responsible for diagnostic decisions, data entry
 2504 and management.

2505

¹⁸ Additional information on power and sample size recommendations and related issues including effect size magnification are provided in Annex B to this report. Specifically, a power calculation requires 3 values to be clearly reported by epidemiological studies: i) the number of subjects in the non-exposed group (including diseased and non-diseased individuals); ii) the number of subjects in the exposed group (including diseased and non-diseased individuals); and iii) the number of diseased subjects in the non-exposed group.

¹⁹ An example is the guideline developed by the Dutch Society for Epidemiology on responsible epidemiologic Research Practice (2017).

2506 8.3. Meta-analysis of multiple epidemiological studies

2507 1) For every evidence synthesis effort, studies should be reviewed using relevant risk of bias
2508 tools. Studies with different designs, or with different design features, may require
2509 (some) different questions for risk of bias assessments.

2510 2) Evidence syntheses should not be restricted to specific time frames; they should include
2511 the totality of evidence. These efforts are more relevant if focused on specific disease
2512 outcome or disease categories.

2513 3) In evidence synthesis effort, beyond the quantitative synthesis of the effect sizes, there
2514 should be consideration on the calculated predictive intervals, small study effects and
2515 asymmetry bias, conflicts of interest, confounding, excess significance bias, and
2516 heterogeneity estimates.

2517 4) In the presence of heterogeneity, studies with highly selected populations, albeit
2518 unrepresentative of their respective populations, may prove valuable and deserve
2519 consideration as they may represent genuine and not statistical heterogeneity.

2520 5) Evidence from epidemiological studies might be pooled by taking into account a thorough
2521 evaluation of the methods and biases of individual studies, an assessment of the degree
2522 of heterogeneity among studies, development of explanations underlying any
2523 heterogeneity and a quantitative summary of the evidence (provided that it is
2524 consistent).

2525 6) Where quantitative data of individual pesticides are available from epidemiological
2526 studies, they can be combined or pooled for dose-response modelling, which could
2527 enable development of quantitative risk estimates and points of departure (BMDL,
2528 NOAEL).

2529 7) International consortium of cohort studies should be encouraged to support data pooling
2530 to study disease-exposure associations that individual cohorts do not have sufficient
2531 statistical power to study (e.g., AGRICOH).

2533 8.4. Integration of epidemiological evidence with other sources of 2534 information

2535 1) All lines of evidence (epidemiology, animal, *in vitro* data) should be equally scrutinised
2536 for biases.

2537 2) Validated and harmonised methods should be developed to combine observational
2538 studies, animal/basic science studies and other sources of evidence for risk assessment.

2539 3) Experimental and human data should both contribute to hazard identification and to
2540 dose-response assessment.

2541 4) Epidemiological findings should be integrated with other sources of information (data
2542 from experimental toxicology, mechanism of action/AOP) by using a weight of evidence
2543 approach. An integrated and harmonized approach should be developed by bringing
2544 together animal, mechanistic and human data in an overall WoE framework in a
2545 systematic and consistent manner.

2546 5) The AOP framework offers a structured platform for the integration of various kinds of
2547 research results.

2548 6) Animal, *in vitro* data and human data could be assessed as a whole for each endpoint.
2549 A conclusion can be drawn as to whether the results from the experiments are
2550 confirmed by human data for each endpoint and this could be included in the Renewal
2551 Assessment Reports (RAR).

2553 9. Conclusions

2554 This Scientific Opinion is intended to help the peer review process during the renewal of pesticides
2555 authorization (and, where possible, during the approval process) under Regulation 1107/2009 which
2556 requires a search of the scientific peer-reviewed open literature, including existing epidemiological
2557 studies. These are more suitable for the renewal process of active substances, also in compliance with
2558 Regulation 1141/2010, which indicates that the dossiers submitted for renewal should include new
2559 data relevant to the active substance.

2560 The four key elements of the terms of reference are repeated below and the parts of the text
2561 addressing the individual terms are identified in order. As they follow from the text passages grouped
2562 with each of the ToRs the recommendations relevant to each of the ToRs are also indicated as follows.

2563 "The PPR Panel will discuss the associations between pesticide exposure and human health effects
2564 observed in the External scientific report (Ntzani et al., 2013) and how these findings could be
2565 interpreted in a regulatory pesticide risk assessment context. Hence, the PPR Panel will systematically
2566 assess the epidemiological studies collected in the report by addressing major data gaps and
2567 limitations of the studies and provide recommendations thereof".

2568 "The PPR Panel will specifically":

- 2569 1. Collect and review all sources of gaps and limitations, based on (but not necessarily limited to)
2570 those identified in the External Scientific report in regard to the quality and relevance of the
2571 available epidemiological studies. Responses in Section 3 pp 22-26, Section 5.2 pp 36-38: no
2572 Recommendations appropriate.
- 2573 2. Based on the gaps and limitations identified in point 1, propose potential refinements for
2574 future epidemiological studies to increase the quality, relevance and reliability of the findings
2575 and how they may impact pesticide risk assessment. This may include study design, exposure
2576 assessment, data quality and access, diagnostic classification of health outcomes, and
2577 statistical analysis. Responses in Section 4 pp 26-35: Recommendations Section 8.1, 8.2 and
2578 8.3 pp 57-60.
- 2579 3. Identify areas in which information and/or criteria are insufficient or lacking and propose
2580 recommendations for how to conduct pesticide epidemiological studies in order to improve
2581 and optimize the application in risk assessment. These recommendations should include
2582 harmonisation of exposure assessment (including use of biomonitoring data), vulnerable
2583 population sub-groups and/or health outcomes of interest (at biochemical, functional,
2584 morphological and clinical level) based on the gaps and limitations identified in point 1.
2585 Responses in Section 4.2-4.5 pp 30-35, Section 5.3 pp 38-39. Recommendations in Section
2586 8.1 c) 1-4.
- 2587 4. Discuss how to make appropriate use of epidemiological findings in risk assessment of
2588 pesticides during the peer review process of draft assessment reports, e.g. weight-of-evidence
2589 as well as integrating the epidemiological information with data from experimental toxicology,
2590 adverse outcome pathways, mechanism of actions, etc. Responses in Section 6.2 and 6.3 pp
2591 40-48 & 7 pp 49-56: Responses in Section 8.4 pp 60-61.

2592

2593 As explained above, appropriate epidemiological data and post approval surveillance may usefully
2594 contribute to the risk assessment framework by hazard identification, and - with methodological
2595 improvements - hazard characterisation. It can be improved by contributions from Weight of Evidence
2596 analysis, Uncertainty analysis, and identification and estimation of biases. It is the responsibility of
2597 applicants to collect the available relevant literature, to consider its relevance and quality using
2598 relevant EFSA criteria including those for systematic review and to introduce discussion of the
2599 outcomes within the DAR, RAR and post approval frameworks that are prescribed under EU law.

2600 The definition of appropriate quality will require analysis of sample size, statistical procedures,
2601 estimates of effect size inflation, assessment of biases and their contribution to the conclusions drawn.

2602 The nature of the studies will require consideration at all relevant points in the risk assessment
2603 process so that for example epidemiological data on reproductive topics will be considered alongside

2604 laboratory animal studies designed to reveal reproductive effects and in the context of
2605 recommendation for labelling for reproductive toxicity (for ECHA).

2606 Unless there is history of use in countries outside the EU the relevant epidemiological studies will be
2607 restricted in their effect on the DAR but the RAR and Surveillance framework is potentially able to
2608 benefit from epidemiology progressively as time after 1st approval passes and from prior use of Active
2609 Ingredients in other jurisdictions. It is recommended that RAR and surveillance protocols should reflect
2610 this difference.

2611 The specific recommendations listed above follow from detailed arguments based on an analysis of
2612 present and foreseen **strengths** **weaknesses** **opportunities** and **threats** related to the use of
2613 epidemiological data in risk assessment. Broadly these are as follows:

2614 **Strengths.** Include:

- 2615 • The fact that the evidence concerns human specific risks
- 2616 • That health outcomes are integrated measures of the effects of all exposure to toxins
- 2617 • The ability to elicit subjective experience from potentially affected people.

2618

2619 **Weaknesses.** Include:

- 2620 • The exposures to pesticides are usually complex; contribution of a specific active ingredient is
2621 not easily deciphered
- 2622 • The exposures occur in various settings where precisely controlled conditions are lacking
- 2623 • Most data reflect the responses of mixed populations
- 2624 • Many data show low level associations that are inconsistently repeatable and require
2625 sophisticated analysis.

2626

2627 **Opportunities.** Despite the range of limitations described in this Opinion, which apply to many
2628 available published epidemiological studies, there are opportunities to benefit risk assessment of
2629 pesticides. These include:

- 2630 • The access to very large numbers of potentially exposed individuals for studies that may
2631 reveal subtle health effects and reveal the experience of sensitive sub-groups.
- 2632 • The prospect of improving exposure estimation using biomonitoring and new molecular
2633 approaches to establish tissue burdens of potential toxins and their residues.
- 2634 • The possibility of fully integrating human data into the conventional risk assessment based on
2635 responses in laboratory animals.
- 2636 • Utilising Weight of Evidence, Adverse Outcome Pathways, Expert judgement, Expert
2637 Knowledge Elicitation (EKE) and Uncertainty Analysis to evaluate differences in the quality of
2638 potentially relevant data.
- 2639 • The opportunity to engage professional epidemiologists and statisticians to refine
2640 interpretation of epidemiological findings and to recommend improved designs to tackle
2641 difficult areas such as chronic and combined exposure risks and dose response data.
- 2642 • A major information technology opportunity exists in pooling data from a variety of national
2643 sources. Once the relevant legal, methodological and ethical issues are overcome much more
2644 valuable data can be collected. When this data is made available, in a form that can be used
2645 in a "big data" setting for societal benefit there will be potential for significant improvements
2646 in epidemiological studies. First, however it will be necessary to preserve individual privacy
2647 and essential commercial confidentiality. Once these obstacles are overcome the statistical
2648 power of epidemiological studies can be improved and applied to identify and possibly
2649 characterise hazards better. These aims can be realised effectively by agreed actions at a high

2650 EU level. Interstate approval for providing data and interactive platforms will need to be
2651 backed by harmonisation of population health information, food consumption data, active
2652 substance and co-formulant spatial and temporal application data. Such rich data can be
2653 expected to assist in increasing consistency, a criterion that strengthens evidence of causality
2654 and reliability. It promises larger sample sizes for epidemiological studies that will be better
2655 able to identify vulnerable groups that may require special protection from pesticide toxicity.

2656

2657 **Threats.** Include:

- 2658 • Widespread perception of risk levels to the human population or to wildlife and the
2659 environment that are unrealistic and that cause negative consequences in societies.
- 2660 • Poor experimental design yielding false positive or false negative conclusions that undermine
2661 data from other valid sources.
- 2662 • Failure to respond to emerging risks as a result of ineffective surveillance or unwillingness to
2663 make appropriate anonymised data available for societal benefit.
- 2664 • Waste of data through failure to harmonise diagnostic criteria, failure to record data in a
2665 sufficiently detailed combinable form for integrated analysis, poor training of medical and
2666 paramedical staff in relevant toxicodromes that will allow optimum quality of data entered into
2667 Health Statistics Databases and National Poisons Control Centres and Pesticide Incident
2668 Databases.

2669

DRAFT

2670 **References**

2671 Acquavella J, Doe J, Tomenson J, Chester G, Cowell J, Bloemen L. Epidemiological studies of
2672 occupational pesticide exposure and cancer: regulatory risk assessment and biologic plausibility.
2673 AEP 2003; 13(1): 1-7.

2674 Adami HO, Berry SC, Breckenridge CB, Smith LL, Swenberg JA, Trichopoulos D, Weiss NS, Pastoor TP.
2675 Toxicology and epidemiology: improving the science with a framework for combining toxicological
2676 and epidemiological evidence to establish causal inference. Toxicol Sci 2011; 122: 223-234

2677 Alexander M. Monitoring, surveillance and recording are all activities concerned with the collection and
2678 management of information. In: Management planning for nature conservation. A theoretical basis
2679 & practical guide. Chapter 5, Springer, 2008, pp 49-62

2680 Amler RW, Barone S Jr, Belger A, Berlin CM Jr, Cox C, Frank H, Goodman M, Harry J, Hooper SR,
2681 Ladda R, LaKind JS, Lipkin PH, Lipsitt LP, Lorber MN, Myers G, Mason AM, Needham LL, Sonawane
2682 B, Wachs TD, Yager JW. Hershey Medical Center Technical Workshop Report: optimizing the design
2683 and interpretation of epidemiologic studies for assessing neurodevelopmental effects from in utero
2684 chemical exposure. Neurotoxicology 2006; 27: 861-874

2685 Atanasov AG, Tam SR, Jens MB, Michael E, Odermatt A (2003). "Inhibition of 11 β -hydroxysteroid
2686 dehydrogenase type 2 by dithiocarbamates". Biochemical and Biophysical Research
2687 Communications 308 (2): 257-62

2688 Becker RA, Ankley GT, Edwards SW, Kennedy SW, Linkov I, Meek B, Sachana M, Segner H, Van Der
2689 Burg B, Villeneuve DL, Watanabe H, Barton-Maclaren TS. Increasing scientific confidence in
2690 adverse outcome pathways: Application of tailored Bradford-Hill considerations for evaluating
2691 weight of evidence. Regul Toxicol Pharmacol 2015; 72: 514-537

2692 Belbasis L, Bellou V, Evangelou E, Ioannidis JP, Tzoulaki I. Environmental risk factors and multiple
2693 sclerosis: an umbrella review of systematic reviews and meta-analyses. Lancet Neurol 2015; 14:
2694 263-273

2695 Bengtson AM, Westreich D, Musonda P, Pettifor A, Chibwesha C, Chi BH, Vwalika B, Pence BW,
2696 Stringer JS, Miller WC. Multiple Overimputation to Address Missing Data and Measurement Error:
2697 Application to HIV Treatment During Pregnancy and Pregnancy Outcomes. Epidemiology 2016; 27:
2698 642-650

2699 Bevan R, Brown T, Matthies F, Sams C, Jones K, Hanlon J, La Vedrine M. Human Biomonitoring data
2700 collection from occupational exposure to pesticides. EFSA supporting publication 2017: EN-1185,
2701 207 pp

2702 Blair A, Zahm HS. Patterns of pesticide use among farmers: implication for epidemiologic research.
2703 Epidemiology 1993, 4: 55-62

2704 Bottai M. Lessons in biostatistics: inferences and conjectures about average and conditional treatment
2705 effects in randomized trials and observational studies. J Intern Med 2014; 276; 229-237

2706 Budtz-Jørgensen E, Keiding N, Grandjean P. Benchmark dose calculation from epidemiological data.
2707 Biometrics 2001; 57: 698-706

2708 Budtz-Jørgensen E, Keiding N, Grandjean P. Effects of exposure imprecision on estimation of the
2709 benchmark dose. Risk Anal 2004; 24:1689-1696

2710 Buonsante VA, Muilerman H, Santos T, Robinson C, Tweedale AC. Risk assessment's insensitive
2711 toxicity testing may cause it to fail. Environ Res 2014; 135: 139-147Burton PR, Fortier I, Knoppers
2712 BM. The global emergence of epidemiological biobanks: opportunities and challenges. In: Human
2713 Genome Epidemiology. Building the evidence for using genetic information to improve health and
2714 prevent disease. Khoury M, Bedrosian S, Gwinn M, Higgins J, Ioannidis J, Little J (eds), 2nd Edition,
2715 Oxford University Press, Oxford, 2010, pp 77-99

2716 Calderon RL. Measuring risks in humans: the promise and practice of epidemiology. Food and Chemical
2717 Toxicology 2000; 38: S59-S63

2718 Chalmers I, Glasziou P. Avoidable waste in the production and reporting of research evidence. *Lancet*
2719 2009; 374 (9683): 86-89

2720 Cicchetti F, Drouin-Ouellet J, Gross RE (2009). "Environmental toxins and Parkinson's disease: what
2721 have we learned from pesticide-induced animal models?". *Trends Pharmacol. Sci.* 30 (9): 475-83.

2722 Coble J, Thomas KW, Hines CJ, Hoppin JA, Dosemeci M, Curwin B, Lubin JH, Beane Freeman LE, Blair
2723 A, Sandler DP, Alavanja MC. An updated algorithm for estimation of pesticide exposure intensity in
2724 the agricultural health study. *Int J Environ Res Public Health* 2011; 8: 4608-4622

2725 Coggon D. Questionnaire based exposure assessment methods. *Sci Total Environ* 1995; 168: 175-178

2726 Committee on Toxicity of Chemicals in Food, Consumer Products and the Environment, Statement on
2727 a systematic review of the epidemiological literature on para-occupational exposure to pesticides
2728 and health outcomes other than cancer, 2011,
2729 <http://cot.food.gov.uk/cotstatements/cotstatementsyrs/cotstatements2011/cot201105>

2730 Committees on: Toxicity, Mutagenicity, Carcinogenicity of Chemicals in Food, Consumer Products and
2731 the Environment, Joint Statements of the COT and COC, Statement on Royal Commission on
2732 Environmental Pollution report on crop spraying and the health of residents and bystanders, COT
2733 statement 2006/05, COC statement 2006/S1, pp213-215 Annual Report 2006.
2734 <http://cot.food.gov.uk/cotreports/cotcomcocrep2006>

2735 Cornelis C., Schoeters G., Kellen E., Buntinx F., Zeegers M. Development of a GIS-based indicator for
2736 environmental pesticide exposure and its application to a Belgian case-control study on bladder
2737 cancer. *Int J Hyg Environ Health* 2009; 212: 172-185

2738 DeBord DG, Burgoon L, Edwards SW, Haber LT, Kanitz MH, Kuempel E, Thomas RS, Yucesoy B.
2739 Systems Biology and Biomarkers of Early Effects for Occupational Exposure Limit Setting. *J Occup
2740 Environ Hyg* 2015; 12 Suppl 1: S41-54

2741 Dennis KK, Auerbach SS, Balshaw DM, Cui Y, Fallin MD, Smith MT, Spira A, Sumner S, Miller GW. The
2742 Importance of the Biological Impact of Exposure to the Concept of the Exposome. *Environ Health
2743 Perspect* 2016 Jun 3. [Epub ahead of print] PubMed PMID: 27258438

2744 Dionisio KL, Chang HH, Baxter LK. A simulation study to quantify the impacts of exposure
2745 measurement error on air pollution health risk estimates in copollutant time-series models. *Environ
2746 Health* 2016; 15: 114

2747 Dutch Society for Epidemiology. Responsible Epidemiologic Research Practice (RERP). A guideline
2748 developed by the RERP working group of the Dutch Society for Epidemiology, 2017 (available at
2749 <https://www.epidemiologie.nl/home.html>,
2750 https://epidemiologie.nl/fileadmin/Media/docs/Onderzoek/Responsible_Epidemiologic_Research_Practice.2017.pdf)

2751 ECETOC (European Centre for Ecotoxicology and Toxicology of Chemicals). Framework for the
2752 Integration of Human and Animal Data in Chemical Risk Assessment. Technical Report No. 104.
2753 Brussels, 2009. <http://www.ecetoc.org/uploads/Publications/documents/TR%20104.pdf>

2754 ECHA/EFSA Workshop on Mode of action and Human relevance framework in the context of
2755 classification and labelling (CLH) and regulatory assessment of biocides and pesticides. November
2756 2014. https://echa.europa.eu/documents/10162/22816050/moaws_workshop_proceedings_en.pdf/a656803e-4d97-438f-87ff-fc984cfe4836

2757 EFSA (European Food Safety Authority). Opinion of the Scientific Panel on Dietetic Products, Nutrition
2758 and Allergies on a request from the Commission related to the presence of trans fatty acids in
2759 foods and the effect on human health of the consumption of trans fatty acids. *EFSA J* 2004; 81, 1-
2760 49

2761 EFSA (European Food Safety Authority). Scientific Opinion of the Panel on Contaminants in the Food
2762 Chain on a request from the European Commission on cadmium in food. *EFSA J* 2009a; 980: 1-139

2763 EFSA (European Food Safety Authority) Panel on Contaminants in the Food Chain (CONTAM);
2764 Scientific Opinion on Arsenic in Food. *EFSA J* 2009b; 7(10): 1351. [199 pp.]

2767 EFSA (European Food Safety Authority). Application of systematic review methodology to food and
2768 feed safety assessments to support decision making. EFSA J 2010; 8(6): 1637

2769 EFSA (European Food Safety Authority) Panel on Contaminants in the Food Chain (CONTAM);
2770 Scientific Opinion on Lead in Food. EFSA J 2010b; 8(4):1570. [147 pp.]

2771 EFSA (European Food Safety Authority). Submission of scientific-peer reviewed open literature for the
2772 approval of pesticide active substances under Regulation (EC) No 1107/2009. EFSA J 2011a; 9 (2):
2773 2092

2774 EFSA Scientific Committee; Statistical Significance and Biological Relevance. EFSA J 2011b; 9(9): 2372
2775 [17 pp.] doi:10.2903/j.efsa.2011.2372

2776 EFSA (European Food Safety Authority). Scientific Opinion on Risk Assessment Terminology. EFSA J
2777 2012a; 10 (5):2664 [43 pp.]. <https://www.efsa.europa.eu/en/efsajournal/pub/2664>

2778 EFSA (European Food Safety Authority) Panel on Contaminants in the Food Chain (CONTAM);
2779 Scientific Opinion on the risk for public health related to the presence of mercury and
2780 methylmercury in food. EFSA J 2012b; 10(12):2985. [241 pp.]

2781 EFSA (European Food Safety Authority). Conclusion on the peer review of the pesticide human health
2782 risk assessment of the active substance chlorpyrifos. EFSA J 2014; 12(4): 3640, 34 p

2783 EFSA (European Food Safety Authority). Guidance on Statistical Reporting. EFSA J 2014; 12(12):
2784 3908, 18 pp.

2785 EFSA (European Food Safety Authority). Stakeholder Workshop on the use of epidemiological data in
2786 pesticide risk assessment. EFSA supporting publication 2015a: EN-798. 8 pp
2787 <https://www.efsa.europa.eu/en/supporting/pub/798e>

2788 EFSA (European Food Safety Authority). Increasing robustness, transparency and openness of
2789 scientific assessments – Report of the Workshop held on 29-30 June 2015 in Brussels. EFSA
2790 supporting publication 2015b: EN-913. 29 pp
2791 http://www.efsa.europa.eu/sites/default/files/corporate_publications/files/913e.pdf

2792 EFSA (European Food Safety Authority). Conclusion on the peer review of the pesticide risk
2793 assessment of the active substance glyphosate. EFSA J 2015c; 13 (11): 4302, 107 p

2794 EFSA SC (European Food Safety Authority Scientific Committee). Guidance on Biological Relevance.
2795 EFSA J 2017a (in press)

2796 EFSA SC (European Food Safety Authority Scientific Committee). Guidance on The Use of the Weight
2797 of Evidence Approach in Scientific Assessments. EFSA J 2017b (in press)

2798 EFSA PPR Panel (European Food Safety Authority Panel on Plant Protection Products and their
2799 Residues). Scientific Opinion on the investigation into experimental toxicological properties of plant
2800 protection products having a potential link to Parkinson's disease and childhood leukaemia. EFSA
2801 Journal 2017c; 15(2): 4691, 325 pp. doi:10.2903/j.efsa.2017.4691

2802 EFSA SC (European Food Safety Authority Scientific Committee). Update: Guidance on the use of the
2803 benchmark dose approach in risk assessment. EFSA Journal 2017d; 15(1): 4658, 41 pp.
2804 doi:10.2903/j.efsa.2017.4658

2805 European Commission Communication. A European Environment and Health Strategy. 2003.
2806 <http://eur-lex.europa.eu/legal-content/EN/ALL/?uri=CELEX:52003DC0338>

2807 Gómez-Martín A, Hernández AF, Martínez-González LJ, González-Alzaga B, Rodríguez-Barranco M,
2808 López-Flores I, Aguilar-Garduno C, Lacasana M. Polymorphisms of pesticide-metabolizing genes in
2809 children living in intensive farming communities. Chemosphere 2015; 139: 534-540

2810 González-Alzaga B, Hernández AF, Rodríguez-Barranco M, Gómez I, Aguilar-Garduño C, López-Flores I,
2811 Parrón T, Lacasana M. Pre- and postnatal exposures to pesticides and neurodevelopmental effects
2812 in children living in agricultural communities from South-Eastern Spain. Environ Int. 2015; 85: 229-
2813 237

2814 Granger CWJ. Investigating Causal Relations by Econometric Models and Cross-spectral Methods.
2815 Econometrica 1969; 37: 424-438

2816 Greenland S, Longnecker MP. Methods for trend estimation from summarized dose-response data,
2817 with applications to meta-analysis. *Am J Epidemiol* 1992; 135: 1301–1309

2818 Greenland S, Senn SJ, Rothman KJ, Carlin JB, Poole C, Goodman SN, Altman DG. Statistical tests, P
2819 values, confidence intervals, and power: a guide to misinterpretations. *Eur J Epidemiol* 2016; 31:
2820 337–350

2821 Grimes DA, Schulz KF. Surrogate end points in clinical research: hazardous to your health. *Obstet*
2822 *Gynecol* 2005; 105: 1114–1118

2823 Gustafson P, McCandless LC. Probabilistic approaches to better quantifying the results of epidemiologic
2824 studies. *Int J Environ Res Public Health* 2010; 7: 1520–1539

2825 Guyton KZ, Loomis D, Grosse Y, El Ghissassi F, Benbrahim-Tallaa L, Guha N, Scoccianti C, Mattock H,
2826 Straif K; International Agency for Research on Cancer Monograph Working Group, IARC, Lyon,
2827 France. Carcinogenicity of tetrachlorvinphos, parathion, malathion, diazinon, and glyphosate. *Lancet Oncol* 2015; 16: 490–491

2829 Hernández AF, González-Alzaga B, López-Flores I, Lacasaña M. Systematic reviews on
2830 neurodevelopmental and neurodegenerative disorders linked to pesticide exposure: Methodological
2831 features and impact on risk assessment. *Environ Int* 2016 92–93: 657–679

2832 Higgins JP. Commentary: Heterogeneity in meta-analysis should be expected and appropriately
2833 quantified. *Int J Epidemiol* 2008; 37(5): 1158–1160

2834 Hill AB. The environment and disease: Association or causation? *Proc R Soc Med* 1965; 58: 295–300

2835 Hines CJ, Deddens JA, Coble J, Kamel F, Alavanja MC. Determinants of captan air and dermal
2836 exposures among orchard pesticide applicators in the Agricultural Health Study. *Ann Occup Hyg*
2837 2011; 55: 620–633

2838 Höfler M. The Bradford Hill considerations on causality: a counterfactual perspective. *Emerg Themes*
2839 *Epidemiol* 2005; 2: 11

2840 Imbens G, Rubin D. Causal Inference for Statistics, Social, and Biomedical Sciences: An Introduction.
2841 Cambridge University Press: New York, NY, 2015

2842 INSERM. Pesticides. Effets sur la santé. Collection expertise collective, Inserm, Paris, 2013

2843 Jurek AM, Greenland S, Maldonado G, Church TR. Proper interpretation of non-differential
2844 misclassification effects: expectations vs observations. *Int J Epidemiol* 2005; 34: 680–687

2845 Karabatsos G, Talbott E, Walker SG. A Bayesian nonparametric meta-analysis model. *Res Synth*
2846 *Methods* 2015; 6: 28–44

2847 Kavvoura FK, Liberopoulos G, Ioannidis JP. Selection in reported epidemiological risks: an empirical
2848 assessment. *PLoS Med* 2007; 4(3): e79

2849 La Cour JL, Brok J, Gøtzsche PC. Inconsistent reporting of surrogate outcomes in randomised clinical
2850 trials: cohort study. *BMJ* 2010; 341: c3653

2851 LaKind JS, Sobus JR, Goodman M, Barr DB, Fürst P, Albertini RJ, Arbuckle TE, Schoeters G, Tan YM,
2852 Teeguarden J, Tornero-Velez R, Weisel CP. A proposal for assessing study quality: Biomonitoring,
2853 Environmental Epidemiology, and Short-lived Chemicals (BEES-C) instrument. *Environ Int* 2014; 73:
2854 195–207

2855 Larsson MO, Nielsen VS, Brandt CØ, Bjerre N, Laporte F, Cedergreen N. Quantifying dietary exposure
2856 to pesticide residues using spraying journal data. *Food Chem Toxicol* 2017; 105: 407–428

2857 London L, Coggon D, Moretto A, Westerholm P, Wilks MF, Colosio C. The ethics of human volunteer
2858 studies involving experimental exposure to pesticides: unanswered dilemmas. *Environ Health* 2010
2859 Aug 18; 9: 50

2860 Maldonado G, Greenland S. Estimating causal effects. *Int J Epidemiol* 2002; 31: 422–429

2861 Marx-Stoelting P, Braeuning A, Bahrke T, Lampen A, Niemann L, Oelgeschlaeger M, Rieke S, Schmidt
2862 F, Heise T, Pfeil R, Solecki R. Application of omics data in regulatory toxicology: report of an
2863 international BfR expert workshop. *Arch Toxicol* 2015 Oct 20. [Epub ahead of print]

2864 McNamee R. Confounding and confounders. *Occup Environ Med* 2003; 60: 227-234

2865 Munns Jr. WR, Suter II GW, Damstra T, Kroes R, Reiter W, Marafante E. Integrated Risk Assessment –
2866 Results of an international Workshop, HERA 2003; 9: 379-386

2867 Muñoz-Quezada MT, Lucero BA, Barr DB, Steenland K, Levy K, Ryan PB, Iglesias V, Alvarado S,
2868 Concha C, Rojas E, Vega C. Neurodevelopmental effects in children associated with exposure to
2869 organophosphate pesticides: a systematic review. *Neurotoxicology* 2013; 39: 158-168

2870 Nachman KE, Fox MA, Sheehan MC, Burke TA, Rodricks JV, Woodruff TJ. Leveraging epidemiology to
2871 improve risk assessment. *Open Epidemiol J* 2011; 4: 3-29

2872 Nieuwenhuijsen MJ. Exposure Assessment in Environmental Epidemiology. In: The exposome-concept
2873 and implementation in birth cohorts (Vrijheid M., ed.), Chapter 14, Oxford University Press, 2015

2874 NRC (National Research Council). Toxicity Testing in the 21st Century: A Vision and a Strategy.
2875 Washington, DC: The National Academies Press; 2007

2876 Ntzani EE, Chondrogiorgi M, Ntritsos G, Evangelou E, Tzoulaki I. Literature review on epidemiological
2877 studies linking exposure to pesticides and health effects. EFSA supporting publication 2013: EN-
2878 497, 159 pp

2879 OECD (Organization for Economic Co-operation and Development) (2013). Guidance Document on
2880 Developing and Assessing Adverse Outcome Pathways. Series on Testing and Assessment, No.
2881 184. Paris.
2882 <http://search.oecd.org/officialdocuments/displaydocumentpdf/?cote=env/jm/mono%282013%296&doclanguage=en>

2884 Orford R, Crabbe H, Hague C, Schaper A, Duarte-Davidson R. EU alerting and reporting systems for
2885 potential chemical public health threats and hazards. *Environ Int* 2014; 72: 15-25

2886 Orford R, Hague C, Duarte-Davidson R, Settimi L, Davanzo F, Desel H, Pelclova D, Dragelyte G,
2887 Mathieu-Nolf M, Jackson G, Adams R. Detecting, alerting and monitoring emerging chemical health
2888 threats: ASHTIII. *Eur J Public Health* 2015; 25, supp 3, 218

2889 Orsini N, Li R, Wolk A, Khudyakov P, Spiegelman D. Meta-analysis for linear and nonlinear dose-
2890 response relations: examples, an evaluation of approximations, and software. *Am J Epidemiol*
2891 2012; 175: 66-73

2892 Oulhote Y, Bouchard MF. Urinary metabolites of organophosphate and pyrethroid pesticides and
2893 behavioral problems in Canadian children. *Environ Health Perspect* 2013; 121: 1378-1384

2894 Pearce N. Classification of epidemiological study designs. *Int J Epidemiol* 2012; 41: 393-397

2895 Pearce N, Blair A, Vineis P, Ahrens W, Andersen A, Anto JM, Armstrong BK, Baccarelli AA, Beland FA,
2896 Berrington A, Bertazzi PA, Birnbaum LS, Brownson RC, Bucher JR, Cantor KP, Cardis E, Cherrie JW,
2897 Christiani DC, Cocco P, Coggon D, Comba P, Demers PA, Dement JM, Douwes J, Eisen EA, Engel
2898 LS, Fenske RA, Fleming LE, Fletcher T, Fontham E, Forastiere F, Frentzel-Beyme R, Fritschi L, Gerin
2899 M, Goldberg M, Grandjean P, Grimsrud TK, Gustavsson P, Haines A, Hartge P, Hansen J,
2900 Hauptmann M, Heederik D, Hemminki K, Hemon D, Hertz-Pannier I, Hoppin JA, Huff J, Jarvholm
2901 B, Kang D, Karagas MR, Kjaerheim K, Kjuus H, Kogevinas M, Kriebel D, Kristensen P, Kromhout H,
2902 Laden F, Lebailly P, LeMasters G, Lubin JH, Lynch CF, Lynge E, 't Mannetje A, McMichael AJ,
2903 McLaughlin JR, Marrett L, Martuzzi M, Merchant JA, Merler E, Merletti F, Miller A, Mirer FE, Monson
2904 R, Nordby KC, Olshan AF, Parent ME, Perera FP, Perry MJ, Pesatori AC, Pirastu R, Porta M, Pukkala
2905 E, Rice C, Richardson DB, Ritter L, Ritz B, Ronckers CM, Rushton L, Rusiecki JA, Rusyn I, Samet JM,
2906 Sandler DP, de Sanjose S, Schernhammer E, Costantini AS, Seixas N, Shy C, Siemiatycki J,
2907 Silverman DT, Simonato L, Smith AH, Smith MT, Spinelli JJ, Spitz MR, Stallones L, Stayner LT,
2908 Steenland K, Stenzel M, Stewart BW, Stewart PA, Symanski E, Terracini B, Tolbert PE, Vainio H,
2909 Vena J, Vermeulen R, Victora CG, Ward EM, Weinberg CR, Weisenburger D, Wesseling C,
2910 Weiderpass E, Zahm SH. IARC monographs: 40 years of evaluating carcinogenic hazards to
2911 humans. *Environ Health Perspect* 2015; 123: 507-514

2912 Pery AR, Schüürmann G, Ciffroy P, Faust M, Backhaus T, Aicher L, Mombelli E, Tebby C, Cronin MT,
2913 Tissot S, Andres S, Brignon JM, Frewer L, Georgiou S, Mattas K, Vergnaud JC, Peijnenburg W, Capri
2914 E, Marchis A, Wilks MF. Perspectives for integrating human and environmental risk assessment and
2915 synergies with socio-economic analysis. *Sci Total Environ* 2013; 456-457: 307-316

2916 Raffaele KC, Vulimiri SV, Bateson TF. Benefits and barriers to using epidemiology data in
2917 environmental risk. *Open Epidemiol J* 2011; 4: 99-105

2918 Raphael K. Recall bias: a proposal for assessment and control. *Int J Epidemiol* 1987; 16: 167-170

2919 Rappaport SM. Biomarkers intersect with the exposome. *Biomarkers* 2012; 17: 483-489

2920 Regulation (EC) No 1107/2009 of the European Parliament and of the Council concerning the placing
2921 of plant protection products on the market and repealing Council Directives 79/117/EEC and
2922 91/414/EEC.

2923 Reich CG, Ryan PB, Schuemie MJ. Alternative outcome definitions and their effect on the performance
2924 of methods for observational outcome studies. *Drug Saf* 2013; 36 Suppl 1: S181-193

2925 Rothman KJ, Greenland S. Modern Epidemiology. 2. Philadelphia: Lippincott Williams & Wilkins; 1998
2926 p.27.

2927 Rothman KJ. Epidemiology – An introduction. Oxford University Press, Oxford, 2002.

2928 Salerno J, Knoppers BM, Lee LM, Hlaing WW, Goodman KW. Ethics, Big Data and Computing in
2929 Epidemiology and Public Health. *Ann Epidemiol* 2017 (in press; doi:
2930 10.1016/j.annepidem.2017.05.002

2931 Santacatterina M, Bottai M. Inferences and conjectures in clinical trials: a systematic review of
2932 generalizability of study findings. *J Intern Med* 2015 doi: 10.1111/joim.12389. [Epub ahead of
2933 print] PubMed PMID: 26126506

2934 SCENIHR, 2012. Memorandum on the use of the scientific literature for human health risk assessment
2935 purposes – weighing of evidence and expression of uncertainty.

2936 Simera I, Moher D, Hoey J, Schulz KF, Altman DG. A catalogue of reporting guidelines for health
2937 research. *Eur J Clin Invest* 2010; 40(1): 35-53

2938 Simpkins JW, Swenberg JA, Weiss N, Brusick D, Eldridge JC, Stevens JT, Handa RT, Hovey RC, Plant
2939 TM, Pastoor TP, Breckenridge CB. Atrazine and breast cancer: a framework assessment of the
2940 toxicological and epidemiological evidence. *Tox. Sci.* 123(2), 441-459 (2011).

2941 Skelly AC. Probability, proof, and clinical significance. *Evid Based Spine Care J* 2011; 2: 9-11

2942 Spiegelman D. Evaluating Public Health Interventions: 4. The Nurses' Health Study and Methods for
2943 Eliminating Bias Attributable to Measurement Error and Misclassification. *Am J Public Health* 2016;
2944 106: 1563-1566

2945 Stang PE, Ryan PB, Dusetzina SB, Hartzema AG, Reich C, Overhage JM, Racoosin JA. Health outcomes
2946 of interest in observational data: issues in identifying definitions in the literature. *Health Outcomes
2947 Research in Medicine* 2012; 3: e37-e44

2948 Suter II GW, Munns Jr. WR, Sekizawa J. Types of integration in risk assessment and management,
2949 and why they are needed. *HERA* 2003; 9, 273-279

2950 Thomas KW, Dosemeci M, Coble JB, Hoppin JA, Sheldon LS, Chapa G, Croghan CW, Jones PA, Knott
2951 CE, Lynch CF, Sandler DP, Blair AE, Alavanja MC. Assessment of a pesticide exposure intensity
2952 algorithm in the agricultural health study. *J Expo Sci Environ Epidemiol* 2010; 20: 559-569

2953 Tsilidis KK, Panagiotou OA, Sena ES, Aretouli E, Evangelou E, Howells DW, Al-Shahi Salman R,
2954 Macleod MR, Ioannidis JP. Evaluation of excess significance bias in animal studies of neurological
2955 diseases. *PLoS Biol* 2013; 11 (7): e1001609

2956 US-EPA (U.S. Environmental Protection Agency). Framework for Incorporating Human Epidemiologic &
2957 Incident Data in Health Risk Assessment (Draft). Office of Pesticide Programs. Washington, DC,
2958 2010

2959 US-EPA (U.S. Environmental Protection Agency). Meeting Minutes of the FIFRA Scientific Advisory
 2960 Panel Meeting on the Draft Framework and Case Studies on Atrazine, Human Incidents, and the
 2961 Agricultural Health Study: Incorporation of Epidemiology and Human Incident Data into Human
 2962 Health Risk Assessment. Arlington, Virginia, USA, April 22, 2010b
 2963 <https://archive.epa.gov/scipoly/sap/meetings/web/pdf/020210minutes.pdf>

2964 US EPA (United States Environmental Protection Agency). Chlorpyrifos: Preliminary Human Health Risk
 2965 Assessment for Registration Review, 30 June 2011, 159 pp.

2966 US-EPA (U.S. Environmental Protection Agency). Guidance for Considering and Using Open Literature
 2967 Toxicity Studies to Support Human Health Risk Assessment. Office of Pesticide Programs.
 2968 Washington, DC, 2012. <http://www.epa.gov/pesticides/science/lit-studies.pdf>

2969 US-EPA. Meeting Minutes of the FIFRA Scientific Advisory Panel Meeting on the Draft Framework and
 2970 Case Studies on Atrazine, Human Incidents, and the Agricultural Health Study: Incorporation of
 2971 Epidemiology and Human Incident Data into Human Health Risk Assessment. Arlington, Virginia,
 2972 USA, April 22, 2010 <https://archive.epa.gov/scipoly/sap/meetings/web/pdf/020210minutes.pdf>

2973 US-EPA (Environmental Protection Agency). Office of Pesticide Programs' Framework for Incorporating
 2974 Human Epidemiologic & Incident Data in Risk Assessments for Pesticides December 28, 2016
 2975 <https://www3.epa.gov/pesticides/EPA-HQ-OPP-2008-0316-DRAFT-0075.pdf>

2976 Vandenberg LN, Ågerstrand M, Beronius A, Beausoleil C, Bergman Å, Bero LA, Bornehag CG, Boyer CS,
 2977 Cooper GS, Cotgreave I, Gee D, Grandjean P, Guyton KZ, Hass U, Heindel JJ, Jobling S, Kidd KA,
 2978 Kortenkamp A, Macleod MR, Martin OV, Norinder U, Scheringer M, Thayer KA, Toppari J, Whaley P,
 2979 Woodruff TJ, Rudén C. A proposed framework for the systematic review and integrated assessment
 2980 (SYRINA) of endocrine disrupting chemicals. *Environ Health.* 2016; 15(1): 74

2981 Villeneuve DL, Crump D, Garcia-Reyero N, Hecker M, Hutchinson TH, LaLone CA, Landesmann B,
 2982 Lettieri T, Munn S, Nepelska M, Ottinger MA, Vergauwen L, Whelan M. Adverse outcome pathway
 2983 (AOP) development I: strategies and principles. *Toxicol Sci* 2014; 142: 312-320

2984 Vinken M. The adverse outcome pathway concept: a pragmatic tool in toxicology. *Toxicology* 2013;
 2985 312: 158-165

2986 von Elm E, Altman DG, Egger M, Pocock SJ, Gøtzsche PC, Vandebroucke JP; STROBE Initiative.
 2987 Strengthening the Reporting of Observational Studies in Epidemiology (STROBE) statement:
 2988 guidelines for reporting observational studies. *BMJ* 2007; 335: 806-808

2989 White RH, Fox MA, Cooper GS, Bateson TF, Burke TA, Samet JM. Workshop Report: Evaluation of
 2990 Epidemiological Data Consistency for Application in Regulatory Risk Assessment. *The Open
 2991 Epidemiology Journal* 2013; 6: 1-8

2992 WHO (World Health Organisation). Integrated Risk Assessment. WHO/IPCS/IRA/01/12, 2001

2993 WHO/IPCS (World Health Organization/International Programme on Chemical Safety), 2009. EHC 240:
 2994 Principles and methods for the risk assessment of chemicals in food.

2995 Wilson SJ, Tanner-Smith, EE. Meta-analysis in Prevention Science. In: Defining Prevention Science.
 2996 Sloboda Z, Petras H (eds). *Advances in Prevention Science* (vol. 1): Defining Prevention Science
 2997 Springer, New York, 2014, pp 431-452

2998 Wright C, Lopipero P, Smith AH. Meta-analysis and risk assessment. In: *Topics in Environmental
 2999 Epidemiology*. Steenland K, Savitz DA (eds). Oxford University Press, 1997, pp 28-63

3000 Youngstrom E, Kenworthy L, Lipkin PH, Goodman M, Squibb K, Mattison DR, Anthony LG, Makris SL,
 3001 Bale AS, Raffaele KC, LaKind JS. A proposal to facilitate weight-of-evidence assessments:
 3002 Harmonization of Neurodevelopmental Environmental Epidemiology Studies (HONEES).
 3003 *Neurotoxicol Teratol* 2011; 33: 354-359

3004

3005

3006 **Annex A – Pesticide epidemiological studies reviewed in the EFSA** 3007 **External Scientific Report and other reviews**

3008

3009 The extensive evidence gathered by the EFSA External Scientific Report (Ntzani et al., 2013) highlights
 3010 that there is a considerable amount of information available on pesticide exposure and health
 3011 outcomes from epidemiological studies. Nonetheless, the quality of this evidence is usually low and
 3012 many biases are likely to affect the results to an extent that firm conclusions cannot be made. In
 3013 particular, exposure epidemiology has long suffered from poor measurement and definition and in
 3014 particular for pesticides this has always been exceptionally difficult to assess and define.

3015

3016 **A.1. The EFSA External scientific report**

3017 **A.1.1. Methodological quality assessment**

3018 The External Scientific Report consists of a comprehensive systematic review of all the epidemiological
 3019 studies published between 1 January 2006 and 30 September 2012, investigating the association
 3020 between pesticide exposure and the occurrence of any human health-related outcomes.

3021 The methodological assessment of eligible studies (to evaluate risk of bias associated with each study)
 3022 was focused on: study design, study population, level of details in exposure definition and the
 3023 methods of exposure measurement and the specificity of the measurement. Efforts undertaken to
 3024 account for confounders through matching or multivariable models, blinded exposure assessment and
 3025 well-defined and valid outcome assessment were considered.

3026 The elements of the methodological appraisal were considered from the Research Triangle Institute
 3027 (RTI; Research Triangle Park, NC, USA) item bank, a practical and validated tool for evaluating the
 3028 risk of bias and precision of observational studies. Those elements are described below (Table 3).

3029

3030 **Table 3:** Elements from the Research Triangle Institute (RTI; Research Triangle Park, NC, USA) item
 3031 bank for methodological appraisal of epidemiological studies.

3032

Question	High risk	Low risk
Study design (prospective, retrospective, mixed, NA)	Retrospective, mixed, NA	Prospective
Inclusion/exclusion criteria clearly stated (yes, partially, no)	No	Yes
Authors mention power calculations (yes, no)		Yes
Level of detail in describing exposure (high, medium, low)	Low	High
Robust measurement of exposure. (biomarker (yes); small area ecological measures, job titles, questionnaire (partial); was based on large area ecological measures (no))	No	Yes
Were measures of exposure specific? yes; based on broader, chemically-related groups (partial); based on broad groupings of diverse chemical and toxicological properties (no)	No	Yes
Attempt to balance the allocation between the groups (e.g., through stratification, matching)	No	Yes
Adjustment performed for potential confounders (yes, some, no)	No	Yes
Assessors blinded to exposure status (for cohort studies)	No	Yes
Outcomes assessed using valid and reliable measures, implemented consistently across all study participants?	No	Yes
Sample size	Low	Top
Rough quality assessment	>6 answers high risk	>6 answers low risk

3033

3034 Quantitative synthesis of the results was attempted when there were 5 or more eligible studies per
 3035 examined outcome and when there was no substantial heterogeneity among the published evidence.
 3036 Publication bias was assessed using funnel plots which allowed to visually inspect asymmetry when
 3037 more than 10 studies were included in the meta-analysis.

3038 Toxicological data was not reviewed or discussed in the External Scientific Report.

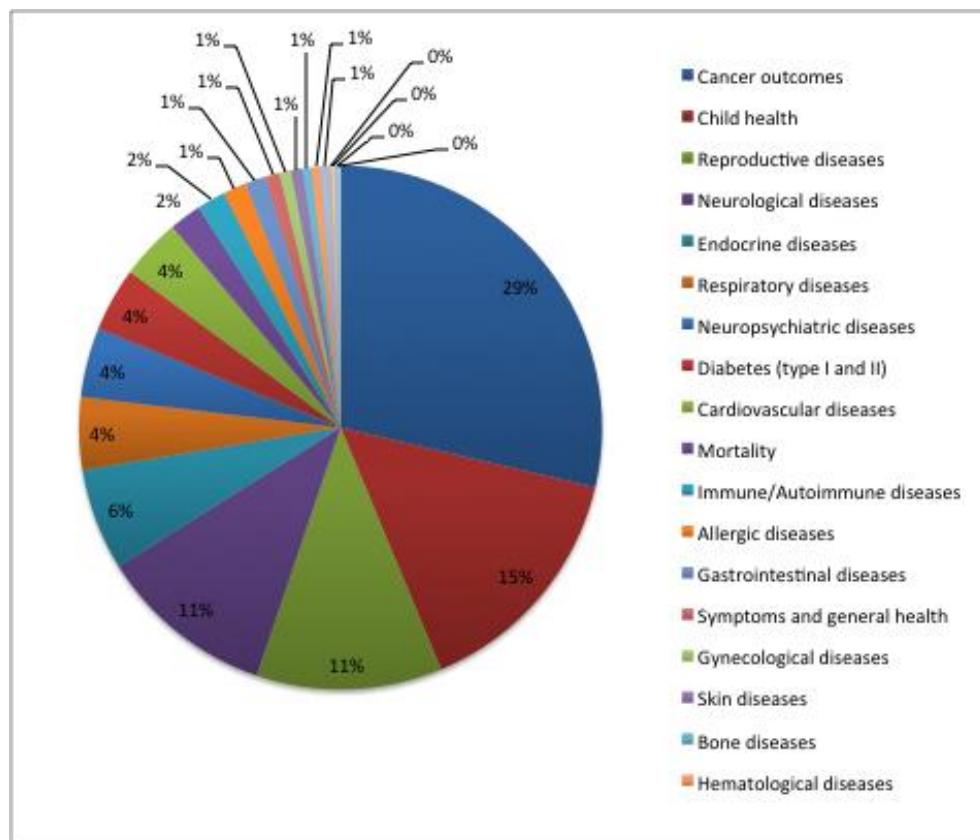
3039 **A.1.2. Inclusion/exclusion criteria**

3040 All types of pesticides, including those banned in the EU, were considered to enhance the totality of
3041 the epidemiological evidence available at the time of the review.

3042 Exclusion criteria:

- 3043 • Studies without control populations (case reports, case series) and ecological studies
- 3044 • Pesticide poisoning or accidental high dose exposure
- 3045 • Studies with no quantitative information on effect estimates
- 3046 • Studies with different follow-up periods and examining the same outcome, only the one with
3047 the longest follow-up was retained to avoid data duplication.
- 3048 • Studies referred to the adverse effects of substances used as therapy for various medical
3049 conditions (e.g., warfarin-based anticoagulants)
- 3050 • Studies on solvents and other non-active ingredients (e.g. co-formulants) in pesticides
- 3051 • Studies examining the association between exposure and biomarkers of exposure were not
3052 considered eligible as they do not examine health outcomes
- 3053 • Studies/analyses investigating exposure to pesticides: arsenic, hexachlorocyclohexane (HCH)
3054 α or β, lead, dioxins and dioxin-like compounds including polychlorinated biphenyls (PCBs)
3055 were not considered
- 3056 • Narrative reviews were excluded but not systematic reviews or meta-analyses

3057 Publications reporting series of acute poisonings or clinical cases, biomonitoring studies unrelated to
3058 health effects, or studies conducted on animals or human cell systems were not included; only
3059 epidemiological studies addressing human health effects were selected. Publications that lacked
3060 quantitative data for measuring associations were also excluded.


3061 Cohort studies, case-control studies and cross-sectional studies were included. Each study underwent
3062 an assessment of its eligibility based on a method including 12 criteria such as study design, precise
3063 description of the inclusion/exclusion criteria, level of detail in describing exposure, robustness in the
3064 measurement of exposure, adjustment for potential confounding factors, method of assessment of the
3065 health outcome, sample size, etc. Among these 12 criteria, three were related to the degree of
3066 precision in the description/measurement of exposure, which may explain why a large number of
3067 epidemiological studies were not selected.

3068

3069 **A.1.3. Results**

3070 Overall, 602 individual publications were included in the scientific review. These 602 publications
3071 corresponded to 6,479 different analyses. The overwhelming majority of evidence comes from
3072 retrospective or cross-sectional studies (38 and 32% respectively) and only 30% of studies had a
3073 prospective design. Exposure assessment varied widely between studies and overall 46% measured
3074 biomarkers of pesticides exposure and another 46% used questionnaires to estimate exposure to
3075 pesticides. Almost half of the studies (49%) were based in America. Most studies examined
3076 associations between occupational exposure to pesticides and health effects. The entire spectrum of
3077 diseases associated with pesticides has not been studied before. The report examined a wide variety
3078 of outcomes (Fig. 6). The largest proportion of studies pertains to cancer outcomes (N=164) and
3079 outcomes related to child health (N=84).

3080

Figure 6: Major outcome categories and corresponding percentage of studies examining those outcomes among the publications reviewed by the EFSA external scientific report (Ntzani et al., 2013).

Despite the large volume of available data and the large number (>6,000) of analyses available, firm conclusions were not made for the majority of the outcomes studied. This was due to several limitations of the data collected as well as to inherent limitations of the review itself. As mentioned above, the review studied the whole range of outcomes examined in relation to pesticides during 5 years' period. Thus, only recent evidence was reviewed and the results of the meta-analyses performed should be cautiously interpreted as they do not include all the available evidence. It is therefore capable of highlighting outcomes which merit further in-depth analysis in relation to pesticides by looking at the entire literature (beyond 5 years) and by focusing on appraising the credibility of evidence selected. The limitations of the studies itself are in line with other field of environmental epidemiology and focus around the exposure assessment, the study design, the statistical analysis and reporting. In particular:

a) **Exposure assessment:** The assessment of exposure is perhaps the most important methodological limitation of the studies reviewed in the ESR. Studies used different methods for exposure assessment and assignment. Most studies were based on self-reported exposure to pesticides, defined as "ever versus never" use or as "regular versus non-regular" use. Such methods suffer from high misclassification rates and do not allow for dose response analysis. This is especially the case for retrospective studies where misclassification would be differential with higher exposures reported in participants with disease (recall bias) (Raphael, 1987). While questionnaires might be capable of differentiating subjects with very high and very low exposure levels, they are not capable of valid exposure classification across an exposure gradient, thus not allowing the study of dose-response relationships. Also, questionnaire for exposure assessment need to be validated for use in epidemiological studies. Nonetheless, a vast proportion of studies use in house version of non-validated questionnaires which may suffer from content (the questionnaire does not cover all sources

3110 of exposure to the hazard of interest) or criterion validity (e.g., through inaccurate recall or
3111 misunderstanding of questions) (Coggon, 1995).

3112 Although the range of categories of pesticide studied is wide, studies very often concentrate on a
3113 broadly defined pesticide category, so that it is difficult to know what type of pesticide the population
3114 is exposed to.

3115 Exposure to pesticides was defined as reported use of pesticides by the study participant or by
3116 government registry data. These derive from self-administered questionnaires, interviewer
3117 administrated questionnaires, job exposure matrices (JEM), by residential status (proximity to
3118 pesticide exposure), by detecting biomarkers associated with pesticide exposure or by other means as
3119 defined by each study.

3120 Studies often examine pesticides that have already been banned in western populations and the EU.
3121 The use of biomarkers as means of exposure assessment is infrequent, but still available in almost half
3122 of the studies.

3123

3124 b) **Study design:** As mentioned above, the majority of evidence comes from case-control studies and
3125 cross-sectional studies. Cross-sectional, and in part also case-control studies, cannot fully assess the
3126 temporal relationships and thus are less able to provide support regarding the causality of
3127 associations.

3128

3129 c) **Outcomes examined:** The definition of clinical outcomes displayed large variability in eligible
3130 epidemiological studies, which can further cause the variability in results. Perhaps most important in
3131 this setting is the use of a great number of surrogate outcomes examined. Surrogate outcomes are
3132 biomarkers or physical measures that are generally accepted as substitutes for, or predictors of,
3133 specific clinical outcomes. However, often these surrogate outcomes are not validated and do not
3134 meet the strict definitions of surrogate outcomes. Such outcomes can be defined as possible
3135 predictors of clinical outcomes but do not fulfil the criteria for a surrogate outcome. It is essential to
3136 appraise the evidence around non-validated surrogate outcomes by taking into account the implicit
3137 assumptions of these outcomes.

3138 A great variety of assessed outcomes covering a wide range of pathophysiologies was observed.
3139 "Hard" clinical outcomes as well as many surrogate outcomes included in the database reflect the
3140 different methodologies endorsed to approach the assessed clinical research questions. The different
3141 outcomes were divided into 23 major disease categories, with the largest proportion of studies
3142 addressing cancer and child health outcomes.

3143 The adverse health effects assessed included:

3144 a) major clinical outcomes, such as cancer, respiratory (allergy), reproductive (decreased fertility, birth
3145 defects) and neurodegenerative (Parkinson's disease);

3146 b) clinical surrogate outcomes, e.g. neurodevelopmental impairment (assessed by neurocognitive
3147 scales) and

3148 c) laboratory surrogate outcomes (e.g., liver enzyme changes).

3149 For many adverse health effects attributed to pesticide exposure there exist contradictory or
3150 ambiguous studies. Whether this results from lack of consistency or real heterogeneity warrants
3151 further clarification.

3152

3153 d) **Statistical analysis:**

3154 Simultaneous exposure to multiple agents (heavy metals, solvents, suspended particulate matter etc.)
3155 from different sources is common. It may introduce further bias in the results as all of them may
3156 produce adverse health outcomes. Thus, it is essential to account for confounding from exposure to
3157 multiple agents in order to delineate true associations but this has not been possible in the
3158 overwhelming majority of evidence assessed in the EFSA external scientific report.

3159 In addition, the evidence collected and appraised in the EFSA external scientific report (Ntzani et al.,
 3160 2013) is likely to suffer from selective reporting and multiple testing. The studies reported a very wide
 3161 range of analyses; 602 publications resulted in 6000 analyses. The amount of multiple hypothesis
 3162 testing is enormous. These analyses need to be adjusted for multiple hypothesis testing else,
 3163 otherwise the results suffer from high false positive rate. Even when studies present only one analysis,
 3164 selective reporting is always a possibility as has been shown in other epidemiological fields as well. In
 3165 addition, when interpreting results one should also take into account that, especially for certain
 3166 outcomes (e.g. cancers), the majority of evidence comes from single study populations and the
 3167 Agriculture Health Study in particular.

3168

3169 **A.1.4. Conclusion of the EFSA External Scientific Report**

3170 Regardless of the limitations highlighted above, the External Scientific Report (Ntzani et al., 2013)
 3171 showed consistent evidence of a link between exposure to pesticides and Parkinson's disease and
 3172 childhood leukaemia, which was also supported by previous meta-analyses. In addition, an increased
 3173 risk was also found for diverse health outcomes less well studied to date, such as liver cancer, breast
 3174 cancer and type II diabetes. Effects on other outcomes, such as endocrine disorders, asthma and
 3175 allergies, diabetes and obesity showed increased risks and should be explored further.

3176 Childhood leukaemia and Parkinson's disease are the two outcomes for which a meta-analysis after
 3177 2006 was found consistently showing an increased risk associated with pesticide exposure.
 3178 Nonetheless, the exposure needs to be better studied to disentangle the effect of specific pesticide
 3179 classes or even individual pesticides. Significant summary estimates have also been reported for other
 3180 outcomes (summarised in Table 4). However, as they represent studies from 2006 onwards results
 3181 should be regarded as suggestive of associations only and limitations especially regarding the
 3182 heterogeneity of exposure should always be taken into consideration. Data synthesis and statistical
 3183 tools should be applied to these data in relation to specific outcomes, after the update of the results to
 3184 include publications before 2006, in order to quantify the amount of bias that could exist and isolate
 3185 outcomes where the association with pesticides is well supported even when estimates of bias are
 3186 taken into account. Similarly, outcomes where further evidence is needed to draw firm conclusions
 3187 need to be highlighted.

3188

3189 **Table 4:** Summary of meta-analyses performed in the report.

Health outcome	N studies	Meta-analysis results	I^2
Leukaemia	6	1.26 (0.93; 1.71)	59.4%
Hodgkin lymphoma	7	1.29 (0.81-2.06)	81.6%
Childhood leukaemia (exposure to pesticides during pregnancy)	6	1.67 (1.25-2.23)	81.2%
Childhood leukaemia (exposure to insecticides during pregnancy)	5	1.55 (1.14-2.11)	65%
Childhood leukaemia (exposure to insecticides during pregnancy – update Turner, 2010)	9	1.69 (1.35-2.11)	49.8%
Childhood leukaemia (exposure to unspecified pesticides during pregnancy)	5	2.00 (1.73-2.30)	39.6%
Childhood leukaemia (exposure to unspecified pesticides during pregnancy – update Turner, 2010)	11	1.30 (1.06-1.26)	26.5%
Childhood leukaemia (exposure to pesticides during childhood)	7	1.27 (0.96-1.69)	61.1%
Childhood leukaemia (exposure to insecticides during childhood – update Turner, 2010)	8	1.51 (1.28-1.78)	0%
Childhood leukaemia (exposure to unspecified	11	1.36 (1.19-1.55)	0%

pesticides during childhood – update Turner, 2010)			
Breast cancer (DDE exposure)	5	1.13 (0.81-1.57)	0%
Breast cancer	11	1.24 (1.08-1.43)	0%
Testicular cancer (DDE exposure)	5	1.40 (0.82-2.39)	59.5%
Stomach cancer	6	1.79 (1.30-2.47)	0%
Liver cancer	5	2.50 (1.57-3.98)	25.4%
Cryptorchidism	8	1.19 (0.96-1.49)	23.9%
Cryptorchidism (DDT exposure)	4	1.47 (0.98-2.20)	51%
Hypospadias (general pesticide exposure)	6	1.01 (0.74-1.39)	71.5%
Hypospadias (exposure to specific pesticides)	9	1.00 (0.84-1.18)	65.9%
Abortion	6	1.52 (1.09-2.13)	63.1%
Parkinson's disease	26	1.49 (1.28-1.73)	54.6%
Parkinson's disease (DDT exposure)	5	1.01 (0.78-1.30)	0%
Parkinson's disease (paraquat exposure)	9	1.32 (1.09-1.60)	34.1%
Amyotrophic lateral sclerosis	6	1.58 (1.31-1.90)	10%
Asthma (DDT exposure)	5	1.29 (1.14-1.45)	0%
Asthma (paraquat exposure)	6	1.40 (0.95-2.06)	53.3%
Asthma (chlorpyrifos exposure)	5	1.03 (0.82-1.28)	0%
Type 1 diabetes (DDE exposure)	8	1.89 (1.25-2.86)	49%
Type 1 diabetes (DDT exposure)	6	1.76 (1.20-2.59)	76.3%
Type 2 diabetes (DDE exposure)	4	1.29 (1.13-1.48)	0%

3190 N=number of studies considered for the meta-analysis; in the column of meta-analysis results the numbers represent the
 3191 statistical estimate for the size of effect (odds ratio –OR–, or Relative Risk – RR–) with the corresponding 95% confidence
 3192 interval (CI). $\hat{\sigma}^2$ represents the percentage of total variation across studies that is due to heterogeneity.

3193

3194

3195 **A.2. The INSERM report**

3196 In September 2013, the French National Institute of Health and Medical Research (INSERM) released
 3197 a literature review carried out with a group of experts on the human health effects of exposure to
 3198 pesticides²⁰. Epidemiological or experimental data published in the scientific literature up to June 2012
 3199 were analysed. The report was accompanied by a summary outlining the literature analysis and
 3200 highlighting the main findings and policy lines, as well as the recommendations.

3201 The INSERM report is composed of four parts: 1) exposure assessment, with a detailed description of
 3202 direct and indirect methods to assess exposure in epidemiological studies; 2) epidemiology, with an
 3203 inventory and analysis of epidemiological studies available in the literature up to 2012, and a scoring
 3204 system to assess the strength of presumed association; 3) toxicology, with a review of toxicological
 3205 data (metabolism, mode of action and molecular pathway) of some substances and assessment of
 3206 biological plausibility; and 4) recommendations.

3207 The vast majority of substances identified by the INSERM report as having a presumed moderate or
 3208 strong association with the occurrence of health effects are chemicals that are now prohibited. This is
 3209 mainly driven by the fact that the majority of the diseases examined are diseases of the elderly;
 3210 therefore, the studies performed to date are based on persons who were old at the time of the study
 3211 and exposed many years ago. By definition, it is not yet possible to investigate the potential long term
 3212 effects of many of the more recent products.

3213 These substances belong to the group of organochlorine insecticides, such as DDT or toxaphene, or
 3214 insecticides with cholinesterase-inhibiting properties, such as terbufos or propoxur.

²⁰ INSERM. Pesticides. Effets sur la santé. Collection expertise collective, Inserm, Paris, 2013

3215 Of the seven approved active substances identified by the INSERM expert appraisal report (the
3216 herbicides 2,4-D, MCPA, mecoprop, glyphosate, the insecticide chlorpyrifos, and the foliar fungicides
3217 mancozeb and maneb), all had a presumed moderate or weak association with haematopoietic
3218 cancers. Two of them (the foliar fungicides mancozeb and maneb) had a presumed weak association
3219 with Parkinson's disease and two (chlorpyrifos and glyphosate) had a presumed association with
3220 developmental impairment identified as weak or moderate in the expert appraisal.

3221 **A.2.1. Description of methods to assess exposure in epidemiological 3222 studies**

3223 Different methods (direct and indirect) have been developed to assess exposure, such as biological or
3224 environmental monitoring data, *ad hoc* questionnaires, job- or crop-exposure matrices, analysis of
3225 professional calendars, sales data, land use data, etc. According to the authors, these various tools
3226 can be combined with each other but, to date none has been validated as a reference method for
3227 estimating exposure in the context of occupational pesticide exposure assessment.

3228 **A.2.2. Epidemiology**

3229 The group of experts from INSERM carried out an inventory and analysis of epidemiological studies
3230 available in the literature, examining the possible association between pesticide exposure and health
3231 outcomes: 8 cancer sites (Non-Hodgkin lymphoma, leukaemia, lymphoma, multiple myeloma,
3232 prostate, testis, brain, melanoma), 3 neurodegenerative diseases (Parkinson's disease, Alzheimer's
3233 disease, amyotrophic lateral sclerosis), cognitive or depressive disorders, effects on reproductive
3234 function (fertility, pregnancy and child development) and childhood cancers. These are health
3235 outcomes that have been identified in previous studies as potentially related to pesticide exposure.

3236 Epidemiologic studies addressing primarily farmers, pesticide applicators and workers of the pesticide
3237 manufacturing industries, as well as the general population when it was relevant, were selected.

3238 The INSERM group of experts established a hierarchy in the relevance of the studies, placing the
3239 meta-analysis at the top, then the systematic review, then the cohort study and finally the case-
3240 control study. Based on this hierarchy, a scoring system was defined to assess the strength of
3241 presumption of the association between exposure and the occurrence of health outcomes from the
3242 analysis of the study results; for each disease or pathological condition investigated, this score may
3243 vary depending on the quality, type and number of available studies, as, for example:

3244 (++) strong presumption: based on the results of a meta-analysis, or several cohort studies or at
3245 least one cohort study and two case-control studies, or more than two case-control studies;

3246 (+): moderate presumption: based on the results of a cohort study or a nested case-control study or
3247 two case-control studies;

3248 (±): weak presumption: based on the results of one case-control study. This synthesis takes the work
3249 beyond the status of a simple mapping exercise.

3250 **A.2.3. Toxicological data**

3251 Toxicological data that were considered in the literature review were mainly those regarding
3252 metabolism, mode of action and molecular pathways. None of the studies provided as part of the
3253 procedures for placing products on the market were considered except if they were published in the
3254 open literature.

3255 When substances were clearly identified in the epidemiological studies, a scoring system was defined
3256 to assess the biological plausibility from the study results: coherence with pathophysiological data and
3257 occurrence of health outcome.

3258 (++) hypothesis supported by 3 mechanisms of toxicity

3259 (+): hypothesis supported by at least one mechanism of toxicity

3260 **A.2.4. Findings**

3261 The major results of the INSERM report are summarized in tables 5-8

3262 **Table 5:** Statistically significant associations between occupational exposure to pesticides and
 3263 health outcomes in adults (health outcomes that were analysed in the review).

3264

Health outcome	Type of population with significant risk excess	Strength of presumption ^a
NHL	Farmers, operators, manufacturing plant personnel	++
Prostate cancer	Farmers, operators, manufacturing plant personnel	++
Multiple myeloma	Farmers, operators	++
Parkinson's disease	Occupational and non-occupational exposure	++
Leukaemia	Farmers, operators, manufacturing plant personnel	+
Alzheimer's disease	Farmers	+
Cognitive disorders ^b	Farmers	+
Fertility and fecundability disorders	Occupational exposure	+
Hodgkin lymphoma	Agricultural workers	±
Testicular cancer	Agricultural workers	±
Brain cancer (glioma, meningioma)	Agricultural workers	±
Melanoma	Agricultural workers	±
Amyotrophic lateral sclerosis	Farmers	±
Anxiety, depression ^b	Farmers, farmers with a history of acute poisoning, operators	±

3265 ^a Scoring system: strong presumption (++) , moderate presumption (+), weak presumption (±)

3266 ^b Almost all pesticides were organophosphates

3267

3268 **Table 6:** Associations between occupational or home use exposure to pesticides and cancers or
 3269 developmental impairment in children (health outcomes that were analysed in the review)
 3270 (only statistically significant associations are shown).

3271

Health outcome	Type of exposure and population with significant risk excess	Strength of presumption ^a
Leukaemia	Occupational exposure during pregnancy, prenatal exposure (residential)	++
Brain cancer	Occupational exposure during pregnancy	++
Congenital malformation	Occupational exposure during pregnancy; Residential exposure during pregnancy (agricultural area, home use)	++ +
Fetal death	Occupational exposure during pregnancy	+
Neurodevelopment	Residential exposure during pregnancy (agricultural area, home use, food) ^b ; Occupational exposure during pregnancy	++ ±

3272 ^a Scoring system: strong presumption (++) , moderate presumption (+), weak presumption (±)

3273 ^b Organophosphates

3274

3275 **Table 7:** Findings related to approved active substances: epidemiological assessment and biological
 3276 plausibility.

3277

Active substance	Classification	Strength of presumption ^a	Biological plausibility ^b
Organophosphates			
<i>Insecticide</i>			
Chlorpyrifos	Acute Tox cat 3	Leukaemia (+) Neurodevelopment (+) NHL (±)	yes (++) yes (++) yes (++)
Dithiocarbamates			
<i>Fungicide</i>			
Mancozeb/Maneb	Repro cat 2	Leukaemia (+) Melanoma (+) Parkinson's disease (in combination with paraquat) (±)	?
			?
			yes (+)
Phenoxy herbicides			
<i>Herbicide</i>			
2,4-D	Acute Tox cat 4	NHL (+)	?
MCPA	Acute Tox cat 4	NHL (±)	?
Mecoprop	Acute Tox cat 4	NHL (±)	?
Aminophosphonate			
<i>glycine Herbicide</i>			
Glyphosate		NHL (+) Fetal death (±)	?
			?

3278 ^a Scoring system: strong presumption (++)
 3279 moderate presumption (+), weak presumption (±)

3280 ^b Scoring system: (++)
 3281 hypothesis supported by 3 different known mechanisms of toxicity, (+): hypothesis supported by at
 3282 least one mechanism of toxicity

3283 **Table 8:** Findings related to non-approved active substances: epidemiological assessment and biological plausibility
3284

Active substance	Ban in the EU	IARC classification	Strength of presumption ^a	Biological plausibility ^b
Dieldrin	1978	3 or 2 (US-EPA)	NHL ^c (±) Prostate cancer (±) Parkinson's disease (±)	Yes (+) Yes (+) ?
DDT/DDE	1978	2B	NHL (++) Testicular cancer (+) Child growth (++) Neurodevelopment (±) Impaired sperm parameters (+)	Yes (+) ? ? ? ?
Chlordane	1978	2B	NHL (±) Leukaemia (+) Prostate cancer (±) Testicular cancer (+)	Yes (+) Yes (+) Yes (+) ?
Lindane (γ-HCH)	2002/ 2004/ 2006/2007	2B ^d	NHL (++) Leukaemia (+)	Yes (++) Yes (++)
β HCH	2002/ 2004/ 2006/2007	2B ^d	Prostate cancer (±)	?
Toxaphene	2004	2B	NHL ^c (±) Leukaemia (+) Melanoma (+)	Yes (++) Yes (++) Yes (+)
Chlordecone	2004	2B	Cancer prostate (++) Impaired sperm parameters (+) Neurodevelopment (+)	Yes (+) ? ?
Heptachlor	1978	2B	Leukaemia (+)	Yes (+)
Endosulfan Hexachlorobenzene (HCB)	2005 1978	Not classified 2B	?	Yes (+) ?
Terbufos	2003/2007		NHL (+) Leukaemia (+)	?
Diazinon	2008		NHL (+) Leukaemia (+)	?
Malathion	2008	3	NHL (++) Leukaemia (+) Neurodevelopment (+) Impaired sperm parameters (+)	Yes (+) Yes (+) ? ?
Fonofos	2003		NHL (±) Leukaemia (+) Prostate cancer (+)	?
Parathion	2002	3	Melanoma (+)	?
Coumaphos	Never notified and authorized in the EU		Prostate cancer (+)	?

Carbaryl	2008	3	NHL (±) Melanoma (+) Impaired sperm parameters (+)	?
Propoxur	2002		Neurodevelopment (+) Fetal growth (+)	?
Carbofuran	2008		NHL (±) Prostate cancer (+)	?
Butylate	2003		NHL (+) Prostate cancer (+)	?
EPTC	2003		Leukaemia (+)	?
Atrazine	2005	3	NHL (±) Fetal growth (+)	Yes (+) ?
Cyanizine	2002/ 2007		NHL ^c (±)	?
Permethrin	2002	3	Prostate cancer (+)	Yes (+)
Fenvalerate	1998	Not classified	Impaired sperm parameters (+)	?
Methyl bromide	2010	3	Testicular cancer (+)	?
Dibromoethane	Banned	2A	Impaired sperm parameters (+)	?
Dibromochloro- propane (DBCP)	Banned	2B	Impaired sperm parameters/impaired fertility (++) (causal association)	Yes (+++) (mode of action elucidated)
Paraquat	2007		Parkinson's disease (+)	Yes (++)
Rotenone	2011		Parkinson's disease (+)	Yes (++)
Alachlor	2008		Leukaemia (+)	Yes (++)

3285 ^a Scoring system: strong presumption (++)
 3286 ^b Scoring system: (++)
 3287 hypothesis supported by 3 mechanisms of toxicity, (+): hypothesis supported by at least one
 3288 mechanism of toxicity
 3289 ^c Population with t(14,18) translocation, only
 3290 ^d Technical mixture (α , β , γ HCH)

3291 **A.2.5. Recommendations**

3292 The analysis of the available epidemiological and mechanistic data on some active substances
 3293 suggests several recommendations for developing further research:

3294 a) Knowledge on population exposure to pesticides should be improved
 3295

- 3296 ○ Collect information about use of active substances by farmers
- 3297 ○ Conduct field studies to measure actual levels of exposure
- 3298 ○ Monitor exposure during the full occupational life span
- 3299 ○ Measure exposure levels in air (outdoor and indoor), water, food, soil

3299 ○ Collect information on acute poisonings
3300 ○ Improve analytical methods for biomonitoring and external measurements
3301 ○ Allow researchers to have access to extensive formulation data (solvents, co-
3302 formulants, etc.).
3303 b) Research potential links between exposure and health outcomes
3304 ○ Characterise substances or groups of substances causing health outcomes
3305 ○ Focus on susceptible individuals or groups of individuals (gene polymorphism of
3306 enzymes, ...)
3307 ○ Focus on exposure windows and susceptibility (pregnancy, development)
3308 ○ Bridge the gap between epidemiology and toxicology (mode of action)
3309 ○ Improve knowledge on mixture toxicity
3310 ○ Foster new approaches of research (*in vitro* and *in silico* models, omics, ...)

3311
3312

3313 **A.3. Similarities and differences between the EFSA External Scientific
3314 Report and the INSERM report**

3315
3316 The two reports discussed herein have used different methodologies. Yet, their results and conclusions
3317 in many cases agree. The INSERM report is limited to predefined outcomes and it attempted to
3318 investigate the biological plausibility of epidemiological studies by reviewing toxicological data as well,
3319 meanwhile the EFSA report is a comprehensive systematic review of all available epidemiological
3320 studies that were published during a 5 year window.

3321 The differences between the reports are shown in Table 9 and are related to the time period of search
3322 (i.e., both reports did not assess the same body of published data), different criteria for eligibility of
3323 studies and different approaches to summarising the evidence across and within outcomes. Overall,
3324 the INSERM report identified a greater number of associations with adverse health effects than the
3325 EFSA report. However, a well-documented association with pesticide exposure was claimed by both
3326 reports for the same health outcomes (childhood leukaemia, Parkinson's disease).

3327

3328 **Table 9:** Comparison between methods used in the EFSA External Scientific Report and the
3329 INSERM Report
3330

	EFSA External report	INSERM report
Articles reviewed	602/43000	NR
Language	Yes	NR
Search strategy (key words, MeSH)	Yes	NR
Search database	Yes (4)	NR
Years of publication	2006 to 2012 (Sep)	? to 2012 (Jun)
Type of epi studies assessed	Cross- sectional Case-control Cohort	Cross- sectional Case-control Cohort
Inclusion criteria	Yes	NR
Exclusion criteria	Yes	NR
Methodological quality assessment	Yes (12 criteria)	NR
Exposure groups*	Yes	Yes
Exposure assessment	Yes	Yes
Quantitative synthesis (meta-analysis)	Yes	No
Qualitative synthesis#	Yes	Yes
Supporting Toxicological data	NI	Yes
Associations with individual pesticides	Yes	Yes
<i>Health outcomes studied:</i>		
Haematological cancer	Yes	Yes
Solid tumours	Yes	Yes
Childhood cancer	Yes	Yes
Neurodegenerative disorders	Yes	Yes
Neurodevelopmental outcomes	Yes	Yes
Neuropsychiatric disturbances [^]	No	Yes
Reproductive and developmental	Yes	Yes
Endocrine	Yes	NI
Metabolism	Yes	Yes
Immunological	Yes	NI
Respiratory	Yes	NI

3331 NR = not reported

3332 NI not investigated

3333 * exposure type (environmental, occupational, etc.) and period (general population, children, etc.)

3334 ^ e.g. depressive disorders

3335 # add explanation

3336

3337

3338 **A.4. The Ontario College of Family Physicians Literature review
3339 (OCFPLR)**
33403341 In 2004, the Ontario College of Family Physicians (Ontario, Canada) reviewed the literature published
3342 between 1992 and 2003 on major health effects associated with pesticide exposure. The authors
3343 concluded that positive associations exist between solid tumours and pesticide exposures as shown in
3344 Table 10. They noted that in large well-designed cohort studies these associations were consistently
3345 statistically significant, and the relationships were most consistent for high exposure levels. They also
3346 noted that dose response relationships were often observed, and they considered the quality of
3347 studies to be generally good.

3348 **Table 10:** Health Effects considered in the Ontario College of Family Physicians review, 2004

3349

Endpoint	Associations identified by the Ontario College, pesticide (if differentiated), study type, (no. of studies/total no. of studies)
A) Cancer	
1. Lung	-ve cohort (1/1) +ve case control (1/1) +ve carbamate, phenoxy acid, case control (1/1)
2. Breast	+ve case-control (2/4) +ve ecological (1/1) +ve triazine, ecological (1/1) -ve atrazine, ecological (1/1)
3. Colorectal	
4. Pancreas	+ve cohort (1/1) +ve case control (2/2)
5. Non-Hodgkin's lymphoma	+ve cohort (9/11) +ve case control (12/14) +ve ecological (2/2)
6. Leukaemia	+ve cohort (5/6) +ve case control (8/8) -ve ecological (1/1) +ve lab study (1/1)
7. Brain	+ve cohort (5), similar case-control (5)
8. Prostate	+ve cohort (5/5) case-control (2/2) ecological (1/1)
9. Stomach	
10. Ovary	
11. Kidney	+ve pentachlorophenol cohort (1/1) +ve cohort (1/1) +ve case control (4/4)
12. Testicular	

B) Non-Cancer

1. Reproductive effects	+ve glyphosate
Congenital malformations	+ve pyridil derivatives
Fecundity/time to pregnancy	Suggest impaired
Fertility	
Altered growth	Possible +ve association, but further study required
Fetal death	Suggested association
Mixed outcomes	
2. Genotoxic/immunotoxic	+ve Synthetic pyrethroids (1)
Chromosome aberrations	+ve organophosphates (1)
	+ve fumigant and insecticide applicators
NHL rearrangements	+ve fumigant and herbicide applicators
3. Dermatologic	
4. Neurotoxic	
Mental & emotional impact	+ve
Functional nervous system impact	+ ve organophosphate/carbamate poisoning
Neuro-degenerative impacts (PD)	+ve cohort (4/4) +ve case control (2/2) +ve ecological (1/1)

3350 +ve: positive; -ve: negative

3351

3352 The report concluded that there was compelling evidence of a link between pesticide exposure and the
 3353 development of Non-Hodgkin's Lymphoma, and also clear evidence of a positive association between
 3354 pesticide exposure and leukaemia. The authors also claimed to have found consistent findings of a
 3355 number of nervous system effects, arising from a range of exposure time courses.

3356 Such strong conclusions found favour with Non-Governmental organisations (NGOs) and raised
 3357 questions among some Regulatory Authorities. The Advisory Committee on Pesticides (ACP), at that
 3358 time an UK government independent advisory committee, was asked to provide an evaluation of the
 3359 outcome of the Ontario College review. The committee membership included one epidemiologist and
 3360 the committee consulted five other epidemiologists involved in providing independent advice to other
 3361 government committees. They all agreed that the review had major shortcomings (e.g. exact search
 3362 strategy and selection criteria not specified, selective reporting of results, inadequate understanding
 3363 and consideration of relevant toxicology, insufficient attention to routes and levels of exposure, not
 3364 justified conclusions, etc.). Overall the conclusions of the Ontario College review were considered not
 3365 to be supported by the analysis presented. In 2012 the Ontario review authors published an update of
 3366 their evaluation; in their second report they used a very similar approach but offered more detail
 3367 concerning the inclusion criteria used. This example is a reminder of the risk of over interpretation of
 3368 epidemiological studies. In particular, a causal inference between exposure and the occurrence of
 3369 adverse health effects is often made, but this represents an association that should be further
 3370 assessed.

3371

3372

3373 **Annex B – Human biomonitoring project outsourced by EFSA**

3374

3375 In 2015 EFSA outsourced a project to further investigate the role of HBM in occupational health and
3376 safety strategies as a tool for refined exposure assessment in epidemiological studies and to
3377 contribute to the evaluation of potential health risks from occupational exposure to pesticides. It was
3378 in fact recognised that exposure assessment is a key part of all epidemiological studies and
3379 misclassification of exposure and use of simple categorical methods are known to weaken the ability
3380 of a study to determine whether an association between contact and ill-health outcome exists; at
3381 present, this limits integration of epidemiological findings into regulatory risk assessment.

3382 The consortium formed by Risk & Policy Analysts Limited (RPA), IEH Consulting Limited (IEH) and the
3383 Health&Safety Laboratory (HSL) carried out a systematic literature review for the period 1990 to 2015
3384 with the aim to provide an overview on the use of HBM as a tool for occupational exposure
3385 assessment refinement, identifying advantages, disadvantages and needs for further development
3386 (first objective). The search identified 2096 publications relating to the use of HBM to assess
3387 occupational exposure to pesticides (or metabolites). The outcome of the search (Bevan et al., 2017)
3388 indicated that over the past 10 to 20 years there has been an expansion in the use of HBM, especially
3389 into the field of environmental and consumer exposure analysis. However, further improvement of the
3390 use of HBM for pesticide exposure assessment is needed, in particular with regards to: development of
3391 strategies to improve or standardise analytical quality, improvement of the availability of reference
3392 material for metabolites, integration of HBM data into mathematical modelling, exposure
3393 reconstruction, improvements in analytical instrumentation and increased availability of human
3394 toxicology data.

3395 The contractors performed a review of available HBM studies/surveillance programmes conducted in
3396 EU/US occupational settings to identify pesticides (or metabolites) both persistent and not persistent,
3397 for which biomarkers of exposure (and possibly effect) were available and validated (second
3398 objective). A two-tiered screening process that included quality scoring for HBM, epidemiological and
3399 toxicological aspects, was utilised to identify the most relevant studies, resulting in 178 studies for
3400 critical review. In parallel with the screening of identified studies, a Master Spreadsheet was designed
3401 to collate data from these papers, which contained information relating to: study type; study
3402 participants; chemicals under investigation; biomarker quality check; analytical methodology;
3403 exposure assessment; health outcome/toxicological endpoint; period of follow-up; narrative of results;
3404 risk of bias and other comments.

3405 HBM has been extensively used for monitoring worker exposure to a variety of pesticides.
3406 Epidemiological studies of occupational pesticide use were seen to be limited by inadequate or
3407 retrospective exposure information, typically obtained through self-reported questionnaires, which can
3408 potentially lead to exposure misclassification. Some examples of the use of job exposure or crop
3409 exposure matrices were reported. However, little validation of these matrix studies against actual
3410 exposure data had been carried out. Very limited data was identified that examined seasonal
3411 exposures and the impact of PPE, and many of the studies used HBM to only assess one or two
3412 specific compounds. A wide variety of exposure models are currently employed for health risk
3413 assessments and biomarkers have also often been used to evaluate exposure estimates predicted by a
3414 model.

3415 From the 178 publications identified to be of relevance, 41 individual studies included herbicides, and
3416 of these, 34 separate herbicides were identified, 15 of which currently have approved for use in the
3417 EU. Similarly, of the 90 individual studies that included insecticides, 79 separate insecticides were
3418 identified, of which 18 currently have approved for use in the EU. Twenty individual studies included
3419 fungicides, with 34 separate fungicides being identified and of these 22 currently have approved for
3420 use in the EU. The most studied herbicides (in order) were shown to be: 2,4-D > atrazine >
3421 metolachlor = MCPA > alachlor = glyphosate. Similarly, the most studied insecticides (in order) were:
3422 chlorpyrifos > permethrin > cypermethrin = deltamethrin > malathion, and the most studied
3423 fungicides were: captan > mancozeb > folpet.

3424 Current limitations comprised the limited number of kinetic data from humans, particularly with
3425 respect to the ADME of individual pesticides in human subjects, which would allow more accurate HBM
3426 sampling for all routes of exposure. A wider impact of this is on the development of PBPK models for

3427 the risk assessment of pesticides, which rely on toxicokinetic data, and on validation of currently used
3428 exposure assessment models. Further limitations currently impacting on the use of HBM in this field
3429 are a lack of large prospective cohort studies to assess long term exposure to currently used
3430 pesticides.

3431 The evidence identified has been used to help formulate recommendations on the implementation of
3432 HBM as part of the occupational health surveillance for pesticides in Europe. Some key issues were
3433 considered that would need to be overcome to enable implementation. These included the setting of
3434 priorities for the development of new specific and sensitive biomarkers, the derivation and adoption of
3435 health-based guidance values, development of QA schemes to validate inter-laboratory
3436 measurements, good practice in field work and questionnaire design, extension of the use of
3437 biobanking and the use of HBM for post-approval monitoring of pesticide safety.

3438

DRAFT

3439 **Annex C – Experience of international regulatory agencies in regards to**
 3440 **the integration of epidemiological studies for hazard**
 3441 **identification**

3442

3443 **C.1. WHO-International Agency for Research on Cancer (IARC)**

3444 The IARC Monographs on the Evaluation of Carcinogenic Risks to Humans of the International Agency
 3445 for Research on Cancer (IARC) is a programme established four decades ago to assess environmental
 3446 exposures that can increase the risk of human cancer. These include individual chemicals and
 3447 chemical mixtures, occupational exposures, physical agents, biological agents, and lifestyle factors.

3448 IARC assembles international interdisciplinary Working Groups of scientists to review and assess the
 3449 quality and strength of evidence from scientific publications and perform a hazard evaluation to assess
 3450 the likelihood that the agents of concern pose a cancer risk to humans. In particular, the tasks of IARC
 3451 Working Group Members include the evaluation of the results of epidemiological and other
 3452 experimental studies on cancer, to evaluate data on the mechanisms of carcinogenesis, and to make
 3453 an overall evaluation of the carcinogenicity of the exposure to humans.

3454 The Monographs are widely used and referenced by governments, organizations, and the public
 3455 around the world to set preventive and control public health measures.

3456 The Preamble²¹ to the IARC Monographs explains the scope of the programme, the scientific
 3457 principles and procedures used in developing a Monograph, the types of evidence considered and the
 3458 scientific criteria that guide the evaluations. The scope of the monographs broadened to include not
 3459 only single chemicals but also groups of related chemicals, complex mixtures, occupational exposures,
 3460 physical and biological agents and lifestyle factors. Thus, the title of the monographs reads
 3461 "Evaluation of carcinogenic risks to humans".

3462 Relevant epidemiological studies, cancer bioassays in experimental animals, mechanistic data, as well
 3463 as exposure data are critically reviewed. Only reports that have been published or accepted for
 3464 publication in the openly available scientific literature are included. However, the inclusion of a study
 3465 does not imply acceptance of the adequacy of the study design or of the analysis and interpretation of
 3466 the results. Qualitative aspects of the available studies are carefully scrutinised.

3467 Although the Monographs have emphasized hazard identification, the same epidemiological and
 3468 experimental studies used to evaluate a cancer hazard can also be used to estimate a dose-response
 3469 relationship. A Monograph may undertake to estimate dose-response relationships within the range of
 3470 the available epidemiological data, or it may compare the dose-response information from
 3471 experimental and epidemiological studies.

3472 The structure of a Monograph includes the following sections:

- 3473 1. Exposure data
- 3474 2. Studies of cancer in humans
- 3475 3. Studies of cancer in experimental animals
- 3476 4. Mechanistic and other relevant data
- 3477 5. Summary
- 3478 6. Evaluation and rationale

3479 Human epidemiological data are addressed in point 2, where all pertinent epidemiological studies are
 3480 assessed. Studies of biomarkers are included when they are relevant to an evaluation of
 3481 carcinogenicity to humans.

3482 The IARC evaluation of epidemiological studies includes an assessment of the following criteria: types
 3483 of studies considered (e.g. cohort studies, case-control studies, correlation (or ecological) studies and
 3484 intervention studies, case reports), quality of the study (e.g. bias, confounding, biological variability

²¹ <http://monographs.iarc.fr/ENG/Preamble/CurrentPreamble.pdf>

3485 and the influence of sample size on the precision of estimates of effect), meta analysis and pooled
3486 analyses, temporal effects (e.g. temporal variables, such as age at first exposure, time since first
3487 exposure, duration of exposure, cumulative exposure, peak exposure), use of biomarkers in
3488 epidemiological studies (e.g. evidence of exposure, of early effects, of cellular, tissue or organism
3489 responses), and criteria for causality.

3490 With specific reference to causality a judgement is made concerning the strength of evidence that the
3491 agent in question is carcinogenic to humans. In making its judgement, the Working Group considers
3492 several criteria for causality (Hill, 1965). A strong association (e.g. a large relative risk) is more likely
3493 to indicate causality. However, it is recognized that weak associations may be important when the
3494 disease or exposure is common. Associations that are replicated in several studies of different design
3495 under different exposure conditions are more likely to represent a causal relationship than isolated
3496 observations from single studies. In case of inconsistent results among different investigations,
3497 possible reasons (e.g. differences in exposure) are sought, and high quality studies are given more
3498 weight compared to less methodologically sound ones. Risk increasing with the exposure is considered
3499 to be a strong indication of causality, although the absence of a clear dose-response effect is not
3500 necessarily evidence against a causal relationship. The demonstration of a decline in risk after
3501 cessation of or reduction in exposure also supports a causal interpretation of the findings.
3502 Temporality, precision of estimates of effect, biological plausibility and coherence of the overall data
3503 are considered. Biomarkers information may be used in an assessment of the biological plausibility of
3504 epidemiological observations. Randomized trials showing different rates of cancer among exposed and
3505 unexposed individuals provide particularly strong evidence for causality.

3506 When epidemiological studies show little or no indication of an association between an exposure and
3507 cancer a judgement of lack of carcinogenicity can be made. In those cases, studies are scrutinised to
3508 assess the standards of design and analysis described above, including the possibility of bias,
3509 confounding or misclassification of exposure. In addition, methodologically sound studies should be
3510 consistent with an estimate of effect of unity for any observed level of exposure, provide a pooled
3511 estimate of relative risk near to unity, and have a narrow confidence interval. Moreover, no individual
3512 study nor the pooled results of all the studies should show any increasing risk with increasing level of
3513 exposure. Evidence of lack of carcinogenicity can apply only to the type(s) of cancer studied, to the
3514 dose levels reported, and to the intervals between first exposure and disease onset observed in these
3515 studies. Experience with human cancer indicates that the period from first exposure to the
3516 development of clinical cancer is sometimes longer than 20 years, and latent periods substantially
3517 shorter than 30 years cannot provide evidence for lack of carcinogenicity.

3518 Finally, the body of evidence is considered as a whole, in order to reach an overall evaluation which
3519 summarises the results of epidemiological studies, the target organs or tissues, dose-response
3520 associations, evaluations of the strength of the evidence for human and animal data, and the strength
3521 of the mechanistic evidence.

3522 At the end of the overall evaluation the agent is assigned to one of the following groups: Group1, the
3523 agent is carcinogenic to humans; Group 2A, the agent is probably carcinogenic to humans; Group2B,
3524 the agent is possibly carcinogenic to humans; Group 3, the agent is not classifiable as to its
3525 carcinogenicity to humans; Group 4, the agent is probably not carcinogenic to humans.

3526 The categorization of an agent is a matter of scientific judgement that reflects the strength of the
3527 evidence derived from studies in humans and in experimental animals and from mechanistic and other
3528 relevant data. These categories refer only to the strength of the evidence that an exposure is
3529 carcinogenic and not to the extent of its carcinogenic activity (potency).

3530 For example, Group 1: The agent is carcinogenic to humans. This category is used when there is
3531 sufficient evidence of carcinogenicity in humans. Exceptionally, an agent may be placed in this
3532 category when evidence of carcinogenicity in humans is less than sufficient but there is sufficient
3533 evidence of carcinogenicity in experimental animals and strong evidence in exposed humans that the
3534 agent acts through a relevant mechanism of carcinogenicity.

3535 Although widely accepted internationally, there have been criticisms of the classification of particular
3536 agents in the past, and more recent criticisms have been directed at the general approach adopted by
3537 IARC for such evaluations possibly motivating publication of a rebuttal (Pearce et al, 2015).

3538 **C.2. The experience of US-EPA in regards to the integration of**
 3539 **epidemiological studies in risk assessment**

3540 The US Environmental Protection Agency's Office of Pesticide Programs (OPP) is the governmental
 3541 organization in the U.S. responsible for registering and regulating pesticide products²². As part of this
 3542 activity and prior to any permitted use of a pesticide, OPP evaluates the effects of pesticides on
 3543 human health and the environment. EPA receives extensive hazard and exposure information to
 3544 characterize the risks of pesticide products through the Federal Insecticide, Fungicide, and Rodenticide
 3545 Act (FIFRA) and the Federal Food, Drug, and Cosmetic Act (FFDCA). Information on the toxic effects
 3546 of pesticides is generally derived from studies with laboratory animals conducted by pesticide
 3547 registrants and submitted to EPA.

3548 In the past, information from well-designed epidemiology studies on pesticides has not been typically
 3549 available to inform EPA's evaluations of potential risks that might be associated with exposure to
 3550 pesticides. With an increasing number of epidemiology studies entering the literature which explore
 3551 the putative associations between pesticides exposure and health outcomes, EPA is putting additional
 3552 emphases on this source of information. This is especially true for the wealth of studies deriving from
 3553 the Agricultural Health Study²³ (AHS), a large, well-conducted prospective cohort study following close
 3554 to 90,000 individuals over more than 20 years and from the Children's Environmental Health and
 3555 Disease Prevention Research Centers.²⁴ EPA intends to make increasing use of these epidemiology
 3556 studies in its human health risk assessment with the goal of using such epidemiological information in
 3557 the most scientifically robust and transparent way.

3558 **C.2.1. OPP Epidemiological Framework Document**

3559 As an early first step in this process, EPA-OPP developed a proposed epidemiological framework
 3560 document released as a draft in 2010, "Framework for Incorporating Human Epidemiologic and
 3561 Incident Data in Health Risk Assessment" (US EPA, 2010a). The 2010 draft framework was reviewed
 3562 favourably by the FIFRA Scientific Advisory Panel (SAP) in February, 2010 (US EPA, 2010b). This
 3563 document was recently updated in 2016 to the "Office of Pesticide Programs' Framework Document
 3564 for Incorporating Human Epidemiology and Incident Data in Risk Assessments for Pesticides" (US EPA,
 3565 2016). The revised and updated 2016 Framework document proposes that human information like
 3566 that found in epidemiology studies (in addition to human incident databases, and biomonitoring
 3567 studies) along with experimental toxicological information play a significant role in this new approach
 3568 by providing insight into the effects caused by actual chemical exposures. In addition,
 3569 epidemiologic/molecular epidemiological data can guide additional analyses, identify potentially
 3570 susceptible populations and new health effects and potentially confirming existing toxicological
 3571 observations. The concepts in the 2016 Framework are based on peer-reviewed robust principles and
 3572 tools and rely on many existing guidance documents and frameworks (Table 1, below) for reviewing
 3573 and evaluating epidemiology data. It is also consistent with updates to the World Health
 3574 Organization/International Programme on Chemical Safety mode of action/human relevance
 3575 framework which highlight the importance of problem formulation and the need to integrate
 3576 information at different levels of biological organization (Meek et al, 2014). Furthermore, it is
 3577 consistent with recommendations by the National Academy of Sciences' National Research Council
 3578 (NAS/NRC) in its 2009 report *Science and Decisions* (NRC, 2009) in that the framework describes the
 3579 importance of using problem formulation at the beginning of a complex scientific analysis. The
 3580 problem formulation stage is envisioned as starting with a planning dialogue with risk managers to
 3581 identify goals for the analysis and possible risk management strategies. This initial dialogue provides
 3582 the regulatory context for the scientific analysis and helps define the scope of such an analysis. The
 3583 problem formulation stage also involves consideration of the available information regarding the
 3584 pesticide use/usage, toxicological effects of concern, exposure pathways, and duration along with key
 3585 gaps in data or scientific information.
 3586

²² See <https://www.epa.gov/pesticide-science-and-assessing-pesticide-risks> for general information on pesticide science and assessing pesticide risks.

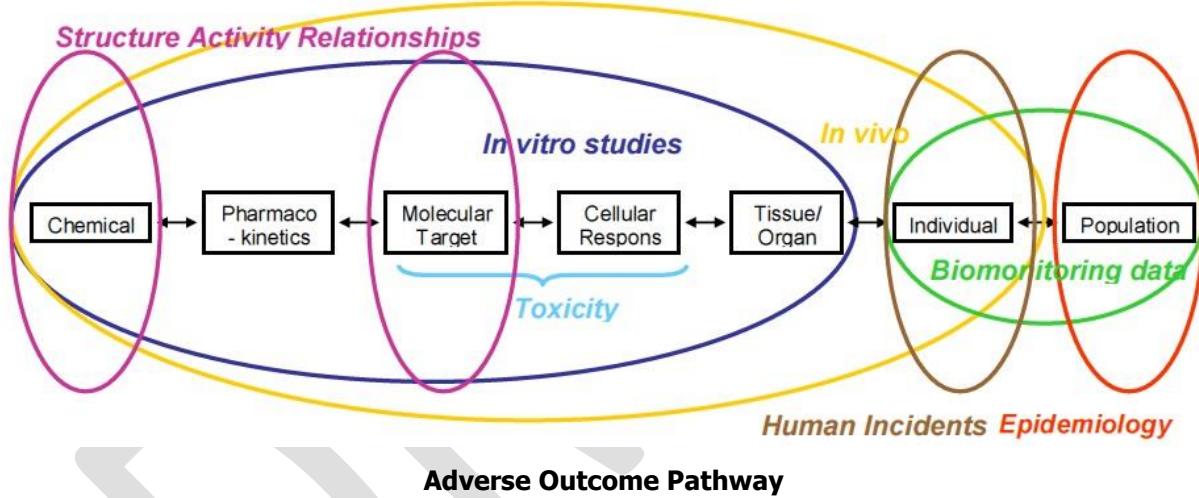
²³ See <https://aghealth.nih.gov/>

²⁴ See <https://www.epa.gov/research-grants/niehsepa-childrens-environmental-health-and-disease-prevention-research-centers>

3587
3588**Table 11:** Key guidance documents and frameworks used by OPP (from US EPA, 2016)

	1983	Risk Assessment in the Federal Government. Managing the Process
NAS	1994	Science and Judgement
	2007	Toxicity testing in the 21 st Century
	2009	Science and Decisions: Advancing Risk Assessment
WHO/IPCS	2001-2007	Mode of Action / Human Relevance Framework
	2005	Chemical Specific Adjustment Factors (CSAF)
	2014	New Development in the evolution and application of the WHO/IPCS framework on mode of action/species concordance analysis
EPA	1991-2005	Risk Assessment Forum Guidance for Risk Assessment (e.g. guidelines for carcinogen, reproductive, developmental, neurotoxicity, ecological, and exposure assessment, guidance for benchmark dose modelling, review of reference dose and reference concentration processes) http://www.epa.gov/risk_assessment/guidance.htm
	2000	Science Policy Handbook on Risk Characterisation http://nepis.epa.gov/Exe/ZyPURL.cgi?Dockey=40000006.txt
	2006	Approaches for the Application of Physiologically-Based Pharmacokinetic (PBPK) Models and Supporting Data for Risk Assessment
	2014	Framework for Human Health Risk Assessment to Inform Decision-making
	2014	Guidance for Applying Quantitative Data to Develop Data-Derived Extrapolation Factors for Inter-species and Intra-species Extrapolation
	2001	Aggregate Risk Assessment https://www.epa.gov/sites/production/files/2015-07/documents/aggregate.pdf
OPP	2001 and 2002	Cumulative Risk Assessment http://www.epa.gov/nser/cra/
OECD	2013	Organization for Economic Co-operation and Development Guidance Document on Developing and Assessing Adverse Outcome Pathways

3589


3590 Briefly, this EPA Framework document describes the scientific considerations that the Agency will
 3591 weigh in evaluating how such epidemiological studies and scientific information can be integrated into
 3592 risk assessments of pesticide chemicals and also in providing the foundation for evaluating multiple
 3593 lines of scientific evidence in the context of the understanding of the adverse outcome pathway (or
 3594 mode of action). The framework relies on and espouses standard practices in epidemiology,
 3595 toxicology, and risk assessment, but allows for the flexibility to incorporate information from new or
 3596 additional sources. One of the key components of the Agency's framework is the use the mode of
 3597 action framework/adverse outcome pathway concept as a tool for organizing and integrating
 3598 information from different sources to inform the causal nature of links observed in both experimental
 3599 and observational studies. Mode of action (Boobis et al., 2008; Simon et al, 2014; Meek et al, 2014)
 3600 and adverse outcome pathway (Ankley et al., 2010) provide important concepts in the integrative
 3601 analysis discussed in the Framework document. Both a mode of action (MoA) and an adverse outcome
 3602 pathway are based on the premise that an adverse effect caused by exposure to a compound can be
 3603 described by a series of causally linked biological key events that result in an adverse human health
 3604 outcome, and have as their goal a determination of how exposure to environmental agents can
 3605 perturb these pathways, thereby causing a cascade of subsequent key events leading to adverse
 3606 health effects.

3607 A number of concepts in the Framework are taken from two reports from the National Academies,
 3608 *Science and Decisions: Advancing Risk Assessment* (NAS 2009) and *Toxicity Testing on the 21st*

3609 *Century* (NAS 2007). These two NRC reports advocate substantial changes in how toxicity testing is
 3610 performed, how such data are interpreted, and ultimately how regulatory decisions are made. In
 3611 particular, the 2007 report on 21st century toxicity testing advocates a decided shift away from the
 3612 current focus of using apical toxicity endpoints to using toxicity pathways to better inform toxicity
 3613 testing, risk assessment, and decision making.

3614 The MoA framework begins with the identification of the series of key events that are along the causal
 3615 path and established on weight of evidence using criteria based on those described by Bradford Hill
 3616 taking into account factors such as dose-response, temporal concordance, biological plausibility,
 3617 coherence and consistency. Specifically, the modified Bradford Hill Criteria (Hill, 1965) are used to
 3618 evaluate the experimental support that establishes key events within a mode of action or an adverse
 3619 outcome pathway, and explicitly considers such concepts as strength, consistency, dose response,
 3620 temporal concordance, and biological plausibility in a weight of evidence analysis. Using this analytic
 3621 approach, epidemiologic findings can be evaluated in the context of other human information and
 3622 experimental studies to evaluate consistency, reproducibility, and biological plausibility of reported
 3623 outcomes and to identify areas of uncertainty and future research. Figure 7 below (adapted from NRC,
 3624 2007) suggests how different types of information relate to each other across multiple levels of
 3625 biological organization (ranging from the molecular level up to population-based surveillance) and is
 3626 based on the rapidly evolving scientific understanding of how genes, proteins, and small molecules
 3627 interact to form molecular pathways that maintain cell function in humans.

3628

3629

3630

3631 Greater toxicological
 3632 understanding

3633

3634

3635

Figure 7: Source to Outcome Pathway: Chemical effects across levels of biological organization (adapted from NRC, 2007).

3636

3637

C.2.2. Systematic reviews. Fit for purpose

3638 The National Academies' National Research Council (NRC) in its review of EPA's IRIS program defines
 3639 systematic review as "a scientific investigation that focuses on a specific question and uses explicit,
 3640 pre-specified scientific methods to identify, select, assess, and summarize the findings of similar but
 3641 separate studies".²⁵ In recent years, the NRC has encouraged the agency to move towards systematic
 3642 review processes to enhance the transparency of scientific literature reviews that support chemical-
 3643 specific risk assessments to inform regulatory decision making.²⁶

²⁵ <http://dels.nas.edu/Report/Review-Integrated-Risk/18764>

²⁶ NRC 2011. "Review of the Environmental Protection Agency's Draft IRIS Assessment of Formaldehyde" available for download at <https://www.nap.edu/catalog/13142/review-of-the-environmental-protection-agencys-draft-iris-assessment-of->

3644 Consistent with NRC's recommendations, EPA-OPP employs fit-for-purpose systematic reviews that
 3645 rely on transparent methods for collecting, evaluating and integrating the scientific data supporting its
 3646 decisions. As such, the complexity and scope of each systematic review will vary among risk
 3647 assessments. EPA-OPP starts with scoping/problem formulation followed by data collection, data
 3648 evaluation, data integration, and summary findings with critical data gaps identified.

3649 Systematic reviews often use statistical (e.g., meta-analysis) and other quantitative techniques to
 3650 combine results of the eligible studies, and can use a semi-quantitative scoring system to evaluate the
 3651 levels of evidence available or the degree of bias that might be present. For EPA's Office of Pesticide
 3652 Programs, such a Tier III (systematic review) assessment conducted as part of its regulatory review
 3653 process would involve review of the pesticide chemical undergoing review and a specific associated
 3654 suspected health outcome (as suggested by the initial Tier II assessment)

3655 A number of federal and other organizations in the U.S. are evaluating or have issued guidance
 3656 documents for methods to conduct such systematic reviews and a number of frameworks have been
 3657 developed. These include the EPA IRIS programs' approach²⁷, the National Toxicology Programs'
 3658 Office of Health Assessment and Translation (NTP/OHAT) approach²⁸, the Cochran Collaboration's
 3659 approach²⁹, the Campbell Collaboration, and the Navigation Guide³⁰, with this latter described in a
 3660 series of articles in the journal *Environmental Health Perspectives*. Each broadly shares four defined
 3661 steps: data collection, data evaluation, data integration, and summary/update. For example, The
 3662 Cochran Collaboration in its *Cochrane Handbook for Systematic Reviews of Interventions* for
 3663 evidence-based medicine lists a number of the important key characteristics of a systematic review to
 3664 be (from US EPA, 2016):

- 3665 • a clearly stated set of objectives with pre-defined eligibility criteria for studies;
- 3666 • an explicit, reproducible methodology;
- 3667 • a systematic search that attempts to identify all studies that would meet the eligibility
 3668 criteria;
- 3669 • an assessment of the validity of the findings from the identified studies;
- 3670 • a systematic presentation and synthesis of the characteristics and findings of the included
 3671 studies

3672 As described and elaborated in the following sections of this Annex, OPP's approach to review and
 3673 integration of epidemiologic data into pesticide risk assessments takes a tiered approach which each
 3674 tier appropriately fit-for-purpose in the sense that it considers "the usefulness of the assessment for
 3675 its intended purpose, to ensure that the assessment produced is suitable and useful for informing the
 3676 needed decisions (US EPA, 2012) and that required resources are matched or balanced against any
 3677 projected or anticipated information gain from further more in-depth research. A Tier 1 assessment is
 3678 either a scoping exercise or an update to a scoping exercise in which a research and evaluation is
 3679 limited to studies derived from the AHS. A Tier II assessment involves a broader search of the
 3680 epidemiological literature, comprehensive data collection, and a deeper, more involved data evaluation
 3681 and is more extensive but is generally limited in scope to epidemiology and stops short of multi-
 3682 disciplinary integration across epidemiology, human poisoning events, animal toxicology and adverse
 3683 outcome pathways. A Tier III assessment is a complete systematic review with data integration and
 3684 more extensive data evaluation and extraction and may involve more sophisticated epidemiologic
 3685 methods such as meta-analysis and meta-regression, causal inference/causal diagrams, and
 3686 quantitative bias and sensitivity analyses, among others.

3687

²⁷ formaldehyde; See also NRC 2014. "Review of EPA's Integrated Risk Information System (IRIS) Process" available for download at <https://www.nap.edu/catalog/18764/review-of-epas-integrated-risk-information-system-iris-process>

²⁸ See <https://www.epa.gov/iris/advancing-systematic-review-workshop-december-2015>

²⁹ See <http://ntp.niehs.nih.gov/pubhealth/hat/noms/index-2.html> and NTP's "Handbook for Conducting a Literature-based Assessment Using OHAT Approach for Systematic Review and Evidence Integration" at https://ntp.niehs.nih.gov/ntp/ohat/pubs/handbookjan2015_508.pdf

³⁰ See <http://handbook.cochrane.org/>

³⁰ See <http://ehp.niehs.nih.gov/1307175/>

3688 **C.2.3. Current and Anticipated Future EPA Epidemiology Review**
 3689 **Practices**

3690

3691 **C.2.3.1. Tier I (Scoping & Problem Formulation) and Tier II (more extensive**
 3692 **literature search)**

3693 Currently at EPA, epidemiology review of pesticides is conducted in a tiered process as the risk
 3694 assessment develops, as briefly described above. The purpose of this early Tier I/scoping
 3695 epidemiology report is to ensure that highly-relevant epidemiology studies are considered in the
 3696 problem formulation/scoping phase of the process and, if appropriate, fully reviewed in the (later) risk
 3697 assessment phase of the process. In Tier I, EPA-OPP focuses on well-known high quality cohort
 3698 studies which focus on pesticide issues, particularly the Agricultural Health Study (AHS). The AHS is a
 3699 federally funded study that evaluates associations between pesticide exposures and cancer and other
 3700 health outcomes and represents a collaborative effort between the US National Cancer Institute (NCI),
 3701 the National Institute of Environmental Health Sciences (NIEHS), CDC's National Institute of
 3702 Occupational Safety and Health (NIOSH), and the US EPA. The AHS participant cohort includes more
 3703 than 89,000 licensed commercial and private pesticide applicators and their spouses from Iowa and
 3704 North Carolina. Enrolment occurred from 1993–1997, and data collection is ongoing. The AHS
 3705 maintains on its website a list of publications associated with and using the AHS cohort (see
 3706 <https://aghealth.nih.gov/news/publications.html>)

3707 If the pesticide of interest has been investigated as part of the AHS (www.aghealth.org), a preliminary
 3708 (Tier I/scoping) review of these studies is performed early on in the evaluation as the docket (or
 3709 "dossier") is opened as part of EPA's "Scoping" analysis. In this early Tier I/scoping phase, basic
 3710 epidemiological findings and conclusions from the Agricultural Health Study are described in a Tier
 3711 I/scoping document which is designed to simply summarize in brief form the pertinent conclusions of
 3712 various AHS study authors if there are AHS findings relevant to a the pesticide undergoing review; this
 3713 Tier I scoping review is not designed to offer detailed content, critical evaluation, or evidence
 3714 synthesis, and may only touch on summarized highlights of the relevant AHS -related journal articles.
 3715 If other high-quality non-AHS studies are available like those from the Children's Environmental Health
 3716 and Disease Prevention Research Centres, these may be similarly summarized in this Tier I/scoping
 3717 epidemiological review as well. Again, no critique or synthesis of the literature is offered. In some
 3718 cases, the Tier I/scoping review may conclude that no additional epidemiological review of available
 3719 evidence is further required. Alternatively, it may recommend that further review is necessary as part
 3720 of a more involved Tier I/update or Tier II assessment.

3721 A Tier I/update assessment is generally completed 1½ to 3 years following the completion of the Tier
 3722 I/scoping assessment and is issued –like the Tier II discussed below– along with and as part of the
 3723 Draft Human Health Risk Assessment. Tier I/update assessments perform a thorough review of the
 3724 available literature in the AHS. A Tier I/update assessment reviews, summarizes, and evaluates in a
 3725 qualitative, narrative summary (including reported measures of association) the applicable studies that
 3726 are listed on the AHS website³¹. Reviews are generally in the form of a narrative, focusing on the key
 3727 aspects of studies and their conclusions and include EPA OPP commentary along with summary EPA
 3728 OPP conclusions and recommendations for further study, if necessary.

3729

3730 **C.2.3.2. Tier II (more extensive literature search)**

3731 A Tier II assessment is a more complete review of the available epidemiological evidence and is
 3732 generally done only if the earlier Tier I/scoping document suggests a potential for a specific concern
 3733 (e.g., a specific and credible exposure-disease hypothesis has been advanced and needs to be further
 3734 evaluated as part of a more detailed assessment). A Tier II epidemiology assessment –similar to the
 3735 Tier I/update– is generally completed 1½ to 3 years following the completion of the Tier I assessment
 3736 and is issued along with and as part of OPP's Draft Human Health Risk Assessment; the Tier II

³¹ <https://aghealth.nih.gov/news/publications.html>

3737 evaluation is considered to be a qualitative narrative review that incorporates certain elements of a
3738 systematic review. For example, a Tier II assessment will include a thorough and complete literature
3739 search that is broader than that of the Tier I/update, including not only the AHS database, but also
3740 such databases as PubMed, Web of Science, Google Scholar, and Science Direct, and sometimes
3741 others using standardized, transparent, and reproducible query language for which specialized
3742 professional library and information science support is obtained.³² Evidence synthesis by EPA –albeit
3743 generally in a qualitative and narrative form– also occurs in a Tier II assessment, and overall
3744 conclusions regarding the body of epidemiological literature are made. In addition, the Tier II
3745 assessment may indicate areas in which further epidemiological data and studies with respect to
3746 specific hypothesized exposure-disease outcome is of interest for future work. The Tier II assessment
3747 document will not generally attempt to integrate the epidemiological findings with other lines of
3748 evidence such as that from animal toxicology studies or information from MOAs/AOPs which may be
3749 done (separately) to some degree as part of the risk assessment. To the extent that the Tier II
3750 assessment identifies specific health outcomes putatively associated with a given pesticide, further
3751 investigation and integration across disciplines can subsequently be done as part of a more
3752 comprehensive Tier III assessment (see below).

3753

3754 **C.2.3.3. Tier III (Full Systematic Review with Data Integration)**

3755 While a Tier II assessment examines a wide range of health outcomes appearing in the
3756 epidemiological literature that are hypothesized to be associated with a given pesticide chemical, a
3757 Tier III assessment might encompass a broader (multi-disciplinary) and sometimes more
3758 quantitative/statistical evaluation of at the epidemiological evidence for the association of interest, and
3759 it attempts to more formally integrate this with animal toxicology and MOA/AOP information. Such a
3760 Tier III assessment could take the form of a systematic review of the epidemiological literature which
3761 would be performed together with evaluation of toxicity and adverse outcome pathways. For pesticide
3762 chemicals from AHS, a Tier III analysis would also ideally incorporate the results of evaluations from
3763 other high-quality epidemiological investigations and incorporate “Weight of the Evidence” to a greater
3764 degree to reflect a more diverse set of information sources. Results from these investigations would
3765 be used to evaluate replication and consistency with results from the AHS. Early AHS findings in a
3766 number of cases were based on only a small number of participants that had developed specific
3767 outcomes or a relatively few number of years over which the participants have been followed. As the
3768 AHS cohort ages, the release of second evaluations of some chemicals from AHS will be based on
3769 additional years of follow-up and a greater number of cases that are expected to provide a more
3770 robust basis for interpreting positive and negative associations between exposure and outcome. In
3771 addition, the AHS is increasingly generating a substantial amount of biochemical, genetic marker, and
3772 molecular data to help interpret results from the epidemiological studies. Such results may further
3773 clarify AHS findings, provide evidence for a biological basis linking exposures to outcomes, or suggest
3774 additional laboratory and observational research that might strengthen evidence for mechanisms
3775 underlying causal pathways. In addition, Tier III analyses also may take advantage of efforts to bring
3776 together information and results from international cohort studies in the International Agricultural
3777 Cohort Consortium (AgriCOH) in which AHS is a member. AgriCOH is actively working to identify
3778 opportunities and approaches for pooling data across studies, and the availability of these other cohort
3779 data should aid in assessing reproducibility and replication of exposure-outcome relationships as EPA
3780 considers, evaluates, and weighs the epidemiological data.

3781

³² Additional searches conducted under the rubric of epidemiology and biomonitoring/exposure could be done using the NHANES Exposure Reports (<http://www.cdc.gov/exposurereport/>) ; TOXNET (<http://toxnet.nlm.nih.gov/>); CDC NBP Biomonitoring Summaries (http://www.cdc.gov/biomonitoring/biomonitoring_summaries.html); ICICADS (<http://www.inchem.org/pages/cicads.html>); ATSDR Toxicological Profiles (<http://www.atsdr.cdc.gov/toxprofiles/index.asp>); IARC Monographs (<http://monographs.iarc.fr/ENG/Monographs/PDFs/> ; EFSA's Draft Assessment Report Database (<http://dar.efsa.europa.eu/dar-web/provision>); and Biomonitoring Equivalents (<https://blog.americanchemistry.com/2014/07/biomonitoring-equivalents-a-valuable-scientific-tool-for-making-better-chemical-safety-decisions/>

3782 **C.2.4. OPP's open literature searching strategies and evaluation of**
 3783 **study quality**

3784 An important aspect of the systematic review approach is the thorough, systematic, and reproducible
 3785 searching of the open epidemiological literature such that much of the literature that meets the
 3786 established eligibility criteria can be located.³³ OPP uses specific databases as part of their literature
 3787 search and has specific guidance on their conduct (for example, OPP's open literature search guidance
 3788 for human health risk assessments³⁴). Evaluation of all relevant literature, application of a
 3789 standardized approach for grading the strength of evidence, and clear and consistent summative
 3790 language will typically be important components (NRC, 2011). In addition, a high quality exposure
 3791 assessment is particularly important for environmental and occupational epidemiology studies.

3792 A second important component of the above systematic review approach is the assessment of the
 3793 validity of the findings from the identified studies. Generally speaking, the quality of epidemiologic
 3794 research, sufficiency of documentation of the study (study design and results), and relevance to risk
 3795 assessment will be considered when evaluating epidemiology studies from the open literature for use
 3796 in agency risk assessments. When considering individual study quality, various aspects of the design,
 3797 conduct, analysis and interpretation of the epidemiology studies are important. These include (from
 3798 US EPA, 2016):

- 3799 1. Clear articulation of the hypothesis, or a clear articulation of the research objectives if the
 3800 study is hypothesis-generating in nature;
- 3801 2. Adequate assessment of exposure for the relevant critical windows of the health effects, the
 3802 range of exposure of interest for the risk assessment target population, and the availability of
 3803 a dose/exposure-response trend from the study, among other qualities of exposure
 3804 assessment;
- 3805 3. Reasonably valid and reliable outcome ascertainment (the correct identification of those with
 3806 and without the health effect in the study population);
- 3807 4. Appropriate inclusion and exclusion criteria that result in a sample population representative of
 3808 the target population, and absent systematic bias;
- 3809 5. Adequate measurement and analysis of potentially confounding variables, including
 3810 measurement or discussion of the role of multiple pesticide exposure, or mixtures exposure in
 3811 the risk estimates observed.
- 3812 6. Overall characterization of potential systematic biases in the study including errors in the
 3813 selection of participation and in the collection of information, including performance of
 3814 sensitivity analysis to determine the potential influence of systematic error on the risk
 3815 estimates presented;
- 3816 7. Adequate statistical power for the exposure-outcome assessment, or evaluation of the impact
 3817 of statistical power of the study if under-powered to observed effects, and appropriate
 3818 discussion and/or presentation of power estimates; and
- 3819 8. Use of appropriate statistical modelling techniques, given the study design and the nature of
 3820 the outcomes under study.

3821

3822 **References**

3823 Ankley GT, Bennett RS, Erickson RJ, Hoff DJ, Hornung MW, Johnson RD, Mount DR, Nichols JW,
 3824 Russom CL, Schmieder PK, Serrano JA, Tietge JE, Villeneuve DL. Adverse outcome pathways: a
 3825 conceptual framework to support ecotoxicology research and risk assessment. Environ Toxicol Chem
 3826 2010; 29: 730–741

³³ Some advocate looking at the grey or unpublished literature to lessen potential issues associated with publication bias.

³⁴ See <https://www.epa.gov/pesticide-science-and-assessing-pesticide-risks/guidance-identifying-selecting-and-evaluating-open> and specifically p. 10 of the document "Guidance for Considering and Using Open Literature Toxicity Studies to Support Human Health Risk Assessment" dated 28.8.2012 at <https://www.epa.gov/sites/production/files/2015-07/documents/lit-studies.pdf> for Special Notes on Epidemiologic Data.

3827 Boobis AR, Cohen SM, Dellarco V, McGregor D, Meek ME, Vickers C, Willcocks D, Farland W. IPCS
3828 framework for analyzing the relevance of a cancer mode of action for humans. *Crit Rev Toxicol* 2006;
3829 36: 781–792

3830 Boobis AR, Doe JE, Heinrich-Hirsch B, Meek ME, Munn S, Ruchirawat M, Schlatter J, Seed J, Vickers C.
3831 IPCS framework for analyzing the relevance of a noncancer mode of action for humans. *Crit Rev
3832 Toxicol* 2008; 38: 87–96

3833 Hill AB. The environment and disease: association or causation? *Proc. R. Soc. Med* 1965; 58: 295–300

3834 Meek ME, Boobis A, Cote I, Dellarco V, Fotakis G, Munn S, Seed J, Vickers C. New developments in the
3835 evolution and application of the WHO/IPCS framework on mode of action/species concordance
3836 analysis. *J Applied Toxicology* 2014; 34: 595–606

3837 Meek ME, Palermo CM, Bachman AN, North CM, Lewis RJ. Mode of action human relevance (species
3838 concordance) framework: Evolution of the Bradford Hill considerations and comparative analysis of
3839 weight of evidence. *J Applied Toxicology* 2014; 34: 1–18

3840 NAS (National Academy of Sciences). *Toxicity Testing on the 21st Century: A Vision and a Strategy*.
3841 Board on Environmental Studies and Toxicology. 2007. Available at:
3842 <https://www.nap.edu/catalog/11970/toxicity-testing-in-the-21st-century-a-vision-and-a>

3843 NAS (National Academy of Sciences). *Science and Decisions: Advancing Risk Assessment*. Board on
3844 Environmental Studies and Toxicology. 2009. Available at: <http://dels.nas.edu/Report/Science-Decisions-Advancing-Risk-Assessment/12209>

3846 NAS (National Academy of Sciences). *Review of the Environmental Protection Agency's Draft IRIS
3847 Assessment of Formaldehyde*. Board on Environmental Studies and Toxicology. 2011. Available at:
3848 <https://www.nap.edu/download/13142>

3849 Simon TW, Simons SS, Preston RJ, Boobis AR, Cohen SM, Doerrer NG, Crisp PF, McMullin TS,
3850 McQueen CA, Rowlands JC. 2014. The use of mode of action information in risk assessment:
3851 Quantitative key events/dose response framework for modelling the dose-response for key events.
3852 *Crit Rev Toxicol* 2014; 44 (Suppl 3): 17–43

3853 US-EPA (Environmental Protection Agency). *Draft Framework for Incorporating Human Epidemiologic
3854 and Incident Data in Health Risk Assessment*. Presented to FIFRA Scientific Advisory Panel on
3855 February 2–4 2010a. January 7. Available at <https://www.regulations.gov/document?D=EPA-HQ-OPP-2009-0851-0004>.

3857 US-EPA (Environmental Protection Agency). *Transmittal of Meeting Minutes of the FIFRA Scientific
3858 Advisory Panel Meeting on the Draft Framework and Case Studies on Atrazine, Human Incidents, and
3859 the Agricultural Health Study: Incorporation of Epidemiology and Human Incident Data into Human
3860 Health Risk Assessment*. MEMORANDUM dated 22 April, 2010b. SAP Minutes No. 2010-03. Available
3861 at: <https://www.regulations.gov/document?D=EPA-HQ-OPP-2009-0851-0059>

3862 US-EPA (Environmental Protection Agency). *Office of the Science Advisor. Risk Assessment Forum.
3863 Draft Framework for Human Health Risk Assessment to Inform Decision Making*. July 12, 2012.

3864 US-EPA (Environmental Protection Agency). *Office of Pesticide Programs' Framework for Incorporating
3865 Human Epidemiologic and Incident Data in Risk Assessments for Pesticides*. December 28, 2016.
3866 Available at: <https://www3.epa.gov/pesticides/EPA-HQ-OPP-2008-0316-DRAFT-0075.pdf>

3867

3868 Annex D – Effect size magnification/inflation

3869

3870 As described in the main text of this document a potential source of bias may result from small sample
3871 sizes and the consequent low statistical power. This lesser known type of bias is "effect size
3872 magnification" which can result from low powered studies. While it is generally widely-known that
3873 small, low-powered studies can result in false negatives since the study power is inadequate to reliably
3874 detect a meaningful effect size, it is less well known that these studies can result in inflation of effect
3875 sizes if those estimated effects pass a statistical threshold (e.g., the common $p < 0.05$ threshold used
3876 to judge statistical significance). This effect –variously known as effect size magnification, the
3877 "winners curse", truth inflation, or effect size inflation– is a phenomenon by which a "discovered"
3878 association (i.e., one that has passed a given threshold of statistical significance to be judged
3879 meaningful) from a study with sub-optimal power to make that discovery will produce an observed
3880 effect size that is artificially –and systematically– inflated. This is because smaller, low-powered
3881 studies are more likely to be affected by random variation among individuals than larger ones.

3882 As an example of this "effect size magnification" concept and why it may come about, it is useful to
3883 imagine a trial run thousands of times with variable sample sizes. In this case, there will be a broad
3884 distribution of observed effect sizes. While the median of these estimated effect sizes will be close to
3885 the true effect size, the smaller trials will necessarily systematically produce a wider variation in
3886 observed effect sizes than larger trials. However, in small and low powered studies, only a small
3887 proportion of observed effects will pass any given (high) statistical threshold of significance and these
3888 will be only the ones with the greatest of effect sizes. Thus: when these smaller, low powered studies
3889 with greater random variation do indeed find a significance-triggered association as a result of passing
3890 a given statistical threshold, they are more likely to overestimate the size of that effect. What this
3891 means is that research findings of small and significant studies are biased in favour of finding inflated
3892 effects. In general, the lower the background (or control or natural) rate, the lower the effect size of
3893 interest, and the lower the sample size of the study, the lower is the power of the study and the
3894 greater is the tendency toward and magnitude of inflated effect sizes.

3895 More specifically, the degree of effect size magnification in any study depends, in part, on the power
3896 of the study, and low powered studies tend to produce greater degrees of effect size magnification
3897 than higher powered studies. This annex examines this phenomenon in a quantitative way using
3898 simulations. The annex uses two example published studies and simulations of hundreds of trials to
3899 evaluate the degree to which effect size magnification may play a role in producing biased effect sizes
3900 (such as odds ratios, rate ratios, or relative risks) due to small study size and low power. If the study
3901 design has low power to detect a difference if a difference actually exists (e.g., less than 50-60%
3902 power), there is a non-trivial risk that any observed statistically significant effect size will be inflated,
3903 perhaps to a substantial degree.

3904 In order to determine the potential degree of effect size magnification for any given study that
3905 produces a statistically significant result, the reviewer must perform various power calculations. More
3906 specifically: when the association between a chemical exposure and a disease is found to be
3907 statistically significant, a power analysis can be done to determine the degree to which the
3908 statistically-significant effect size estimate (e.g., odds ratio (OR) or relative risk (RR)) may be
3909 artificially inflated.

3910 In order to perform the requisite power calculation, the reviewer must know or obtain four values:

- 3911 1. the number of subjects in non-exposed group;
- 3912 2. the number of subjects in the exposed group;
- 3913 3. the number of diseased individuals (or cases) in the non-exposed group; and
- 3914 4. a target value of interest to detect a difference of a given (pre-determined) size in a
3915 comparison of two groups (e.g., exposed vs. not exposed)

3916

3917 The first three listed values are provided in or must be obtained from the publication while the target
 3918 value of interest (typically an OR or RR in epidemiology studies) is selected by the risk managers (and
 3919 is ultimately a policy decision).³⁵

3920 This Annex provides two examples of the effect size magnification issue. The first example uses data
 3921 from Agricultural Health Study prospective cohort publication examining diazinon exposure and lung
 3922 cancer and illustrates the effect size magnification issue for a calculated relative risk (RR). The second
 3923 example uses ever-never data from a case control study studying malathion exposure and Non-
 3924 Hodgkin's Lymphoma (NHL) and illustrates the effect size magnification concept from the point of view
 3925 of an estimated odds ratio (OR).

3926

3927 An Example Illustrating Effect Size Magnification and Relative Risk (Jones et al. (2015))

3928 The power associated with a comparison between those that are not exposed to diazinon to those that
 3929 are exposed at the highest tertile (T) can be computed from the information provided in the AHS
 3930 study publication *"Incidence of solid tumours among pesticide applicators exposed to the*
 3931 *organophosphate insecticide diazinon in the Agricultural Health Study - an updated analysis"* by Jones
 3932 et al. (2015) for lung cancer. The number of subjects at each exposure level was provided in the
 3933 article (non-exposed group: N= 17710, and T(ertile)1, T2, and T3 were categorized based on
 3934 exposure distribution; specifically: N of each tertile= (2350+2770)/3=1710 from the publication's
 3935 Table 1 where: a) the value of 2350 represents the numbers in the lowest exposed /level/ and b) the
 3936 value of 2770 represents the numbers of the two highest exposed levels when the exposed subjects
 3937 were dichotomously categorized. Since we have i) the number of subjects in the reference non-
 3938 exposed group = 17,710; ii) the number of subjects in each of the exposed groups (tertiles) = 1710;
 3939 and iii) the number of diseased individuals (lung cancer) in the reference non-exposed group = 199
 3940 (from Table 3 of the cited publication), we can calculate the power of the comparisons between T1 vs.
 3941 non-exposed, T2 vs. non-exposed, and T3 vs. non-exposed that were presented in the article, given
 3942 the assumption that any true Rate Ratio = 1.2, 1.5, or 2.0 etc.

3943 Here, we are interested in evaluating the power associated with the estimated background rate of
 3944 199/17710 (=0.011237), and –as a form of sensitivity analysis– one half of this background rate (or
 3945 0.005617), and twice this rate (0.022473) for detecting (admittedly arbitrary) relative rates of
 3946 (possible regulatory interest of) 1.2, 1.5, 2.0, and 3.0 among the subjects in each tertile of the
 3947 diazinon exposed individuals. This analysis was performed using Stata statistical software and is
 3948 shown below in both tabular and graphical format for true Rate Ratios of 1.2, 1.5, 2.0, and 3.0 for
 3949 1/2x-, 1x- (shown below in bold/shaded) and 2x- the (observed) background rate of 199 diseased
 3950 individuals/17,710 persons³⁶.

³⁵ This target value is an effect size of interest, often expressed as either a relative risk (for cohort studies) or an odds rate (for case control studies). That is, the target value is generally an OR or RR of a given magnitude that the risk manager desires to detect with a given degree of confidence. The higher the OR or RR, the greater the magnitude of the estimated association between exposure and the health outcome. While there are not strict guidelines about what constitutes a "weak" association vs. a "strong" one –and it undoubtedly can be very context-dependent– values less than or equal to about 1 (or sometimes ≤ 1.2) are considered to be "null" or "essentially null" (this ignores the possibility of a protective effect which in some contexts –for example, vaccination efficacy– may be appropriate to consider). Values less than 2 or 3 are often considered by some as "weak". Values greater than 2 (or 3) and up to about 5 might be considered "moderate", and values greater than 5 are considered by some to be "large". Monson (1990) describes as a guide to the strength of association a rate ratio of 1.0 to 1.2 as "None", of from 1.2 to 1.5 as "Weak", of from 1.5 to 3.0 as "Moderate", and of 3.0 to 10.0 as "Strong". Other authors use Cohen's criteria to describe ORs of 1.5 as "small" and 5 as "large", with 3.5 as "medium" in epidemiology (Cohen and Chen, 2010). Others describe 1.5 as "small", 2.5 as "medium" or "moderate", 4 as "large" or "strong" and 10 as "very large" or "very strong" (Rosenthal, 1996).

Taube (1995) discusses some of the limitations of environmental epidemiology in detecting weak associations (also see invited commentary illustrating counter-arguments in Wynder (1996)). It should be recognized that none of the demarcation lines are "hard" and there can be legitimate disagreements about where these are drawn and how these are considered and interpreted. Regardless, these can be very much context-dependent and the above demarcations should not be regarded as in any way official or definitive.

³⁶ The RRs of 1.2, 1.5, 2.0, and 3.0 were selected somewhat arbitrarily to illustrate the power associated with a series of relative risks that might be of interest to the risk manager/decision-maker. The values of RR or OR = 2.0 and 3.0 are considered by some to be a demarcation between weaker effect sizes and stronger effect sizes. The RR value of 1.2 is what some consider "near to or essentially null", and the RR of 1.5 is an intermediate value between these.

In determining whether the epidemiological evidence suggests a relationship between an exposure and a health outcome, a risk manager might consider the "essentially null" RR of 1.2 from a robust study with acceptable statistical power (generally

3951

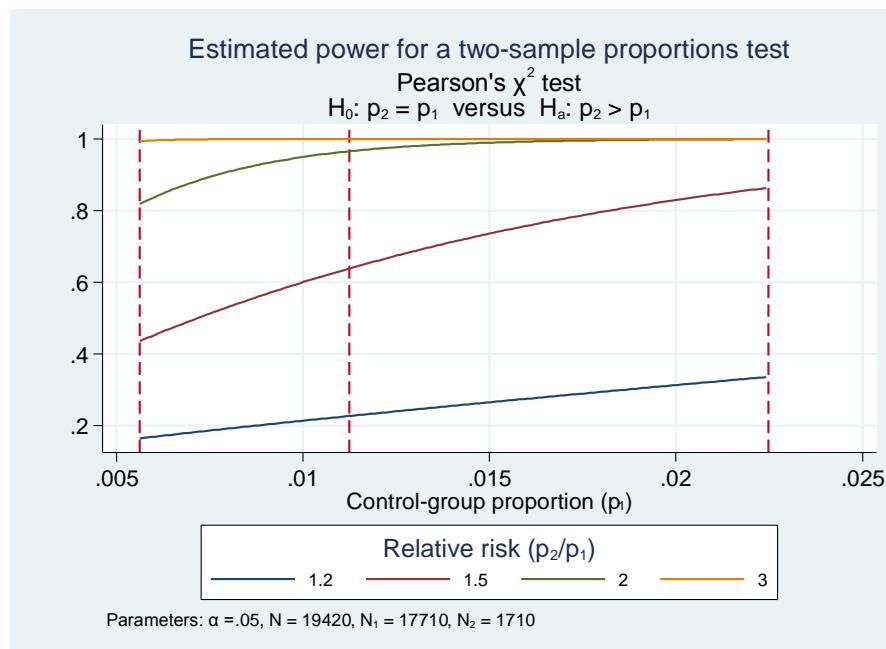
Results of Power Analysis for a one-sided, two-sample proportions test (alpha = 0.05)^a					
N_{control}	N_{exposed}	Proportion control^b	Proportion exposed	Relative Risk	Power
17710	1710	.00562	.00674	1.2	.1634
17710	1710	.00562	.00843	1.5	.4353
17710	1710	.00562	.01124	2.0	.8182
17710	1710	.00562	.01685	3.0	.9935
17710	1710	.01124	.01348	1.2	.2259
17710	1710	.01124	.01685	1.5	.6379
17710	1710	.01124	.02247	2.0	.9652
17710	1710	.01124	.03371	3.0	1
17710	1710	.02247	.02697	1.2	.3353
17710	1710	.02247	.03371	1.5	.8632
17710	1710	.02247	.04495	2.0	.9991
17710	1710	.02247	.06742	3.0	1

^a One-sided test alpha=0.05 Ho: p2 = p1 versus Ha: p2 > p1; N Controls=17710 N Exposed=1710 Number of Iterations = 1000 (datasets)

^b Representing 1/2x-, 1x-, and 2x- the observed background rate of lung cancer of 199/17710 in Jones et al. (2015). Highlighted/bolded region in table above represents power associated with this 1x observed background rate of lung cancer in cited study.

NOTE: Stata code used to generate the above power calculation results: power two proportions (`=0.5* 199/17710' `=199/17710' `=2 * 199/17710'), test(chi2) RR (1.2 1.5 2.0 3.0) n1(17710) n2(1710) one sided table(N1:"N control" N2:"N exposed" p1:"proportion control" p2: "proportion exposed" RR:"relative risk" power:"power")

3952


3953

3954 These values can be graphed as shown below³⁷:

3955

considered 80 – 90%) as sufficient evidence for failing to find an association and, in effect, may provide supporting evidence for a conclusion of no observable association between the exposure and the outcome.

³⁷ Stata code for generating the above graph: power twopropotions (`=0.5* 199/17710' (0.0001) `=2 * 199/17710'), test(chi2) rrisk(1.2 1.5 2.0 3.0) n1(17710) n2(1710) graph(recast(line) xline(`=0.5* 199/17710' `=199/17710' `=2 * 199/17710', lpattern(dash)) legend(rows(1) size(small)) ylabel(0.2(0.2)1.0) onesided

3956

3957 Graph showing estimated power for a (one-sided) two-sample proportions test evaluating power as a function of
 3958 control-group proportion at true RRs of 1.2-, 1.5-, 2.0-, and 3.0. Dashed red vertical lines represent control
 3959 group proportions at 1/2x of that observed, 1x of that observed, and 2x of that observed and illustrate sensitivity
 3960 of the power to these background rate assumptions.

3961

3962

3963 As can be seen in the above table and graph, this study had a power of about 23% at 1x the
 3964 background rate (control-group proportion, equal to 199 diseased individuals/17,710 subjects =
 3965 0.011237) to detect a RR of 1.2. To detect an RR of 1.5, there is about 64% power. If the true
 3966 background rate were in reality twice the observed background rate ($2*0.011237 = 0.022473$), we
 3967 would have about 86% power to be able to detect a RR of 1.5 and essentially 100% power to detect
 3968 an RR of 2.0.³⁸

3969 Given the above, SAS was used to simulate the degree to which there may be effect size magnification
 3970 (aka effect size inflation) given *true* relative risks of 1.2, 1.5, 2.0, and 3.0. The table below illustrates
 3971 the power analysis for diazinon and lung cancer which shows the extent of the effect size
 3972 magnification from the simulation results. The analysis presented in the table below parallels that
 3973 done by Ioannidis (2008) and presented in his Table 2 for a set of hypothetical results passing the
 3974 threshold of formal statistical significance to illustrate the effect size magnification concept.

3975

3976

3977

3978

3979

3980

3981

3982

³⁸ Said another way, if the true (but unknown) background rate were actually twice the observed background rate, we could reasonably conclude (with 86% confidence) if no statistically significant relationship was found that the true OR did not exceed 1.5.

SAS Simulation Results Illustrating Effect Size Magnification Given True Odds Ratios of 1.2, 1.5, 2.0, and 3.0^a

True values		N analyzed datasets	Power ^b	Distribution of Observed Significant RRs			
Proportion of diseased individuals in control	RR			N	10 th Percentile	Median (% inflation)	90 th Percentile
0.005617 (1/2 background) ^x	1.2	1000	0.16	157	1.6	1.7 (42%)	2.0
	1.5	1000	0.40	401	1.6	1.8 (20%)	2.3
	2	1000	0.82	823	1.7	2.1 (5%)	2.8
	3	1000	1	997	2.3	3.0 (0%)	3.9
0.011237 (1 background) ^x	1.2	1000	0.22	224	1.4	1.6 (33%)	1.8
	1.5	1000	0.63	627	1.4	1.6 (7%)	2.0
	2	1000	0.98	977	1.6	2.0 (0%)	2.5
	3	1000	1	1000	2.5	3.0 (0%)	3.6
0.022473 (2 background) ^x	1.2	1000	0.33	331	1.3	1.4 (17%)	1.6
	1.5	1000	0.87	871	1.3	1.5 (0%)	1.8
	2	1000	1	1000	1.7	2.0 (0%)	2.3
	3	1000	1	1000	2.6	3.0 (0%)	3.4
NOTE: Poisson regression model was used to compare the rate of (relative risks) between the groups. The EXACT Test was used in the analysis of some datasets when the generalized Hessian matrix is not positive definite (due to a zero cases in one of the groups).							

^a One-sided test, alpha = 0.05, N Controls=17710, N diazinon Exposed=1710, Number of iterations=1000 (datasets)

^b The power resulting from this simulation may be close but not precisely match the power calculated from built-in procedures in statistical software such as SAS (PROC POWER) or Stata (power two-proportion). This may be due to the number of datasets simulated being of insufficient size. However, 1000 iterations is sufficient to adequately estimate the power and to illustrate the degree of effect size magnification given a statistically significant result (here, alpha ≤ 0.05)

3983

3984 Note that –given a statistically significant result at p<0.05– the percent effect size inflation at the
 3985 median varies from 0% to 42% depending on both the rate of lung cancer among individuals not
 3986 exposed to diazinon (i.e., proportion of diseased individuals in the non-exposed group) and the true
 3987 relative risk (ranging from 1.2 to 3.0). For example, if the **true RR** of a tertile of exposed vs. non-
 3988 exposed were 1.2, where the rate of lung cancer in the non-exposed group of 0.011237 (bolded row
 3989 in the above table), half of the **observed** statistically significant RRs would be above the median of
 3990 1.6 and half would be below 1.6; this represents a median inflation of 33% over the true RR of 1.2
 3991 used in the simulation. For the background rate found in the Jones et al. (2015) study, a true RR of
 3992 1.2 that was found to be statistically significant would instead likely be observed were there to be
 3993 repeated sampling to vary from 1.4 (at the 10th percentile) to 1.8 (at the 90th percentile) with the
 3994 aforementioned median of 1.6. When **true RR** is 2 or 3, the power is greater than 80% (as seen in
 3995 the above table) and the median of observed RR is close to the true RR and the range of observed
 3996 RRs are narrow. Note that as the true RR increases to 3, inflation disappears and the median from the
 3997 simulations indeed reflects the true RR.

3998

3999 An Example Illustrating Effect Size Magnification and Odds Ratios in an Ever/Never Analysis (Waddell, et al. 2001)

4001 Sometimes comparisons between exposed group vs. non-exposed group are presented in an
 4002 "ever/never" comparison as opposed to a comparison based on some other categorization or grouping
 4003 such as terciles or quartiles. This exposure category-based analysis might be done because there are
 4004 an insufficient number of cases to break the exposure categories into small (more homogenous)
 4005 exposure classifications or groupings or because the measurements of exposure are not available or
 4006 are less reliable (such as in case-control studies). In these situations, we similarly need i) the total
 4007 number of subjects in non-exposed group; ii) the number of subjects in exposed group; and iii) the
 4008 number of diseased individuals in the non-exposed group in order to calculate the power of the
 4009 comparison between exposed group vs. non-exposed group at some iv) given or pre-selected odds
 4010 ratios.

4011 To illustrate how a power and effect size magnification analysis might be done for a case/control study
 4012 using ever-never exposure categorizations, a study investigating the association between malathion
 4013 and non-Hodgkin's lymphoma (NHL) (Waddell et al., 2001) was selected. Here, we have i) the
 4014 number of subjects in the reference non-exposed group = 1018 (from Table 1: non-farmers = 243
 4015 diseased individuals + 775 non-diseased individuals); ii) the number of subjects in the exposed group
 4016 = 238 (from Table 4: malathion exposed individuals = 91 exposed cases + 147 non-exposed
 4017 controls); and iii) the number of diseased individuals in the reference non-exposed group = 243 (from
 4018 Table 1: 243 diseased individuals in the non-farmer or non-exposed group), we can similarly calculate
 4019 the power of the comparisons between the ever vs. never exposed, given the assumption that any
 4020 true OR = 1.2, 1.5, 2.0, etc.

4021 As was described above for lung cancer and diazinon, we estimated a power of 30.5% to detect an
 4022 OR of 1.2 at the study-estimated NHL proportion of 0.2387 among non-farmers (non-exposed), as
 4023 illustrated in the table below:

4024

Results of Power Analysis for a one-sided , two-sample proportions test (alpha = 0.05) ^a					
N _{control}	N _{exposed}	Proportion control ^b	Proportion exposed	Odds Ratio	Power
1018	238	.1194	.1399	1.2	.2279
1018	238	.1194	.1689	1.5	.647
1018	238	.1194	.2133	2.0	.9693
1018	238	.1194	.2891	3.0	1
1018	238	.2387	.2734	1.2	.3047
1018	238	.2387	.3199	1.5	.8149
1018	238	.2387	.3854	2.0	.9971
1018	238	.2387	.4847	3.0	1
1018	238	.4774	.523	1.2	.3522
1018	238	.4774	.5781	1.5	.8779
1018	238	.4774	.6463	2.0	.9992
1018	238	.4774	.7327	3.0	1

^a One-sided test alpha=0.05 Ho: p2 = p1 versus Ha: p2 > p1; N Controls=1018, N Exposed=238, Number of iterations=1000 (datasets)


^b Representing 1/2x-, 1x-, and 2x- the observed background rate of lung cancer of 243/1018 in Waddell et al. (2001). Highlighted, bolded region in table above represents power associated with this 1x observed background rate of NHL in cited study.

NOTE: Stata code used to generate the above results: power two-proportions (`=0.5*243/1018` `=243/1018` `=2 * 243/1018`), test(chi2) OR (1.2 1.5 2.0 3.0) n1(1018) n2(238) one side table(N1:"N control" N2:"N exposed" p1:"proportion control" p2:"proportion exposed" OR:"odds ratio" power:"power")

4025
 4026 Such power relations for malathion and NHL are graphed below³⁹ –as was done in the above AHS
 4027 prospective cohort study for diazinon and lung cancer– with the middle vertical dotted line in the
 4028 graph showing power at the NHL proportion of 0.2387 among non-farmers/non-exposed and the left-
 4029 hand and right-hand vertical dashed lines representing a form of sensitivity analysis at one-half and
 4030 twice the NHL proportion among non-farmers/non-exposed, respectively.

4031

4032

4033
 4034 Graph showing estimated power for a (one-sided) two-sample proportions test evaluating power of
 4035 control-group proportion at true RRs of 1.2-, 1.5-, 2.0-, and 3.0. Dashed red vertical lines represent control
 4036 group proportions at 1/2x of that observed, 1x of that observed, and 2x of that observed and illustrates the
 4037 sensitivity of the power to these background rate assumptions.

4038

4039 At the study-estimated NHL proportion of 0.2387 among non-farmers/non-exposed, the power (one-
 4040 sided) to detect ORs of 1.2, 1.5, 2.0, and 3.0 is shown to be 30.5%, 81.5%, 99.7%, and >99.9%,
 4041 respectively. Note that the Wadell et al. (2001) reported an OR of 1.6 with a 95% CI of 1.2 to 2.2,
 4042 based on 91 NHL cases who used malathion and 243 cases that were among non-farmers who did
 4043 not.

³⁹ Stata code for generating the graph: power two proportions (`=0.5*243/1018` `(0.01)` `=2 * 243/1018`), test(chi2) OR (1.2 1.5 2.0 3.0) n1(1018) n2(238) graph(recast(line) xline(`=0.5*243/1018` `=243/1018` `=2 * 243/1018`),lpattern(dash)) legend(rows(1)size(small)) y-label(0.2(0.2)1.0)) one sided

4044 Given the above, SAS was used to simulate the degree to which effect size magnification may exist
 4045 given *true* odds ratios of 1.2, 1.5, 2.0, and 3.0. Below is a SAS-generated table for the power analysis
 4046 for malathion and NHL showing the magnitude of the effect size magnification from the SAS-based
 4047 simulation results.

4048

SAS Simulation Results Illustrating Effect Size Magnification Given <i>True Odds</i> Ratios of 1.2, 1.5, 2.0, and 3.0^a							
True values		N analyzed datasets	Power^b	Distribution of Observed Significant ORs			
Proportion of diseased individuals in non-exposed group	OR			N	10th Percentile	Median (% inflation)	90th Percentile
0.1194 (1/2 background)	1.2	1000	0.22	220	1.4	1.5 (25%)	1.8
	1.5	1000	0.66	661	1.5	1.7 (13%)	2.0
	2	1000	0.97	972	1.6	2.0 (0%)	2.5
	3	1000	1.0	1000	2.4	3.0 (0%)	3.7
0.2387 (1x background)	1.2	1000	0.32	323	1.3	1.4 (17%)	1.6
	1.5	1000	0.81	812	1.4	1.6 (7%)	1.8
	2	1000	1.0	997	1.6	2.0 (0%)	2.4
	3	1000	1.0	1000	2.5	3.0 (0%)	3.6
0.4774 (2x background)	1.2	1000	0.34	337	1.3	1.4 (17%)	1.6
	1.5	1000	0.87	872	1.3	1.5 (0%)	1.8
	2	1000	1.0	1000	1.6	2.0 (0%)	2.5
	3	1000	1.0	1000	2.4	3.0 (0%)	3.7
NOTE: The logistic regression model was used to compute the odds ratios for the two groups. The EXACT Test was used in the analysis of some datasets when the maximum likelihood estimate did not exist (perhaps due to a zero cases in one of the groups).							
^a : One-sided test, $\alpha = 0.05$, N non-exposed=1018, N malathion exposed = 238, N iterations = 1000 (datasets)							
^b : the power resulting from this simulation may be close but not match exactly with the power calculated from built-in procedures in statistical software such as SAS (PROC POWER) or Stata (power two-proportion). This may be due to number of datasets simulated being of insufficient size. However, 1000 iterations is sufficient to adequately estimate the power and to illustrate the degree of effect size magnification given a statistically significant result (here, $\alpha \leq 0.05$)							

4049

4050 Note that –given a statistically significant result at $p<0.05$ – the median effect size varies from 1.4 to
 4051 3, depending on the NHL proportion in the non-exposed group, and the true odds ratio (ranging from
 4052 1.2 to 3.0). For example, if the true OR for a NHL proportion among non-farmers of 0.2387 was 1.2
 4053 (bolded row in the table), half of the *observed statistically significant* ORs would be above the median
 4054 of 1.4 and half would be below. Further, most (90%) of the statistically significant ORs would be
 4055 observed to be above 1.3, and a few (10%) would be observed even to be above 1.6.

4056

4057 In sum, then, the power of an epidemiological study is an important factor that should be considered by
 4058 regulators and others evaluating such studies. A study that is sufficiently powered will not only be
 4059 more likely to detect a true effect of a given size if it is indeed present (the classic definition of power

4060 which relates to the issue of a Type II error or a false negative) but will also be less likely to magnify
4061 or exaggerate the effect if it is not there but (by chance) crosses a pre-selected threshold (such as the
4062 0.05 level for statistical significance). If a study is suitably powered (say, 80% or more) the observed
4063 effect size is more likely to be a reflect a true effect size and any observed chance variation in this
4064 effect size will reflect a distribution symmetrically centred around the unknown true value. The take
4065 home message from these simulations and the original work by Ioannidis is that a study should be not
4066 only suitably powered to avoid a false negative (Type II error) but also to avoid a magnification of the
4067 effect size for those effect sizes that are statistically significant (or pass some other threshold). In
4068 other words, if a study is suitably powered, there is NO systematic risk inflation, but for underpowered
4069 studies, their effect estimates are prone to what might be substantial risk inflation.

4070 Ideally, then, published literature studies should provide adequate information for the reader to
4071 perform such power calculations (or, even more ideally, the study authors would have done these and
4072 included them). In the two examples provided above, the authors did provide sufficient information to
4073 calculate power and the potential for effect size magnification. This is not always the case.
4074 Sometimes information used for power calculations are only partially provided in the publications or
4075 provided information was structured in a way that does not permit such calculations. For example, if
4076 authors use number of cases instead of level of exposure to determine tertiles or quartiles (which
4077 would be evidenced by a constant number of cases between groups) or if authors group multiple
4078 cancer outcomes together and use that number to determine tertiles, then the power calculations
4079 illustrated here are not possible since the required inputs are not able to be derived. Since the counts
4080 and data which are tabulated and reported are not necessarily standardized among authors and
4081 publications, one strong recommendation would be for publications to require reporting (even if in
4082 supplementary or online data) the necessary information to estimate power such that such evaluations
4083 can be done by interested readers.

4084 While the above analysis suggests that potential implications of the effect size inflation phenomenon
4085 are important considerations in evaluating epidemiological studies, it is important to remember a
4086 number of caveats regarding the phenomenon and how its consideration should enter into any
4087 interpretation of epidemiological studies.

- 4088 • Firstly, while this phenomenon would tend to inflate effect sizes for underpowered
4089 studies for which the effect of interest passes a statistical (or other) threshold, there
4090 are other biases that may be present that bias estimates in the other direction, *toward*
4091 the null. This bias might be referred to as effect size *suppression*. Perhaps the most
4092 well-known of these is non-differential misclassification bias discussed in the main
4093 body of the text. This can commonly (but not always) produce predictable biases
4094 toward the null, thereby systematically under-predicting the effect size. Recognizing
4095 that this is not always true and there are potentially countervailing or counteracting
4096 factors like effect size magnification (at least for small underpowered studies) is an
4097 important step forward. Specifically, underpowered studies can result in biased
4098 estimates in a direction away from the null to a degree that that can potentially offset
4099 (and possibly more than offset) any biases toward the null that may result, for
4100 example, from non-differential misclassification bias. Regardless, what is of critical
4101 importance is to recognize that adequately powered studies are necessary to be able
4102 to have at least some minimal degree of confidence in the estimate of the effect size.
- 4103 • Secondly –and as stated in the main body of the text– effect size magnification is
4104 linked to a focused effort on the part of the researcher (or regulators interpreting
4105 such a study) on identifying effects that pass a given threshold of significance (e.g.,
4106 $p < 0.05$) or achieve a certain size (e.g., $OR > 3$) when that study is underpowered.
4107 This phenomenon, then, is of most concern when a “pre-screening” for statistical
4108 significance (or effect size). To the extent that regulators, decision-makers, and
4109 others avoid acting by focusing on only those associations that “pass” some pre-
4110 determined statistical threshold and then use that effect size to evaluate and judge
4111 the magnitude of the effect without acknowledging that it might be inflated if the
4112 study is underpowered, the phenomenon is of lesser concern.

4115 Unfortunately, there is sometimes a tendency for attention to focus on effect sizes that are greater
4116 than a given size or that pass a certain statistical threshold and are as such "discovered". As
4117 recommended by Ioannidis with respect to how these "discoveries" should be considered (Ioannidis,
4118 2008):

4119 "At the time of the first postulated discovery, we usually cannot tell whether an association exists at
4120 all, let alone judge its effect size. As a starting principle, one should be cautious about effect sizes.
4121 Uncertainty is not conveyed simply by CIs (no matter if these are 95%, 99% or 99.9%).

4122

4123 For a new proposed association, credibility and accuracy of the proposed effect varies depending on
4124 the case. One may ask the following questions: does the research community in the field adopt widely
4125 statistical significance or similar selection thresholds for claiming research findings? Did the discovery
4126 arise from a small study? Is there room for large flexibility in the analyses? Are we unprotected from
4127 selective reporting (e.g., was the protocol not fully available upfront?). Are there people or
4128 organizations interested in finding and promoting specific "positive" results? Finally, are the
4129 counteracting forces that would deflate effects minimal?"

4130

4131 • Thirdly, it should be remembered that the effect size inflations phenomenon is a
4132 general principle applicable to discovery science in general and is not a specific
4133 affliction or malady of epidemiology (Button (2013a); Button (2013b); Lehrer (2010);
4134 Ioannidis (2005); Reinhart (2015)). It is often seen in studies in pharmacology, in
4135 gene studies, in psychological studies, and in much of the most-often cited medical
4136 literature. Such truth inflation occurs in instances where studies are small and
4137 underpowered because such studies have widely varying results. It can be particularly
4138 problematic in instances where many researchers are performing similar studies and
4139 compete to publish "new" or "exciting" results (Reinhart, 2015).

4140

4141

4142 **Summary and Conclusions**

4143

4144 Effect size or "truth inflation" is a phenomenon that can result in exaggerated estimates of odds ratios,
4145 relative risks, or rate ratios in those instances in which these effect measures are derived from small,
4146 underpowered studies in which statistical or other thresholds need to be met in order for effects to be
4147 "discovered". The phenomenon is not specific to epidemiology or epidemiological studies, but rather
4148 to any science in which studies tend to be small and pre-determined thresholds such as those relating
4149 to effect sizes or statistical significance are used to determine whether an effect exists. As such, it is
4150 important that users of epidemiological studies recognize this issue and its potential interpretational
4151 consequences. Specifically: any discovered associations from an underpowered study that are
4152 highlighted or focused upon on the basis of passing a statistical or other similar threshold are
4153 systematically biased away from the null. While we can't know if any specific observed effect size
4154 from a specific study is biased away from the null as a result of being a "discovered" association that
4155 passes a statistical threshold (just as we can't say that a specific study showing non-differential
4156 misclassification will necessarily be biased toward the null), we do know that that chance favours such
4157 a bias to some degree as illustrated by the explications presented and simulations performed here.
4158 Said another way: by choosing to focus on, report, or act upon effect sizes on the basis of those effect
4159 sizes passing a statistical or other threshold, a bias is introduced since it is inevitably more likely to
4160 select those associations that are helped by chance rather than hurt by it (Yarkoni, 2009).

4161 One (partial) solution to the above issue is for the reader to interpret cautiously effect sizes in
4162 epidemiological studies that pass a pre-stated threshold or are statistically significant if they arise from
4163 an underpowered study, recognizing that the observed effect sizes can be systematically biased away
4164 from the null. Such an approach would require that either the authors report the power of the study
4165 or that the authors provide sufficient information for the reader to do so. *Effects sizes from studies*
4166 *with powers substantially less than 80% should be interpreted with an appropriate degree of*

4167 *scepticism, recognizing that these may be inflated – perhaps substantially so.* The potential degree of
4168 this inflation will depend on a number of issues including: background rate of the health outcome of
4169 interest; the sample size of the study; and the effect size of interest. *More specifically, the smaller the*
4170 *background rate of the health outcome of interest, the smaller the sample size of the study, and the*
4171 *weaker the effect size of interest, the lower is the power of the study (to detect that effect size) and*
4172 *the greater is the tendency toward inflated effect sizes.* Low power studies investigating small or weak
4173 effects in populations that have a low background rate of the health outcome of interest will tend
4174 toward the greatest degree of effect size inflation. As a result, the PPR Panel recommends that
4175 epidemiological publications either incorporate such calculations or include key information such that
4176 those calculations can be performed by the reader. Specifically:

4177 "When the association between a given pesticide exposure and a disease is found to be
4178 statistically significant, particularly in (presumed) low powered studies, data user should
4179 perform various power calculations (or a power analysis) to determine the degree to which
4180 the statistically-significant effect size estimate (OR or RR) may be artificially inflated or
4181 magnified. This requires 3 values to be clearly reported by epidemiological studies: i) the
4182 number of subjects in the non-exposed group (including diseased and non-diseased
4183 individuals); ii) the number of subjects in the exposed group (including diseased and non-
4184 diseased individuals); and iii) the number of diseased subjects in the non-exposed group. Risk
4185 managers can then select the target value of interest (typically an OR or RR) to detect a
4186 difference of a given (pre-determined) effect size between the exposed and non-exposed
4187 subjects, and evaluate the degree to which effect size magnification could potentially explain
4188 the effect size that was estimated in the study of interest."

4189 Since it appears that (i) many epidemiological studies are underpowered; (ii) it is not common for
4190 authors to either provide power calculations or the information in publications required to do them,
4191 and (iii) the phenomenon of effect size magnification is generally little recognized in the
4192 epidemiological field, the above PPR Panel recommendation will require substantial efforts on the part
4193 of researchers/grantees, publishers, and study sponsors to implement. While the above suggests that
4194 the current state of practice in this area may leave one pessimistic, an article appearing in *The*
4195 *Guardian* (UK) newspaper on the topic of statistical power and effect size magnification offered
4196 guarded reasons for optimism:

4197 "Awareness of these issues is growing and acknowledging the problem is the first step to improving
4198 current practices and identifying solutions. Although issues of publication bias are difficult to solve
4199 overnight, researchers can improve the reliability of their research by adopting well-established (but
4200 often ignored) scientific principles:

- 4201 1. We can consider statistical power in the design of our studies, and in the
4202 interpretation of our results;
- 4203 2. We can increase the honesty with which we disclose our methods and results.
- 4204 3. We could make our study protocols, and analysis plans, and even our data,
4205 publically available; and
- 4206 4. We could work collaboratively to pool resources and increase our sample sizes
4207 and power to replicate findings."

4208

4209 In sum, while there is much room for improvement in the conduct and reporting of epidemiological
4210 studies for them to be useful to regulatory bodies in making public health-based choices, the issues
4211 are beginning to be better defined and recognized and –going forward– there is reason for optimism.

4212

4213 **References**

4214 Button K, Ioannidis JPA, Mokrysz C, Nosek BA, Flink J, Robinson ESJ, Munafò MR. 2013a. "Power
4215 failure: why small sample size undermines the reliability of neuroscience. *Nature Rev Neurosci* 2013a;
4216 14: 365-376 [accessed 7 November 2016 at
4217 <http://www.nature.com/nrn/journal/v14/n5/full/nrn3475.html>]

4218 Button K. Unreliable neuroscience? Why power matters. *The Guardian* newspaper (UK). 10 April
4219 2013b [Accessed 7 November 2016 at <https://www.theguardian.com/science/sifting-the-evidence/2013/apr/10/unreliable-neuroscience-power-matters>]

4221 Cohen P, Chen S. How Big is a Big Odds Ratio: Interpreting the magnitudes of Odds Ratios in
4222 epidemiological studies. *Communications in Statistics: Simulation and Computation* 2010; 39: 860-864

4223 Ioannidis JP. 2005. Why most published research findings are false. *PLoS Med* 2005; 2(8): e124

4224 Ioannidis JP. "Why most discovered true associations are inflated". *Epidemiology* 2008; 19: 640-648

4225 Jones RR, Barone-Adesi F, Koutros S, Lerro CC, Blair A, Lubin J, Heltshe SL, Hoppin JA, Alavanja MC,
4226 Beane Freeman LE. Incidence of solid tumours among pesticide applicators exposed to the
4227 organophosphate insecticide diazinon in the Agricultural Health Study: an updated analysis. *Occup
4228 Environ Med* 2015; 72: 496-503

4229 Lehrer J. The Truth Wears Off: Is there something wrong with the scientific method". *New Yorker*. 13
4230 December, 2010. [Accessed 7 November 2016 at
4231 <http://www.newyorker.com/magazine/2010/12/13/the-truth-wears-off>]

4232 Reinhart A. *Statistics Done Wrong: the woefully complete guide*. No Starch Press (San Francisco, CA),
4233 2015

4234 Rosenthal JA. Qualitative Descriptors of Strength of Association and Effect Size. *J Social Serv Res*
4235 1996; 21: 37-59

4236 Waddell BL, Zahm SH, Baris D, Weisenburger DD, Holmes F, Burmeister LF, Cantor KP, Blair A.
4237 Agricultural use of organophosphate pesticides and the risk of non-Hodgkin's lymphoma among male
4238 farmers (United States). *Cancer Causes Control* 2001; 12: 509-517

4239 Yarkoni T. Ioannidis on effect size inflation, with guest appearance by Bozo the Clown. 21 November
4240 2009. [Accessed on 7 November 2016 at <http://www.talyarkoni.org/blog/2009/11/21/ioannidis-on-effect-size-inflation-with-guest-appearance-by-bozo-the-clown/>]

4242 **Glossary and Abbreviations**

ADI	Acceptable daily intake. A measure of the amount of a pesticide in food or drinking water that can be ingested (orally) on a daily basis over a lifetime without an appreciable health risk.
ADME	Abbreviation used in pharmacology (and toxicology) for absorption, distribution, metabolism, and excretion of a chemical or pharmaceutical compound and describes its disposition within an organism.
AOP	Adverse Outcome Pathway. A structured representation of biological events leading to adverse effects relevant to risk assessment.
ARfD	Acute Reference Dose. An estimate of the amount of a pesticide in food or drinking water (normally expressed on a body weight basis) that can be ingested in a period of 24 hours or less without appreciable health risks to the consumer on the basis of all known facts at the time of the evaluation.
Biomarker	Also known as "biological marker". A characteristic that is objectively measured and evaluated as an indication of normal biologic processes, pathogenic processes or pharmacologic responses to a therapeutic intervention
BMD	Benchmark Dose. A threshold dose or concentration that produces a predetermined change in response rate of an adverse effect (the benchmark response or BMR) compared to background. The lower 95% confidence limit is calculated (BMDL) to be further used as a point of departure to derive health-based reference values.
HBM	Human biomonitoring. The measurement of a chemical and/or its metabolites in human biological fluids or tissues. Also referred to as the internal dose of a chemical resulting from integrated exposures from all exposure routes.
Human data	They include observational studies (also called epidemiological studies) where the researcher is observing natural relationships between factors and health outcomes without acting upon study participants. Vigilance data also fall under this concept. In contrast, interventional studies (also called experimental studies or randomized clinical trials), where the researcher intercedes as part of the study design, are outside the scope of this opinion.
IARC	International Agency for Research on Cancer. An agency of the World Health Organization whose role is to conduct and coordinate research into the causes and occurrence of cancer worldwide.
LOAEL	Lowest-observed-adverse-effect level. The lowest concentration or amount of a chemical stressor evaluated in a toxicity test that shows harmful effects (e.g., an adverse alteration of morphology, biochemistry, function, or lifespan of a target organism).
NOAEL	No observed-adverse-effect level. Highest dose at which there was not an observed toxic or adverse effect.
OR	Odds ratio. A measure of association between an exposure and an outcome. The OR represents the odds that an outcome will occur given a particular exposure, compared to the odds of the outcome occurring in the absence of that exposure.
PBTK-TD	Physiologically-based toxicokinetic/toxicodynamic modelling is a mathematical modelling approach aimed at integrating <i>a priori</i> knowledge of physiological processes with other known/observed information to mimic the fates and effects of compounds in the bodies of humans, preclinical species and/or other organisms.
PPP	Plant Protection Product. The term 'pesticide' is often used interchangeably with 'plant protection product', however, pesticide is a broader term that also covers non plant/crop uses, for example biocides.

RR	Relative risk. Ratio of the probability of an event (e.g., developing a disease) occurring in an exposed group to the probability of the event occurring in a comparison, non-exposed group.
RMS	Rapporteur member state. The member state of the European Union initially in charge of assessing and evaluating a dossier on a pesticide active substance toxicological assessment.
Sensitivity	The ability of a test to correctly classify an individual as 'diseased'. Probability of being test positive when disease present.
Specificity	The ability of a test to correctly classify an individual as disease-free. Probability of being test negative when disease absent.
Surrogate endpoint	A biomarker intended to substitute for a clinical endpoint.

4243

A large, semi-transparent watermark reading 'DRAFT' in a bold, sans-serif font, oriented diagonally from bottom-left to top-right.