

ADOPTED: DD MM 201Y

doi:10.2903/j.efsa.20YY.NNNN

Draft guidance on the scientific requirements for health claims related to muscle function and physical performance

(Revision 1)

EFSA Panel on Dietetic Products, Nutrition and Allergies (EFSA NDA Panel),
Dominique Turck, Jean-Louis Bresson, Barbara Burlingame, Tara Dean, Susan
Fairweather-Tait, Marina Heinonen, Karen Ildico Hirsch-Ernst, Inge Mangelsdorf,
Harry J McArdle, Androniki Naska, Monika Neuhäuser-Berthold, Grażyna Nowicka,
Kristina Pentieva, Yolanda Sanz, Anders Sjödin, Martin Stern, Daniel Tomé, Henk Van
Loveren, Marco Vinceti, Peter Willatts, Ambroise Martin, John Joseph Strain, Leng
Heng, Silvia Valtueña Martínez and Alfonso Siani

Abstract

The European Food Safety Authority (EFSA) has asked the Panel on Dietetic Products, Nutrition and Allergies (NDA) to revise the guidance on the scientific requirements for health claims related to physical performance published in 2012. Since then, the NDA Panel has completed the evaluation of Article 13.1 claims (except for claims put on hold by the European Commission) and has evaluated additional health claim applications submitted pursuant to Article 13(5) in the area covered by this guidance. In addition, the NDA Panel has developed the general scientific guidance for stakeholders for health claims applications which addresses general issues that are common to all health claims. To further assist applicants, EFSA launched in 2014 a grant which aimed at gathering information in relation to claimed effects, outcome variables and methods of measurement in the context of the scientific substantiation of health claims. This update takes into account the experience gained by the NDA Panel with the evaluation of additional health claim applications, changes introduced to the general scientific guidance for stakeholders, and information collected from a grant. The guidance is intended to assist applicants in preparing applications for the authorisation of health claims related to muscle function and physical performance. The draft guidance was discussed and endorsed by the NDA Panel on 28 June 2018 for release for public consultation.

© 20YY European Food Safety Authority.

EFSA Journal published by John Wiley and Sons Ltd on behalf of European Food Safety Authority.

Keywords: guidance, health claims, scientific requirements, muscle function, physical performance

Requestor: EFSA

Question number: EFSA-Q-2018-00243

Correspondence: nda@efsa.europa.eu

Panel members: Jean-Louis Bresson, Barbara Burlingame, Tara Dean, Susan Fairweather-Tait, Marina Heinonen, Karen Ildico Hirsch-Ernst, Inge Mangelsdorf, Harry J McArdle, Androniki Naska, Monika Neuhäuser-Berthold, Grażyna Nowicka, Kristina Pentieva, Yolanda Sanz, Alfonso Siani, Anders Sjödin, Martin Stern, Daniel Tomé, Dominique Turck, Henk Van Loveren, Marco Vinceti and Peter Willatts.

Acknowledgements: The Panel wishes to thank the following for the support provided to this scientific output: [staff members or others who made a contribution but are not eligible as authors]. The Panel wishes to acknowledge all European competent institutions, Member State bodies and other organisations that provided data for this scientific output.

Suggested citation: EFSA NDA Panel (EFSA Panel on Dietetic Products, Nutrition and Allergies), Turck D, Bresson J-L, Burlingame B, Dean T, Fairweather-Tait S, Heinonen M, Hirsch-Ernst KI, Mangelsdorf I, McArdle HJ, Naska A, Neuhäuser-Berthold M, Nowicka G, Pentieva K, Sanz Y, Sjödin A, Stern M, Tomé D, Van Loveren H, Vinceti M, Willatts P, Martin A, Strain JJ, Heng L, Valtueña Martínez S and Siani A, 2018. Guidance on the scientific requirements for health claims related to muscle function and physical performance. *EFSA Journal* 20YY;volume(issue):NNNN, 24 pp. doi:10.2903/j.efsa.20YY.NNNN

ISSN: 1831-4732

© 20YY European Food Safety Authority. *EFSA Journal* published by John Wiley and Sons Ltd on behalf of European Food Safety Authority.

This is an open access article under the terms of the [Creative Commons Attribution-NoDerivs](#) License, which permits use and distribution in any medium, provided the original work is properly cited and no modifications or adaptations are made.

The EFSA Journal is a publication of the European Food Safety Authority, an agency of the European Union.

1 **Summary**

2 The European Food Safety Authority (EFSA) has asked the Panel on Dietetic Products, Nutrition and
3 Allergies (NDA) to revise the guidance on the scientific requirements for health claims related to
4 physical performance published in 2012.

5 Since then, the NDA Panel has completed the evaluation of Article 13.1 claims (except for claims put
6 on hold by the European Commission) and has evaluated additional health claim applications
7 submitted pursuant to Article 13(5) in the area covered by this guidance. In addition, the NDA Panel
8 has developed the general scientific guidance for stakeholders for health claims applications which
9 addresses general issues that are common to all health claims. To further assist applicants, EFSA
10 launched in 2014 a grant which aimed at gathering information in relation to claimed effects, outcome
11 variables and methods of measurement in the context of the scientific substantiation of health claims.
12 The information collected helped to inform the NDA Panel in updating the present guidance.

13 This guidance is intended to assist applicants in preparing applications for the authorisation of health
14 claims related to muscle function and physical performance. It focuses on key issues, particularly:

15 - claimed effects which are considered to be beneficial physiological effects, and
16 - characteristics of the human intervention studies which can provide evidence for the scientific
17 substantiation of specific claims addressed in this guidance (e.g. appropriate outcome variables and
18 methods of measurement, suitable study group(s), suitable controls).

19 This guidance does not intend to provide an exhaustive list of beneficial physiological effects, or of
20 studies/outcome variables/methods of measurement which could be acceptable for claim
21 substantiation, or address potential health relationships and related outcome variables/methods of
22 measurement which have not yet been considered by the Panel in the context of a particular
23 application.

24 The guidance is released for public consultation (from 16 July to 2 September 2018) to gather views
25 from scientific communities and stakeholders before finalisation. This guidance supersedes the
26 guidance on the scientific requirements for health claims related to physical performance published in
27 2012. It is intended that the guidance will be further updated as appropriate in the light of experience
28 gained from the evaluation of health claims in this area.

29

30 **Table of contents**

31	Abstract.....	1
32	Summary	3
33	Background and Terms of Reference as provided by EFSA	5
34	1. Introduction.....	5
35	2. Objectives and scope	6
36	3. Definition of terms	6
37	4. Assessment	9
38	4.1. Function claims based on the essentiality of nutrients	9
39	4.1.1. Claims on muscle function	9
40	4.2. Function claims other than those based on the essentiality of nutrients	10
41	4.2.1. Claims on muscle function	10
42	4.2.2. Claims on physical performance and physical capacity	12
43	4.2.2.1. Claims on physical performance	12
44	4.2.2.2. Claims on physical capacity.....	14
45	References.....	15
46	Glossary and Abbreviations	20
47	Appendix A – Health claims on muscle function and physical performance evaluated by the	
48	EFSA NDA Panel.....	21
49		
50		

51

DRAFT

52 **Background and Terms of Reference as provided by EFSA**

53 **Background**

54 Regulation (EC) No 1924/2006¹ harmonises the provisions related to nutrition and health claims and
55 establishes rules governing the Community authorisation of health claims made on foods. According to
56 the Regulation, health claims should only be authorised for use in the Community after a scientific
57 assessment of the highest possible standard to be carried out by EFSA.

58 Owing to the scientific and technical complexity of health claims, the EFSA Panel on Dietetic Products,
59 Nutrition and Allergies (NDA) has placed considerable effort into developing scientific criteria for the
60 substantiation of health claims, and has published guidance on the scientific substantiation of health
61 claims since 2007².

62 In the last years, the NDA Panel has gained considerable experience in the evaluation of health claim
63 applications. To further assist applicants seeking approval of health claims, EFSA launched in 2014 a
64 grant (GP/EFSA/NUTRI/2014/01) which aimed at gathering information in relation to claimed effects,
65 outcome variables and methods of measurement in the context of the scientific substantiation of
66 health claims. The information collected³ was to help inform the NDA Panel and serve as a basis for
67 further guidance to applicants.

68 In this context, note is taken of the need to adapt the existing guidance on the scientific requirements
69 for health claims⁴ to the new scientific and technical developments in specific areas, taking into
70 account lessons learned from the evaluation of health claim applications and the information collected
71 from the grant.

72 To this end, the NDA Panel is asked to update the existing guidance on the scientific requirements for
73 health claims related to physical performance published in 2012⁵.

74 **Terms of reference**

75 The NDA Panel is requested by EFSA to update the existing guidance on the scientific requirements
76 for health claims related to physical performance.

77 The guidance document shall clarify and address the scientific and technical developments in this
78 area, taking into account the experience gained by the NDA Panel with the evaluation of health claims
79 and the information collected from the grant.

80 The draft guidance shall be released for public consultation prior to finalisation, and shall be revised
81 taking into account the comments received during the public consultation before adoption by the NDA
82 Panel. A technical report on the outcome of the public consultation shall be published.

83 **1. Introduction**

84 The Guidance on the scientific requirements for health claims related to physical performance
85 published in 2012(EFSA NDA Panel, 2012c) laid down recommendations on specific issues that need
86 to be addressed in applications submitted for the substantiation of health claims in this area. Since
87 then, the NDA Panel has evaluated additional health claim applications related to muscle function and
88 physical performance.

89 Among the health claim applications submitted to EFSA as of 8/02/2018 (n=490), 12 were relevant to
90 this guidance: five were withdrawn during the evaluation, and seven were evaluated/finalised by the
91 NDA Panel. Among those finalised, three were evaluated by the NDA Panel with a favourable opinion
92 and all three referred to claims other than those based on the essentiality on nutrients: two were on
93 muscle function and one on physical performance (Appendix A).

94 Examples of health claims evaluated by the NDA Panel with a favourable opinion (under Article 13(1)
95 and applications under Article 13(5)) will be used to provide guidance to applicants on the scientific

¹ Regulation (EC) No 1924/2006 of the European Parliament and of the Council of 20 December 2006 on nutrition and health claims made on foods. OJ L 404, 30.12.2006, p. 9–25.

² <https://www.efsa.europa.eu/en/applications/nutrition/regulationsandguidance>

³ <https://www.efsa.europa.eu/en/supporting/pub/1272e>

⁴ <https://www.efsa.europa.eu/en/applications/nutrition/regulationsandguidance>

⁵ <https://www.efsa.europa.eu/en/efsajournal/pub/2817>

96 requirements for the substantiation of health claims in specific areas, whereas examples of claims
97 evaluated by the NDA Panel with an unfavourable opinion will be used to illustrate the shortcomings
98 that prevented the substantiation of these claims.

99 To further assist applicants, the information collected from the grant (GP/EFSA/NUTRI/2014/01)⁶
100 launched by EFSA in 2014, which aimed at gathering information in relation to claimed effects,
101 outcome variables and methods of measurement in the context of the scientific substantiation of
102 health claims, was considered by the NDA Panel for updating this guidance.

103 **2. Objectives and scope**

104 This guidance is intended to assist applicants in preparing applications for the scientific substantiation
105 of health claims related to physical performance and muscle function. The document focuses on key
106 issues, particularly:

- 107 • claimed effects which are considered to be beneficial physiological effects;
- 108 • definition of the target population for which the claim is intended;
- 109 • characteristics of human intervention studies which can provide evidence for the scientific
110 substantiation of specific claims addressed in this guidance (e.g. appropriate outcome
111 variables and methods of measurement, suitable study group(s), suitable controls).

112 Issues related to scientific substantiation that are common to all health claims (e.g. principles applied
113 for claims based on the essentiality of nutrients vs. claims other than those based on the essentiality
114 of nutrients, aspects related to the characterisation of the food/constituent and to the characterisation
115 of the claimed effect, examples of the evidence required for the substantiation of claims, criteria for
116 the identification of pertinent human studies) are addressed in the General scientific guidance for
117 stakeholders on health claims applications (EFSA NDA Panel, 2016a) and will not be reiterated in this
118 document.

119 This guidance does not intend to provide an exhaustive list of beneficial physiological effects or of
120 studies/outcome variables/methods of measurement which have not yet been considered by the NDA
121 Panel in the context of a particular application. This guidance will be kept under review and will be
122 amended and updated in the light of experiences gained from the evaluation of additional health claim
123 applications in this area.

124 This guidance should be read in conjunction with the General scientific guidance for stakeholders on
125 health claim applications (EFSA NDA Panel, 2016a), the Scientific and technical guidance for the
126 preparation and presentation of a health claim application (EFSA NDA Panel, 2017), Regulation (EC)
127 No 1924/2006 on nutrition and health claims made on foods,⁷ the Guidance on the implementation of
128 Regulation (EC) No 1924/2006 (Standing Committee on the Food Chain and Animal Health, 2007),
129 Commission Regulation (EC) No 353/2008,⁸ the Commission Implementing Decision of 24 January
130 2013,⁹ and future guidelines and regulations, as applicable.

131 **3. Definition of terms**

132 During the scientific evaluation of health claims in the area of physical performance over the last 10
133 years, and in preparation for the update of this guidance document, the Panel has noticed the lack of
134 consensus with respect to the terminology used in sport science (and practice) to describe different
135 types of "physical activities" or "exercises" with respect to their duration, "intensity", and the effort
136 required to perform them, and with respect to the methods and units of measurement of such effort.

⁶ <https://www.efsa.europa.eu/en/supporting/pub/1272e>

⁷ Regulation (EC) No 1924/2006 of the European Parliament and of the Council of 20 December 2006 on nutrition and health claims made on foods. OJ L 404, 30.12.2006, p. 9–25. Available at <http://eur-lex.europa.eu/LexUriServ/LexUriServ.do?uri=CONSLEG:2006R1924:20100302:en:PDF>

⁸ Commission Regulation (EC) No 353/2008 of 18 April 2008 establishing implementing rules for applications for authorisation of health claims as provided for in Article 15 of Regulation (EC) No 1924/2006 of the European Parliament and of the Council (Text with EEA relevance) (OJ L 109, 19.4.2008, p. 11): <http://eur-lex.europa.eu/LexUriServ/LexUriServ.do?uri=CONSLEG:2008R0353:20091221:EN:PDF>

⁹ Commission Implementing Decision of 24 January 2013 adopting guidelines for the implementation of specific conditions for health claims laid down in Article 10 of Regulation (EC) No 1924/2006 of the European Parliament and of the Council. OJ L 22, 25.1.2013, p. 25–28. Available at <http://eur-lex.europa.eu/legal-content/EN/ALL/?uri=CELEX:32013D006>

137 Whereas a number of publications have addressed this aspect in the last years and have proposed
 138 ways to standardise both nomenclature and "exercise" classification depending on the type,
 139 "intensity", duration, and predominant metabolic pathways contributing to energy supply, they
 140 contradict each other in several ways (Caspersen et al., 1985; Howley, 2001; Chodzko-Zajko et al.,
 141 2009; Norton et al., 2010; Garber et al., 2011; Fisher and Smith, 2012; Chamari and Padulo, 2015;
 142 Winter et al., 2016).

143 Several terms have been used by the Panel in the context of specific evaluations (Art 13(1) claims and
 144 Art 13(5) applications) for which there is no consensual definition. These terms have rather been
 145 defined for the purpose of the specific assessment and to establish conditions of use for the claim
 146 (e.g. endurance capacity, strenuous exercise, short-term high-intensity exercise). In other instances,
 147 terms have not been defined assuming that they had a precise meaning and were well understood in
 148 the research field, which may not be so (e.g. muscle fatigue).

149 For the purpose of this guidance, and within the context of the scientific evaluation of health claims in
 150 the area of muscle function and physical performance, the Panel provides a common definition of
 151 terms to help communication between applicants, EFSA and risk managers, but also indicates the
 152 information that should be provided in future applications to characterise the claimed effect, the
 153 target population and the conditions of use for the claim whenever common terms used in the
 154 scientific literature may lead to misinterpretation.

155 For the purpose of this guidance, and having regard of the scientific references cited above:

156 **Physical activity** is defined as any bodily movement produced by skeletal muscles which
 157 requires energy expenditure. Physical activity broadly encompasses physical exercise, sports,
 158 and physical activities done as part of daily living, occupation, leisure, and active
 159 transportation.

160 **Physical fitness** is a set of attributes that people have or achieve that relates to the ability
 161 to perform physical activity (e.g. cardiorespiratory endurance, muscular endurance, muscular
 162 strength, body composition, flexibility, agility, balance, coordination, speed, power, reaction
 163 time). The degree to which people have these attributes can be measured with specific tests.

164 **Physical exercise** is defined as a subset of physical activity that is planned and structured,
 165 and has as a final or an intermediate objective the improvement or maintenance of one or
 166 more components of physical fitness.

167 **Resistance exercise (training)** is a specific type of physical exercise designed to increase
 168 muscular strength, power, and/or endurance. It can vary in the resistance, speed, the number
 169 of times the resistance is moved in a single group (set) of exercise, the number of sets done,
 170 and the rest interval provided between sets.

171 **Intensity/load, frequency, duration, and mode/type** are used to describe the characteristics of
 172 an exercise to bring about a particular response. Their combination affects the volume of the exercise
 173 and the predominant metabolic pathways and substrates that are involved.

174 **Intensity/load** refers to the effort required by an individual to complete a given physical
 175 activity or exercise. Objective measures of exercise intensity are usually expressed as relative
 176 values (e.g. %HR_{max}, %HRR¹⁰, %VO_{2max}, %VO_{2R}¹¹). Exercise intensity has also been classified
 177 using subjective measures, i.e. relative to the subject's perception of effort, using the Borg's
 178 Rating of Perceived Exertion (RPE) scale. For resistance training, "intensity" refers to the
 179 amount of resistance (load). The one repetition maximum (1RM), which is the greatest weight
 180 that can be lifted or displaced one time in good form, is relevant for dynamic measurements,
 181 whereas the maximal voluntary contraction (MVC) is relevant for isometric measurements.
 182 Objective measures of load are usually expressed as relative values (e.g. %1RM, %MVC).

183 **Frequency** in training programs is described as the number of activity sessions per day,
 184 week, or month.

¹⁰ HRR =HR_{max} – resting HR

¹¹ VO_{2R} = VO_{2max} – resting VO₂

185 **Duration** refers to the number of minutes of activity in each exercise session (and to the
186 duration of each interval within a session for interval training).

187 **The mode/type** refers to the type of exercise performed (e.g. cycling, running, swimming,
188 weight-lifting, etc) and to whether this is intermittent (e.g. repeated bouts, sprints, interval
189 training) or continuous.

190 Whereas several classifications of physical exercise have been proposed with respect to their intensity
191 and duration, the main metabolic pathways involved and/or the type of physical fitness targeted (e.g.
192 endurance, cardiorespiratory, flexibility, and neuromuscular exercise; "aerobic" and "anaerobic"
193 exercise; sedentary, light, moderate, vigorous and high-intensity exercise; all-out (maximal) efforts:
194 "explosive", "high intensity", "endurance intensive efforts"), the Panel notes that the nomenclature in
195 this field is not harmonised. Therefore, in the context of claims substantiation, the claimed effect (e.g.
196 the testing conditions under which the food/constituent may affect performance) must be described
197 (characterised) in terms of mode/type of exercise, intensity/load (using objective measures and
198 expressed as relative values), and duration (in minutes). The characterisation of training programs
199 which may be part of the conditions of use for the claim (e.g. if the efficacy of food/constituent on
200 performance is only observed when its consumption is coupled to a training program) requires also
201 information on frequency. The characterisation of physical exercises for the substantiation of health
202 claims on physical capacity and physical performance is addressed in section 4.2.2.

203 **Muscle contraction** is the activation of tension-generating sites within muscle fibres and can
204 be concentric or eccentric.

205 **Muscle strength** refers to the (maximum) amount of external force that a skeletal muscle
206 (or muscle group) can exert. It may be expressed as MVC for isometric measurements and as
207 the 1RM for dynamic measurements.

208 **Endurance** is the ability to sustain a physical activity or exercise over a period of time.

209 **Muscle endurance** refers to the ability of muscle groups to exert and maintain an external
210 force for a number of repetitions or successive exertions against a constant resistance.

211 **Muscle fatigue** is defined as any exercise-induced reduction in the maximal capacity to
212 generate force or power output, or in the capacity to maintain a pre-defined force or power
213 output.

214 Exercise-induced **muscle soreness** is an aching sensation following muscular exertion that
215 can be acute (i.e. the immediate ache perceived by the athlete while or immediately after
216 exercise) or delayed. Delayed-onset muscle soreness (DOMS) generally occurs following
217 unaccustomed muscular exertion and is mainly related to eccentric muscular efforts. Muscle
218 soreness can vary from mild discomfort to incapacitating pain depending on the intensity,
219 volume and novelty of the exercise.

220 Exercise-induced **muscle damage** refers to the disruption of muscle fibres during exercise
221 which may be associated to a reduction of muscle function. Muscle damage may lead to pain
222 and soreness, but these may also occur in the absence of muscle damage.

223 **Mechanical work** is the amount of energy transferred by a force acting over a certain
224 distance.

225 **Power** relates to the rate at which mechanical work can be performed.

226 **Physical performance** is the ability to complete certain physical tasks. An increase in
227 physical performance refers to completion of a given physical task with higher intensity, and
228 therefore faster or with a higher power output.

229 **Physical capacity** is the ability to continue a physical activity despite increasing physical or
230 psychological stress, and refers to the exercise time to fatigue when exercising at predefined
231 conditions (e.g. a given load, intensity or speed).

232 Appropriate outcome variables to assess physical capacity and physical performance in human
233 intervention studies are discussed in section 4.2.2.

234 The terms **endurance capacity and endurance performance** have been used by the Panel in
235 previous guidance documents and scientific opinions to denote physical capacity and performance
236 assessed during physical exercises of "moderate" intensity (generally <80 % VO_{2max}). These terms will
237 only be used in the present guidance to describe examples of previous evaluations for illustration
238 purposes.

239 **4. Assessment**

240 **4.1. Function claims based on the essentiality of nutrients**

241 Several health claims related to essential nutrients have been scientifically substantiated based on the
242 principle of the essentiality of these nutrients¹²: i) the nutrient is required for normal human body
243 function(s), i.e. it has an essential mechanistic role in a metabolic function and/or it has the ability to
244 reverse clinical signs and symptoms of its deficiency; ii) the nutrient cannot be synthesised by the
245 body or cannot be synthesised in amounts which are adequate to maintain normal body function(s)
246 and iii) the nutrient must be obtained from a dietary source. For these claims (described below in this
247 sections), the Panel did not review the primary scientific studies submitted and it did not weigh the
248 evidence.

249 **4.1.1. Claims on muscle function**

250 The improvement, maintenance or reduced loss of **muscle function (contraction)** is considered a
251 beneficial physiological effect. Failure to increase **muscle mass** during growth and development, and
252 the loss of muscle mass at any age, will impair muscle function (e.g. **muscle strength** and power).
253 Faster recovery of normal muscle function after exercise is also considered a beneficial physiological
254 effect.

255 Claims on the well-established role of some minerals such as sodium (EFSA NDA Panel, 2011g),
256 potassium (EFSA NDA Panel, 2010h), magnesium (EFSA NDA Panel, 2009c) and calcium (EFSA NDA
257 Panel, 2009a) on the maintenance of **normal muscle function (contraction)** have been evaluated
258 by the Panel with a favourable outcome. The target population for these claims was the general
259 healthy population. Conditions of use were established on the basis that any significant amount of the
260 essential nutrient in the diet will contribute to the claimed effect (i.e. conditions of use were linked to
261 nutrition claims).

262 A claim on dietary protein and **growth or maintenance of muscle mass** was also evaluated by the
263 Panel with a favourable outcome (EFSA NDA Panel, 2010a). The Panel considered that the role of
264 dietary protein in the growth (during development) and maintenance (after adolescence) of whole
265 body lean body mass, including muscle mass, was well-established. Maintenance of lean body mass
266 can be achieved if (protein) nitrogen intake is equal to or above (protein) nitrogen losses over a
267 period of time. It is well documented that protein intake (indispensable aminoacids) is necessary to
268 maintain nitrogen (protein) balance as nitrogen is lost from the body primarily via the urine, but
269 also in small amounts via faeces, sweat, skin, hair and nails. Similarly, maintenance of muscle
270 mass is typically achieved if mean muscle protein synthesis rate is equal to mean muscle protein
271 breakdown rate over a period of time. Protein intakes within the Dietary Reference Values (DRVs)
272 allow for the growth and maintenance of lean body mass, including muscle mass, for normal protein
273 turnover, and for muscle recovery after physical exercise. The target population for this claim was the
274 general healthy population. Conditions of use were established on the basis that any significant
275 amount of protein in the diet will contribute to the claimed effect (i.e. conditions of use were linked to
276 nutrition claims).

277 For the scientific substantiation of health claims related to specific protein sources or protein
278 components on measures of muscle function (i.e. muscle mass and muscle strength), see section
279 4.2.1.

¹² See General scientific guidance for stakeholders on health claim applications, Section 6.1.

280 **4.2. Function claims other than those based on the essentiality of
281 nutrients**282 **4.2.1. Claims on muscle function**

283 Function claims other than those based on the essentiality of nutrients have been submitted on
284 muscle strength, rather than on muscle function. Noting that **muscle strength** is a specific aspect of
285 muscle function, claims may refer to muscle strength specifically, rather than to muscle function in
286 general. In this context, outcome variables that are appropriate to assess muscle strength in human
287 studies include one repetition maximum (1-RM) and isometric strength tests (e.g. 1-RM weight lifting
288 (bench press), 1-RM leg press, 1-RM knee extension, 1-RM biceps curl, isometric handgrip strength,
289 isokinetic knee extension torque). Owing to these single outcome variables of muscle strength
290 generally assessing specific muscle groups, the evaluation of general muscle strength requires the use
291 of multiple outcome variables in combination (e.g. assessing muscle strength in the upper and lower
292 body). Outcome variables related to motor functional performance (e.g. gait speed, timed-get-up-and-
293 go test, stair climbing) are not direct measures of muscle strength. The use of these outcome
294 variables in the scientific substantiation of claims on physical performance is discussed in section
295 4.2.2.1.

296 Outcome variables related to **body composition** (e.g. whole-body lean body mass, muscle mass) or
297 **muscle structure** (e.g. muscle shape, number and type of muscle fibres, muscle damage, muscle
298 tissue repair) are not direct measures of muscle function. However, since changes in one or more of
299 these outcome variables may contribute to the improvement, maintenance or reduced loss of muscle
300 function, they could be used as supportive evidence for the scientific substantiation of claims on
301 muscle function/strength. Invasive (e.g. muscle biopsy) and non-invasive (e.g. high-frequency
302 ultrasound, magnetic resonance imaging) techniques can be used to assess different components of
303 muscle structure. Claims related to changes in body composition have been addressed in the
304 "Guidance on the scientific requirements for health claims related to appetite ratings, weight
305 management, and blood glucose concentrations" (EFSA NDA Panel, 2012d).

306 The scientific evaluation of health claims on **muscle strength** requires sufficient characterisation of
307 the target population for which the claim is made and of the conditions of use for the claim. The
308 target population for the claim should be sufficiently defined regarding physical fitness and/or age of
309 the subjects (e.g. athletes, elderly subjects). The conditions of use for the claim should clearly indicate
310 all aspects related to the consumption of the food constituent (e.g. the amount, the frequency of
311 consumption, the timing of consumption in relation to the physical exercise) and to the concomitant
312 intervention(s) (e.g. type/intensity/frequency/duration of concomitant training) that are
313 important/needed to achieve the claimed effect, as appropriate.

314 A claim on creatine in combination with resistance training and improvement in muscle strength was
315 evaluated by the Panel with a favourable outcome (EFSA NDA Panel, 2016b). The target population
316 for the claim was adults > 55 years of age who are engaged in regular resistance training. The
317 scientific assessment was based on the results of 10 human intervention studies provided by the
318 applicant and on evidence for a mechanism by which creatine could exert the claimed effect. The
319 human intervention studies investigated multiple outcome variables of muscle strength (e.g. 1-RM
320 weight lifting (bench press), 1-RM chest press, 1-RM knee extension, 1-RM biceps curl, 1-RM leg
321 press, and 1-RM leg extension) in different combinations in order to assess upper and lower body
322 muscle strength using different protocols. Overall, the human intervention studies submitted provided
323 evidence for an effect of creatine consumed at doses of at least 3 g/day in combination with regular
324 resistance training (three times per week for several weeks) of moderate intensity on muscle strength
325 in adults 55 years of age and older, while no such effect was observed when similar weekly doses of
326 creatine were given on training days only (three times per week). The Panel also took into account
327 the plausible mechanism by which daily consumption of creatine in combination with resistance
328 training could improve muscle strength.

329 **The recovery or restoration of muscle function (e.g. muscle strength, contraction) after
330 exercise** is considered a beneficial physiological effect. Human intervention studies investigating the
331 effect of a food/constituent given after an initial strenuous exercise bout on performance parameters
332 at a subsequent exercise bout after a recovery period are appropriate to assess the effect of the
333 food/constituent on the recovery of muscle function after exercise (e.g. repetitions-to-fatigue test re-

334 test). Subjective measures of (perceived) muscle fatigue/exertion or muscle soreness (e.g. validated
335 questionnaires¹³) may be used as supportive evidence in this context. Measures of skeletal muscle
336 glycogen stores and some measures of muscle structure (e.g. muscle damage, muscle tissue repair)
337 can provide support for a mechanism by which the food/constituent could exert the claimed effect.

338 A health claim related to glycaemic carbohydrates and **recovery of normal muscle function**
339 (**contraction**) **after strenuous exercise** was evaluated by the Panel with a favourable outcome
340 (EFSA NDA Panel, 2013). The scientific substantiation of this claim relied on consensus opinions from
341 authoritative bodies, which were based on a wealth of human intervention (efficacy) studies, human
342 studies on methods used for measuring muscle glycogen stores, and mechanistic *in vitro* and animal
343 studies. As for the mode of action, the Panel took into account that it is well-established that glucose,
344 which is mainly provided to body cells from glycaemic carbohydrates, can be stored as glycogen in the
345 liver and in the skeletal muscles, and that muscle glycogen, which is used primarily as a source of
346 energy within the muscles, can only be stored in a limited amount in skeletal muscles. It is also well-
347 established that strenuous exercise depletes skeletal muscle glycogen stores, that low glycogen stores
348 limit energy production in muscles and thereby limit skeletal muscle contraction, and that glycaemic
349 carbohydrates, consumed especially in the first hours following strenuous exercise, stimulate glycogen
350 re-synthesis in muscle and contribute to the replenishment of skeletal muscle glycogen stores to a
351 greater extent than other energy-containing macronutrient. This leads to the recovery of normal
352 skeletal muscle function (contraction). The target population for this claim was individuals performing
353 strenuous exercise. The conditions of use for this claim were rather based on the amount of
354 carbohydrates and consumption time relative to the exercise which could increase glycogen re-
355 synthesis in muscle and restore skeletal muscle glycogen stores.

356 A number of claims on the effects of specific protein sources (e.g. bovine colostrum, casein protein
357 hydrolysates, whey protein), specific amino acids which are incorporated into proteins (e.g. BCAA, L-
358 glutamine), or specific constituents derived from protein amino acids (L-carnitine, L-carnosine) on the
359 growth or maintenance of muscle mass, the maintenance of normal muscle function, faster recovery
360 of muscle function/strength/glycogen stores after exercise, faster recovery from muscle fatigue after
361 exercise, and skeletal muscle tissue repair have been evaluated by the Panel with an unfavourable
362 opinion (Appendix A).

363 For the scientific substantiation of claims on the effects of specific protein sources/constituents on
364 outcome variables related to **muscle mass and muscle function (e.g. muscle strength)**, human
365 intervention studies assessing the effect of a specific protein source/constituent against another
366 isonitrogenous protein source/constituent were considered as pertinent to the claim, whereas studies
367 controlling for energy only (e.g. using isocaloric carbohydrate sources as placebo) could not be used
368 for the scientific substantiation of these claims. Measures of whole body lean mass in combination
369 with measures of muscle strength were considered appropriate to assess changes in muscle mass. For
370 well-characterised protein sources/constituents, the Panel concluded that a cause and effect
371 relationship had not been established between the consumption of specific protein
372 sources/constituents and growth or maintenance of muscle mass over and above the well-established
373 role of protein on the claimed effect (i.e. beyond what could be expected from the consumption of
374 mixed dietary protein within the DRV when energy and other nutrient requirements are met; (EFSA
375 NDA Panel, 2012a); see also section 4.1.1).

376 Two applications on citrulline malate and **faster recovery from muscle fatigue after exercise**
377 were evaluated by the Panel with an unfavourable opinion (EFSA NDA Panel, 2012b, 2014a). The
378 human intervention studies provided for the scientific substantiation of the claim assessed subjective
379 measures of muscle soreness after strenuous exercise, blood lactate concentrations during exercise,
380 and/or perceived fatigue during exercise. Performance parameters were not assessed in those studies.
381 The Panel considered that, while there is consensus on the contribution of training in reducing blood
382 lactate concentrations during and after exercise and on delaying muscle fatigue during exercise, no
383 evidence was provided that lowering blood lactate through a dietary intervention can prevent or
384 alleviate loss of muscle function during exercise or can lead to a faster recovery from muscle fatigue

¹³ See the General scientific guidance EFSA NDA Panel (EFSA Panel on Dietetic Products, Nutrition and Allergies), 2016a. General scientific guidance for stakeholders on health claim applications EFSA Journal 2016;14(1):4367, 38 pp. doi:10.2903/j.efsa.2016.4367., i.e. Annex C-Considerations on the validation of questionnaires and their use as outcome variables for the scientific substantiation of health claims.

385 by contributing to the restoration of muscle function after exercise. The Panel also noted that there is
386 no consensus on the role of lactate in the recovery from muscle fatigue.

387 4.2.2. Claims on physical performance and physical capacity

388 **Physical performance** is the ability to complete certain physical tasks. An increase in physical
389 performance refers to completion of a given physical task with higher intensity, and therefore faster or
390 with a higher power output. Measures of physical performance are obtained in the context of task-
391 limited (e.g. time spent to run/row/swim or cycle a pre-defined distance), or time-limited (e.g.
392 maximum distance cycled in a pre-defined time) physical activities. Improvement, maintenance or
393 reduced loss of physical performance is a beneficial physiological effect for individuals performing
394 physical exercise for different reasons (e.g. athletes preparing for a competition or during a
395 competition, and individuals engaged in physical work or recreational activities), but also for
396 individuals performing common (non-exercise related) physical tasks.

397 **Physical capacity**, on the other hand, refers to the exercise time to fatigue when exercising at pre-
398 defined conditions (e.g. a given workload, intensity or speed). Exercise time to fatigue is an
399 appropriate measure of physical capacity. An increased physical capacity is a beneficial physiological
400 effect for individuals performing physical exercise which is not limited by time or task (e.g.
401 recreational running, walking, swimming, cycling and fitness training).

402 Although an increase in physical capacity (e.g. the time that an individual can exercise to fatigue at a
403 given workload, intensity or speed) may lead to an improvement in physical performance, measures of
404 physical capacity are not appropriate outcome variables for the scientific substantiation of claims on
405 physical performance and *vice versa*. An increase in physical capacity, however, could be associated
406 to an increase in physical performance and therefore measures of physical capacity could be used to
407 support an effect of the food/constituent on performance.

408 Claims on specific physiological effects (e.g. reduction in rated perceived exertion/effort during
409 exercise, enhancement of water absorption during exercise) which may lead to an improvement in
410 physical capacity and/or performance have been proposed and evaluated by the Panel in the context
411 of claims pursuant to Art. 13(1) of Regulation (EC) No 1924/2006. A claim related to carbohydrate-
412 electrolyte solutions and enhancement of water absorption during exercise (EFSA NDA Panel, 2011h),
413 and a claim related to caffeine (EFSA NDA Panel, 2011j) and the reduction in the rated perceived
414 exertion/effort during exercise, have been evaluated by the Panel with a favourable outcome. For
415 both food/constituents, a claim on increase/maintenance of endurance performance (carbohydrate-
416 electrolyte solutions and caffeine) and/or a claim on increased endurance capacity (caffeine) were also
417 evaluated by the Panel with a favourable outcome within the same scientific opinion (Appendix A).
418 The Panel considers that specific physiological effects such as the reduction in the rated perceived
419 exertion/effort during exercise or an enhancement of water absorption during exercise could be the
420 mechanisms by which a food/constituent could exert an effect on physical capacity or performance.
421 However, evidence that the food/constituent has an effect on direct measures of physical capacity or
422 physical performance should also be provided.

423 4.2.2.1. Claims on physical performance

424 The scientific evaluation of health claims on physical performance requires sufficient characterisation
425 of the exercise or physical activity under evaluation, of the target population for which the claim is
426 made, and of the conditions of use for the claim. These aspects may be tightly linked to knowledge
427 (or hypotheses) on the mechanisms by which the food/constituent could exert the claimed effect.

428 The exercise or physical activity under evaluation (e.g. the testing conditions under which the
429 food/constituent may affect performance) needs to be characterised by:

430 a) **the mode/type of exercise or physical activity.** The type of exercise (e.g. cycling,
431 running, swimming, weight-lifting) or physical activity (e.g. walking), and whether it is
432 intermittent (e.g. repeated bouts, sprints, repetitions maximum) or continuous (e.g.
433 running at constant speed, cycling at a given cadence) needs to be indicated.

434 b) **the intensity/load** expressed in relative terms using objective measures (e.g. %HRmax,
435 %HRR, %VO2max, %VO2R; %1RM, %MVC);

436 c) **duration**, as minutes of activity in each exercise session. For intermittent exercises, the
437 number and duration of exercise sets/intervals, and the number and duration of rest
438 periods within a session, should also be indicated.

439 Owing to the vast variety of exercise protocols that are being used to test physical performance in
440 humans, additional information may be required for their characterisation. For example, test trials
441 (e.g. a time-limited, self-paced maximal cycling ride) may be preceded by other trials of fixed intensity
442 and duration to increase harmonisation of the pre-test conditions (EFSA NDA Panel, 2018). If that is
443 the case, the pre-test physical exercise should also be described in terms of mode/type, intensity and
444 duration as accurately as possible. Duration and intensity of the exercise should be expressed
445 quantitatively (e.g. duration in minutes, intensity as %VO_{2max}) rather than qualitatively (e.g. short
446 duration, high intensity).

447 The target population for the claim should be sufficiently defined regarding fitness status and/or age
448 (e.g. young athletes, untrained elderly subjects, individuals on resistance training).

449 Outcome variables/methods of measurement of physical performance which may be appropriate for
450 the assessment of the claimed effect in humans in the context of a particular type of exercise or
451 physical activity should be indicated (e.g. time spent to run a certain distance, distance cycled during
452 a time-trial).

453 As for the conditions of use, when the food/constituent should be consumed relative to the physical
454 performance test (e.g. before and/or during exercise), the duration of the intervention, and the need
455 of concomitant training, are important aspects to consider. In this context, training programs should
456 also be characterised in relation to the mode/type (e.g. resistance training; swimming), the
457 intensity/load (where appropriate), the duration of each session, and the frequency (e.g. number of
458 activity sessions per day, week, or month).

459 Cycling, running, swimming or rowing time-trial tests (e.g. a sort of race where individuals try to cover
460 a pre-defined distance as fast as possible) are **task-limited physical activities** that can be used to
461 assess physical performance both in the general population and in athletes practising such sports. The
462 time spent to cover a certain distance, either alone or in combination with the total/mean work/power
463 output developed during the time-trial test, is an appropriate outcome measure of physical
464 performance. The time spent to cover a certain distance depends on individual conditional capacities,
465 like resistance, speed, muscular power and strength, which can be modified (improved) by training.
466 Jumping height is critical for a successful performance in many sport activities, like basketball or
467 volleyball, and can be used as a measure of physical performance in the general population. Throwing
468 distance in javelin throw or shot put are also appropriate task-limited measures of physical
469 performance. However, since these are highly technical field disciplines, the use of these outcomes is
470 limited to the evaluation of physical performance in javelin throwers or shot putter athletes.
471 Conversely, task (distance/work)-limited walking speed tests are appropriate for the substantiation of
472 health claims on reduced loss of physical performance in the elderly, whereas their use to assess
473 changes in physical performance in other population subgroups (e.g. physically competent children
474 and adults, athletes) is limited.

475 Physical performance can also be assessed in the context of **time-limited physical activities** as the
476 maximal distance covered by e.g. cycling, running, swimming or rowing within a predefined time,
477 either alone or in combination with the total/mean work/power output developed during the test.

478 The use of other task-limited or time-limited tests of physical performance, such as walking speed or
479 the number of chair-stands in a certain time, are more appropriate for the substantiation of health
480 claims on the improvement (i.e. reduced loss) of physical performance in the elderly.

481 Some of the outcome variables proposed for the substantiation of claims on physical performance
482 (e.g. changes in VO_{2max}, increase muscle glycogen stores, changes in substrate oxidation, blood
483 lactate concentrations, muscle carnosine stores) are not direct measures of performance, but could be
484 used in support of a mechanism by which the food/constituent could exert the claimed effect.

485 A claim on creatine and increase in physical performance during short-term, high intensity, repeated
486 exercise bouts has been evaluated by the Panel with a positive outcome (EFSA NDA Panel, 2011k).
487 The scientific substantiation of the claim was based on a wealth of human intervention studies which
488 investigated the effects of different creatine doses, patterns of consumption and duration of the

489 supplementation on physical performance during continuous and intermittent physical activities of
490 variable intensity and duration in various population subgroups (men and women of different ages
491 and levels of training); on the results of two meta-analysis summarising the results of the above-
492 mentioned human studies; and on the well-established mechanism by which creatine could exert the
493 claimed effect. The conditions of use for the claim were established based on the results of the human
494 intervention studies (i.e. minimum effective daily dose). The target population was adults performing
495 high-intensity exercise. Conversely, the human studies provided did not show an effect of creatine
496 supplementation on measures of endurance capacity or endurance performance, and there was no
497 consensus on the role of creatine in increasing endurance capacity or performance.

498 A claim on beta-alanine and increase in physical performance during short-duration, high intensity
499 exercise has been evaluated by the Panel with an unfavourable outcome (EFSA NDA Panel, 2014b).
500 Human intervention studies on the effects of beta-alanine on measures of physical capacity (e.g. time
501 to exhaustion and/or total work done and/or physical working capacity at fatigue threshold) in the
502 context of time unlimited physical activities which did not report on any measures of physical
503 performance were excluded from the assessment. The main outcomes investigated in the remaining
504 studies were the time spent to complete a certain task (run, row, swim or cycle a pre-defined
505 distance) and power output in time-limited (all-out or maximal effort) tasks lasting seconds. Overall,
506 no effect of beta-alanine supplementation on measures of physical performance was found.

507 A claim on carbohydrate solutions and increase in physical performance during a high-intensity and
508 long-lasting physical exercise has been evaluated by the Panel with a favourable outcome (EFSA NDA
509 Panel, 2018). The applicant defined high-intensity and long-lasting physical exercises as those being
510 performed at least at 65% of the $VO_{2\max}$, at maximal effort, or during a time trial test for at least 60
511 min. The scientific substantiation of the claim was based on the results of four human intervention
512 studies conducted in non-fasting conditions after a standard meal, which were supported by the
513 results of four intervention studies conducted after an overnight fast and the results of two
514 intervention studies conducted under poorly specified nutritional conditions (e.g. at least a 4-h fast).
515 In these studies, trained participants underwent one or more exercise trials of fixed intensity
516 (generally $\geq 65\%$ of the $VO_{2\max}$ or 70-80% of HR_{\max}) and duration (overall lasting > 60 min), followed
517 by an all-out test in which performance was measured. Different types of exercise (e.g. cycling,
518 running) were used for the pre-test and the test trials, which were either continuous, intermittent, or
519 a combination of these (e.g. a cycling trial before and during the test; four cycling trials of eight
520 intermittent bouts followed by an all-out maximal ride). Carbohydrate solutions (containing glucose,
521 mixtures of glucose and fructose, sucrose and/or maltodextrins) were consumed before and/or during
522 the exercise session. The target population for the claim was defined as healthy trained adults
523 performing high-intensity (at least at 65% of the $VO_{2\max}$) and long-lasting (at least 60 min) physical
524 exercise.

525 A claim on caffeine and an increase in endurance performance has been evaluated by the Panel with a
526 positive outcome (EFSA NDA Panel, 2011j). The Panel took into account that most of the human
527 intervention studies provided using time- or task-limited exercise protocols lasting 60 min or more
528 (including a meta-analysis of five RCTs and three individual RCTs) showed an effect of caffeine
529 consumption on endurance performance at doses of at least 3 mg/kg body weight administered at
530 least one hour prior to exercise, and after at least one day of caffeine withdrawal, in habitual caffeine
531 consumers.

532 **4.2.2.2. Claims on physical capacity**

533 The scientific evaluation of health claims on physical capacity requires sufficient characterisation of the
534 claimed effect and of the target population for which the claim is made.

535 Physical capacity can be assessed in human intervention studies using several exercise protocols as
536 long as they are not task- or time-limited overall, so that subjects can exercise to fatigue. The
537 particular mode/type of exercise (e.g. cycling, running and swimming; single bout vs. repeated bouts)
538 and the conditions in which physical capacity is tested (e.g. intensity of the exercise, speed, power
539 output) should be specified. The exercise time to fatigue under defined conditions can be assessed by
540 using objective (e.g. cycling cadence, running speed) or self-reported (e.g. with a validated
541 questionnaire) measurements of physical fatigue. As for claims on physical performance, the target
542 population for the claim should be sufficiently defined regarding fitness status and/or age. The

543 amount and the time of consumption of the food/constituent relative to the exercise test (e.g. before
544 and/or during exercise) is an important aspect to consider when establishing conditions of use.

545 A claim on caffeine and an increase in endurance capacity has been evaluated by the Panel with a
546 positive outcome (EFSA NDA Panel, 2011j). The Panel took into account that most of the human
547 intervention studies provided using no time-limited exercise protocols (including a meta-analysis of 23
548 RCTs evaluating 39 outcomes and two individual RCTs) showed an effect of caffeine consumption on
549 endurance capacity at doses of at least 3 mg/kg body weight administered at least one hour prior to
550 exercise, and after at least 12 hours of caffeine withdrawal, in habitual caffeine consumers. The Panel
551 also considered that a plausible mechanism by which caffeine could exert the claimed effect is through
552 the reduction of perceived exertion during exercise, a claim which was evaluated in the same scientific
553 opinion with a positive outcome.

554

555 **References**

556 Caspersen CJ, Powell KE and Christenson GM, 1985. Physical activity, exercise, and physical fitness:
557 definitions and distinctions for health-related research. *Public Health Reports*, 100, 126-131.

558 Chamari K and Padulo J, 2015. 'Aerobic' and 'Anaerobic' terms used in exercise physiology: a critical
559 terminology reflection. *Sports Medicine - Open*, 1, 9.

560 Chodzko-Zajko WJ, Proctor DN, Fiatarone Singh MA, Minson CT, Nigg CR, Salem GJ and Skinner JS,
561 2009. American College of Sports Medicine position stand. *Exercise and physical activity for older*
562 *adults. Medicine & Science in Sports & Exercise*, 41, 1510-1530.

563 EFSA NDA Panel (EFSA Panel on Dietetic Products, Nutrition and Allergies), 2009a. Scientific Opinion
564 on the substantiation of health claims related to calcium and growth, development and
565 maintenance of the normal structure and function of bones and teeth (ID 224, 230, 231, 354,
566 3099), muscle function and neurotransmission (ID 226, 227, 230, 235), blood coagulation (ID 230,
567 236), energy-yielding metabolism (ID 234), normal function of digestive enzymes (ID 355), and
568 maintenance of a normal blood pressure (ID 225, 385, 1419) pursuant to Article 13(1) of
569 Regulation (EC) No 1924/2006. *EFSA Journal* 2009;7(9):1210, 27 pp. doi:10.2903/j.efsa.2009.1210

570 EFSA NDA Panel (EFSA Panel on Dietetic Products, Nutrition and Allergies), 2009b. Scientific Opinion
571 on the substantiation of health claims related to taurine and protection of DNA, proteins and lipids
572 from oxidative damage (ID 612, 1658, 1959), energy-yielding metabolism (ID 614), and delay in
573 the onset of fatigue and enhancement of physical performance (ID 1660) pursuant to Article 13(1)
574 of Regulation (EC) No 1924/2006. *EFSA Journal* 2009;7(9):1260, 17 pp.
575 doi:10.2903/j.efsa.2009.1260

576 EFSA NDA Panel (EFSA Panel on Dietetic Products, Nutrition and Allergies), 2009c. Scientific Opinion
577 on the substantiation of health claims related to magnesium and electrolyte balance (ID 238),
578 energy-yielding metabolism (ID 240, 247, 248), neurotransmission and muscle contraction
579 including heart muscle (ID 241, 242), cell division (ID 365), maintenance of bone (ID 239),
580 maintenance of teeth (ID 239), blood coagulation (ID 357) and protein synthesis (ID 364)
581 pursuant to Article 13(1) of Regulation (EC) No 1924/2006. *EFSA Journal* 2009;7(9):1216. [20
582 pp.]. doi:10.2903/j.efsa.2009.1216

583 EFSA NDA Panel (EFSA Panel on Dietetic Products, Nutrition and Allergies), 2010a. Scientific Opinion
584 on the substantiation of health claims related to protein and increase in satiety leading to a
585 reduction in energy intake (ID 414, 616, 730), contribution to the maintenance or achievement of
586 a normal body weight (ID 414, 616, 730), maintenance of normal bone (ID 416) and growth or
587 maintenance of muscle mass (ID 415, 417, 593, 594, 595, 715) pursuant to Article 13(1) of
588 Regulation (EC) No 1924/2006. *EFSA Journal* 2010;8(10):1811, 24 pp.
589 doi:10.2903/j.efsa.2010.1811

590 EFSA NDA Panel (EFSA Panel on Dietetic Products, Nutrition and Allergies), 2010b. Scientific Opinion
591 on the substantiation of health claims related to superoxide dismutase (SOD) and protection of
592 DNA, proteins and lipids from oxidative damage (ID 1785, 1839, 1970, 2304, 2305, 3159, 3160),
593 protection of the skin from photo-oxidative (UV-induced) damage (ID 2305, 3161), reduction of
594 muscle fatigue during exercise (ID 1840), and "effects on immune system" (ID 2304, 3160)
595 pursuant to Article 13(1) of Regulation (EC) No 1924/2006. EFSA Journal 2010;8(10):1753, 20 pp.
596 doi:10.2903/j.efsa.2010.1753

597 EFSA NDA Panel (EFSA Panel on Dietetic Products, Nutrition and Allergies), 2010c. Scientific Opinion
598 on the substantiation of health claims related to whey protein and increase in satiety leading to a
599 reduction in energy intake (ID 425), contribution to the maintenance or achievement of a normal
600 body weight (ID 1683), growth and maintenance of muscle mass (ID 418, 419, 423, 426, 427,
601 429, 4307), increase in lean body mass during energy restriction and resistance training (ID 421),
602 reduction of body fat mass during energy restriction and resistance training (ID 420, 421), increase
603 in muscle strength (ID 422, 429), increase in endurance capacity during the subsequent exercise
604 bout after strenuous exercise (ID 428), skeletal muscle tissue repair (ID 428) and faster recovery
605 from muscle fatigue after exercise (ID 423, 428, 431), pursuant to Article 13(1) of Regulation (EC)
606 No 1924/2006. EFSA Journal 2010;8(10):1818, 28 pp. doi:10.2903/j.efsa.2010.1818

607 EFSA NDA Panel (EFSA Panel on Dietetic Products, Nutrition and Allergies), 2010d. Scientific Opinion
608 on the substantiation of health claims related to beta-alanine and increase in physical performance
609 during short-term high-intensity exercise (ID 436, 1453, 1454, 1459), increase in time to
610 exhaustion (ID 437, 438, 439, 683, 1452, 1455, 1456, 1459) and increase in muscle carnosine
611 stores (ID 1457, 1458) pursuant to Article 13(1) of Regulation (EC) No 1924/2006. EFSA Journal
612 2010;8(10):1729, 18 pp. doi:10.2903/j.efsa.2010.1729

613 EFSA NDA Panel (EFSA Panel on Dietetic Products, Nutrition and Allergies), 2010e. Scientific Opinion
614 on the substantiation of health claims related to soy phosphatidyl choline and maintenance of
615 normal blood cholesterol concentrations (ID 709, 1308, 1630, 1961, 3138, 3187, 4687),
616 contribution to normal fat metabolism (ID 1597), increase in the intestinal absorption of glutamine
617 (ID 4251), faster recovery from muscle fatigue after exercise (ID 4249), improvement of
618 neuromuscular function (ID 4250), contribution to normal cognitive function (ID 710, 1596, 1631,
619 1983) and maintenance of normal neurological function (ID 1596) pursuant to Article 13(1) of
620 Regulation (EC) No 1924/2006. EFSA Journal 2010;8(10):1741, 26 pp.
621 doi:10.2903/j.efsa.2010.1741

622 EFSA NDA Panel (EFSA Panel on Dietetic Products, Nutrition and Allergies), 2010f. Scientific Opinion
623 on the substantiation of health claims related to coenzyme Q10 and contribution to normal energy-
624 yielding metabolism (ID 1508, 1512, 1720, 1912, 4668), maintenance of normal blood pressure
625 (ID 1509, 1721, 1911), protection of DNA, proteins and lipids from oxidative damage (ID 1510),
626 contribution to normal cognitive function (ID 1511), maintenance of normal blood cholesterol
627 concentrations (ID 1721) and increase in endurance capacity and/or endurance performance (ID
628 1913) pursuant to Article 13(1) of Regulation (EC) No 1924/2006. EFSA Journal 2010;8(10):1793,
629 27 pp. doi:10.2903/j.efsa.2010.1793

630 EFSA NDA Panel (EFSA Panel on Dietetic Products, Nutrition and Allergies), 2010g. Scientific Opinion
631 on the substantiation of health claims related to branched-chain amino acids (BCAA) and growth or
632 maintenance of muscle mass (ID 442, 444, 445, 447, 448, 451, 1478), attenuation of the decline
633 in muscle power following exercise at high altitude (ID 443), faster recovery from muscle fatigue
634 after exercise (ID 447, 448, 684, 1478), improvement of cognitive function after exercise (ID 446),
635 reduction in perceived exertion during exercise (ID 450) and "healthy immune system" (ID 449)
636 pursuant to Article 13(1) of Regulation (EC) No 1924/2006. EFSA Journal 2010;8(10):1790, 24 pp.
637 doi:10.2903/j.efsa.2010.1790

638 EFSA NDA Panel (EFSA Panel on Dietetic Products, Nutrition and Allergies), 2010h. Scientific Opinion
639 on the substantiation of health claims related to potassium and maintenance of normal muscular
640 and neurological function (ID 320, 386) and maintenance of normal blood pressure (ID 321)
641 pursuant to Article 13(1) of Regulation (EC) No 1924/2006. EFSA Journal 2010;8(2):1469, 17 pp.
642 doi:10.2903/j.efsa.2010.1469

643 EFSA NDA Panel (EFSA Panel on Dietetic Products, Nutrition and Allergies), 2011a. Scientific Opinion
644 on the substantiation of health claims related to L-carnitine and faster recovery from muscle
645 fatigue after exercise (ID 738, 1492, 1493), skeletal muscle tissue repair (ID 738, 1492, 1493),
646 increase in endurance capacity (ID 4305, 4684), maintenance of normal blood LDL-cholesterol
647 concentrations (ID 1494, 4684), contribution to normal spermatogenesis (ID 1822), "energy
648 metabolism" (ID 1821), and increasing L-carnitine concentrations and/or decreasing free fatty
649 acids in blood during pregnancy (ID 1495) pursuant to Article 13(1) of Regulation (EC) No
650 1924/2006. EFSA Journal 2011;9(6):2212, 24 pp. doi:10.2903/j.efsa.2011.2212

651 EFSA NDA Panel (EFSA Panel on Dietetic Products, Nutrition and Allergies), 2011b. Scientific Opinion
652 on the substantiation of health claims related to L-carnosine and increase in muscle power (ID
653 1824), increase in endurance capacity (ID 1824), "skin" (ID 1825) and maintenance of normal
654 cardiac function (ID 1826) pursuant to Article 13(1) of Regulation (EC) No 1924/2006. EFSA
655 Journal 2011;9(4):2038, 14 pp. doi:10.2903/j.efsa.2011.2038

656 EFSA NDA Panel (EFSA Panel on Dietetic Products, Nutrition and Allergies), 2011c. Scientific Opinion
657 on the substantiation of health claims related to L-glutamine and growth or maintenance of muscle
658 mass (ID 719, 722, 3185), faster restoration of muscle glycogen stores after strenuous exercise
659 (ID 434, 699, 701, 723, 1569), skeletal muscle tissue repair (ID 721), maintenance of normal
660 neurological function (ID 662, 700), increased attention (ID 700, 1570), improvement of working
661 memory (ID 700, 1570), maintenance of defence against pathogenic gastro-intestinal
662 microorganisms (ID 452), gut protein synthesis (ID 701), decreasing gut permeability (ID 701),
663 and stimulating immunological responses (ID 1568) pursuant to Article 13(1) of Regulation (EC) No
664 1924/2006. EFSA Journal 2011;9(6):2225, 27 pp. doi:10.2903/j.efsa.2011.2225

665 EFSA NDA Panel (EFSA Panel on Dietetic Products, Nutrition and Allergies), 2011d. Scientific Opinion
666 on the substantiation of health claims related to ribose and faster recovery from muscle fatigue
667 after exercise (ID 4226) pursuant to Article 13(1) of Regulation (EC) No 1924/2006. EFSA Journal
668 2011;9(6):2257, 14 pp. doi:10.2903/j.efsa.2011.2257

669 EFSA NDA Panel (EFSA Panel on Dietetic Products, Nutrition and Allergies), 2011e. Scientific Opinion
670 on the substantiation of health claims related to taurine and "immune system protection" (ID 611),
671 "metabolism processes" (ID 613), contribution to normal cognitive function (ID 1659),
672 maintenance of normal cardiac function (ID 1661), maintenance of normal muscle function (ID
673 1949) and delay in the onset of physical fatigue during exercise (ID 1958) pursuant to Article 13(1)
674 of Regulation (EC) No 1924/2006. EFSA Journal 2011;9(4):2035, 19 pp.
675 doi:10.2903/j.efsa.2011.2035

676 EFSA NDA Panel (EFSA Panel on Dietetic Products, Nutrition and Allergies), 2011f. Scientific Opinion
677 on the substantiation of health claims related to sodium phosphate and increase in endurance
678 performance (ID 318, 2887) and increase in endurance capacity (ID 318, 2887) pursuant to Article
679 13(1) of Regulation (EC) No 1924/2006. EFSA Journal 2011;9(6):2263, 15 pp.
680 doi:10.2903/j.efsa.2011.2263

681 EFSA NDA Panel (EFSA Panel on Dietetic Products, Nutrition and Allergies), 2011g. Scientific Opinion
682 on the substantiation of health claims related to sodium and maintenance of normal muscle
683 function (ID 359) pursuant to Article 13(1) of Regulation (EC) No 1924/2006. EFSA Journal
684 2011;9(6):2260, 14 pp. doi:10.2903/j.efsa.2011.2260

685 EFSA NDA Panel (EFSA Panel on Dietetic Products, Nutrition and Allergies), 2011h. Scientific Opinion
686 on the substantiation of health claims related to carbohydrate-electrolyte solutions and reduction in
687 rated perceived exertion/effort during exercise (ID 460, 466, 467, 468), enhancement of water
688 absorption during exercise (ID 314, 315, 316, 317, 319, 322, 325, 332, 408, 465, 473, 1168, 1574,
689 1593, 1618, 4302, 4309), and maintenance of endurance performance (ID 466, 469) pursuant to
690 Article 13(1) of Regulation (EC) No 1924/2006. EFSA Journal 2011;9(6):2211, 29 pp.
691 doi:10.2903/j.efsa.2011.2211

692 EFSA NDA Panel (EFSA Panel on Dietetic Products, Nutrition and Allergies), 2011i. Scientific Opinion
693 on the substantiation of health claims related to adenosine triphosphate (ATP) and maintenance of
694 normal muscle function (ID 1946) pursuant to Article 13(1) of Regulation (EC) No 1924/2006. EFSA
695 Journal 2011;9(4):2081, 14 pp. doi:10.2903/j.efsa.2011.2081

696 EFSA NDA Panel (EFSA Panel on Dietetic Products, Nutrition and Allergies), 2011j. Scientific Opinion
697 on the substantiation of health claims related to caffeine and increase in physical performance
698 during short-term high-intensity exercise (ID 737, 1486, 1489), increase in endurance performance
699 (ID 737, 1486), increase in endurance capacity (ID 1488) and reduction in the rated perceived
700 exertion/effort during exercise (ID 1488, 1490) pursuant to Article 13(1) of Regulation (EC) No
701 1924/2006. EFSA Journal 2011;9(4):2053, 24 pp. doi:10.2903/j.efsa.2011.2053

702 EFSA NDA Panel (EFSA Panel on Dietetic Products, Nutrition and Allergies), 2011k. Scientific Opinion
703 on the substantiation of health claims related to creatine and increase in physical performance
704 during short-term, high intensity, repeated exercise bouts (ID 739, 1520, 1521, 1522, 1523, 1525,
705 1526, 1531, 1532, 1533, 1534, 1922, 1923, 1924), increase in endurance capacity (ID 1527,
706 1535), and increase in endurance performance (ID 1521, 1963) pursuant to Article 13(1) of
707 Regulation (EC) No 1924/2006. EFSA Journal 2011;9(7):2303, 24 pp. doi:10.2903/j.efsa.2011.2303

708 EFSA NDA Panel (EFSA Panel on Dietetic Products, Nutrition and Allergies), 2011l. Scientific Opinion
709 on the substantiation of health claims related to bovine colostrum (ID 1472, 1473, 1474, 1475,
710 1476, 1889, 1890) pursuant to Article 13(1) of Regulation (EC) No 1924/2006. EFSA Journal
711 2011;9(4):2048, 15 pp. doi:10.2903/j.efsa.2011.2048

712 EFSA NDA Panel (EFSA Panel on Dietetic Products, Nutrition and Allergies), 2011m. Scientific Opinion
713 on the substantiation of health claims related to β -hydroxy β -methylbutyrate monohydrate (HMB)
714 alone or in combination with α -ketoisocaproic acid (KIC) and reduction of muscle tissue damage
715 during exercise (ID 1577, 1584), increase in lean body mass (ID 1579, 1582, 1583), increase in
716 muscle strength (ID 1578, 1583, 1587), increase in endurance performance (ID 1580, 1581),
717 skeletal muscle tissue repair (ID 1586) and faster recovery from muscle fatigue after exercise (ID
718 1576, 1585) pursuant to Article 13(1) of Regulation (EC) No 1924/2006. EFSA Journal
719 2011;9(6):2227, 23 pp. doi:10.2903/j.efsa.2011.2227

720 EFSA NDA Panel (EFSA Panel on Dietetic Products, Nutrition and Allergies), 2011n. Scientific Opinion
721 on the substantiation of health claims related to casein protein hydrolysates and growth or
722 maintenance of muscle mass (ID 1498), increase in endurance performance (ID 660, 1497) and
723 faster recovery from muscle fatigue after exercise (ID 660, 1497) pursuant to Article 13(1) of
724 Regulation (EC) No 1924/2006. EFSA Journal 2011;9(6):2213, 15 pp. doi:10.2903/j.efsa.2011.2213

725 EFSA NDA Panel (EFSA Panel on Dietetic Products, Nutrition and Allergies), 2012a. Scientific Opinion
726 on Dietary Reference Values for protein. EFSA Journal 2012;10(2):2557, 66 pp.
727 doi:10.2903/j.efsa.2012.2557

728 EFSA NDA Panel (EFSA Panel on Dietetic Products, Nutrition and Allergies), 2012b. Scientific Opinion
729 on the substantiation of a health claim related to citrulline-malate and faster recovery from muscle
730 fatigue after exercise pursuant to Article 13(5) of Regulation (EC) No 1924/2006. EFSA Journal
731 2012;10(5):2699, 13 pp. doi:10.2903/j.efsa.2012.2699

732 EFSA NDA Panel (EFSA Panel on Dietetic Products, Nutrition and Allergies), 2012c. Guidance on the
733 scientific requirements for health claims related to physical performance. EFSA Journal
734 2012;10(7):2817, 9 pp. doi:10.2903/j.efsa.2012.2817

735 EFSA NDA Panel (EFSA Panel on Dietetic Products, Nutrition and Allergies), 2012d. Guidance on the
736 scientific requirements for health claims related to appetite ratings, weight management, and
737 blood glucose concentrations. EFSA Journal 2012;10(3):2604. [11 pp.].
738 doi:10.2903/j.efsa.2012.2604.

739 EFSA NDA Panel (EFSA Panel on Dietetic Products, Nutrition and Allergies), 2013. Scientific Opinion on
740 the substantiation of a health claim related to glycaemic carbohydrates and recovery of normal
741 muscle function (contraction) after strenuous exercise pursuant to Article 13(5) of Regulation (EC)
742 No 1924/2006. EFSA Journal 2013;11(10):3409, 10 pp. doi:10.2903/j.efsa.2013.3409

743 EFSA NDA Panel (EFSA Panel on Dietetic Products, Nutrition and Allergies), 2014a. Scientific Opinion
744 on the substantiation of a health claim related to citrulline-malate and faster recovery from muscle
745 fatigue after exercise pursuant to Article 13(5) of Regulation (EC) No 1924/2006. EFSA Journal
746 2014;12(5):3650, 11 pp. doi:10.2903/j.efsa.2014.3650

747 EFSA NDA Panel (EFSA Panel on Dietetic Products, Nutrition and Allergies), 2014b. Scientific Opinion
748 on the substantiation of a health claim related to beta-alanine and increase in physical
749 performance during short-duration, high-intensity exercise pursuant to Article 13(5) of Regulation
750 (EC) No 1924/2006. EFSA Journal 2014;12(7):3755, 11 pp. doi:10.2903/j.efsa.2014.3755

751 EFSA NDA Panel (EFSA Panel on Dietetic Products, Nutrition and Allergies), 2014c. Scientific Opinion
752 on the substantiation of a health claim related to carbohydrate solutions and maintenance of
753 physical performance during endurance exercise pursuant to Article 13(5) of Regulation (EC) No
754 1924/2006. EFSA Journal 2014;12(10):3836, 8 pp. doi:10.2903/j.efsa.2014.3836

755 EFSA NDA Panel (EFSA Panel on Dietetic Products, Nutrition and Allergies), 2016a. General scientific
756 guidance for stakeholders on health claim applications EFSA Journal 2016;14(1):4367, 38 pp.
757 doi:10.2903/j.efsa.2016.4367.

758 EFSA NDA Panel (EFSA Panel on Dietetic Products, Nutrition and Allergies), 2016b. Scientific opinion
759 on creatine in combination with resistance training and improvement in muscle strength:
760 evaluation of a health claim pursuant to Article 13(5) of Regulation (EC) No 1924/2006. EFSA
761 Journal 2016;14(2):4400, 17 pp. doi:10.2903/j.efsa.2016.4400

762 EFSA NDA Panel (EFSA Panel on Dietetic Products, Nutrition and Allergies), Turck D, Bresson J-L,
763 Burlingame B, Dean T, Fairweather-Tait S, Heinonen M, Hirsch-Ernst KI, Mangelsdorf I, McArdle
764 HJ, Naska A, Neuhäuser-Berthold M, Nowicka G, Pentieva K, Sanz Y, Sjödin A, Stern M, Tomé D,
765 Van Loveren H, Vinceti M, Willatts P, Martin A, Strain JJ, Heng L, Valtueña Martínez S and Siani A,
766 2017. Scientific and technical guidance for the preparation and presentation of a health claim
767 application (Revision 2). EFSA Journal 2017;15(1):4680, 31 pp. doi:10.2903/j.efsa.2017.4680

768 EFSA NDA Panel (EFSA Panel on Dietetic Products, Nutrition and Allergies), Turck D, Bresson J-L,
769 Burlingame B, Dean T, Fairweather-Tait S, Heinonen M, Hirsch-Ernst KI, Mangelsdorf I, McArdle
770 HJ, Naska A, Neuhäuser-Berthold M, Nowicka G, Pentieva K, Sanz Y, Sjödin A, Stern M, Tomé D,
771 Van Loveren H, Vinceti M, Willatts P, Martin A, Strain JJ, and Siani A, 2018. Scientific Opinion on
772 the carbohydrate solutions and contribute to the improvement of physical performance during a
773 high-intensity and long-lasting physical exercise: evaluation of a health claim pursuant to Article
774 13(5) of Regulation (EC) No 1924/2006. EFSA Journal 2018;16(3):5191, 17 pp. doi.org/
775 10.2903/j.efsa.2018.5191

776 Fisher J and Smith D, 2012. Attempting to better define "intensity" for muscular performance: is it all
777 wasted effort? European Journal of Applied Physiology, 112, 4183-4185; author reply 4187-4188.

778 Garber CE, Blissmer B, Deschenes MR, Franklin BA, Lamonte MJ, Lee IM, Nieman DC and Swain DP,
779 2011. American College of Sports Medicine position stand. Quantity and quality of exercise for
780 developing and maintaining cardiorespiratory, musculoskeletal, and neuromotor fitness in
781 apparently healthy adults: guidance for prescribing exercise. Medicine & Science in Sports &
782 Exercise, 43, 1334-1359.

783 Howley ET, 2001. Type of activity: resistance, aerobic and leisure versus occupational physical
784 activity. Medicine & Science in Sports & Exercise, 33, S364-369; discussion S419-320.

785 Norton K, Norton L and Sadgrove D, 2010. Position statement on physical activity and exercise
786 intensity terminology. Journal of Science and Medicine in Sport, 13, 496-502.

787 Winter EM, Abt G, Brookes FB, Challis JH, Fowler NE, Knudson DV, Knuttgen HG, Kraemer WJ, Lane
788 AM, van Mechelen W, Morton RH, Newton RU, Williams C and Yeadon MR, 2016. Misuse of
789 "Power" and Other Mechanical Terms in Sport and Exercise Science Research. Journal of Strength
790 & Conditioning Research, 30, 292-300.

791

792 **Glossary and Abbreviations**

1-RM	One repetition maximum
BCAA	Branched-chain amino acids
DOMS	Delayed-onset muscle soreness
DRV	Dietary Reference Values
HRmax	Maximum heart rate
HRR	Heart rate reserve
MVC	Maximum voluntary contraction
RCTs	Randomised controlled trials
RPE	Rating of perceived exertion
VO2max	Maximum oxygen consumption

793

DRAFT

Appendix A – Health claims on muscle function and physical performance evaluated by the EFSA NDA Panel

Food constituent	Claimed effect	Outcome	Based on the essentiality of nutrients	Scope	References
ATP	Maintenance of normal muscle function	Unfavourable	-	Art. 13(1)	(EFSA NDA Panel, 2011i)
B-alanine	Increase in physical performance during short-term high-intensity exercise	Unfavourable	-	Art. 13(1)	(EFSA NDA Panel, 2010d)
	Increase in time to exhaustion	Unfavourable	-		
	Increase in physical performance during short-duration, high-intensity exercise	Unfavourable	-	Art. 13(5)	(EFSA NDA Panel, 2014b)
Bovine colostrum	Improvement in exercise performance when combined with regular training	Unfavourable	-	Art. 13(1)	(EFSA NDA Panel, 2011i)
	Increase in lean body mass when combined with resistance exercise	Unfavourable	-		
	Recovery following intense exercise	Unfavourable	-		
BCAA	Growth or maintenance of muscle mass	Unfavourable	-	Art. 13(1)	(EFSA NDA Panel, 2010g)
	Attenuation of the decline in muscle power following exercise at high altitude	Unfavourable	-		
	Faster recovery from muscle fatigue after exercise	Unfavourable	-		
	Improvement of cognitive function after exercise	Unfavourable	-		
	Reduction in perceived exertion during exercise	Unfavourable	-		
Beta-alanine	Increase in physical performance during short-duration, high intensity exercise	Unfavourable	-	Art. 13(5)	(EFSA NDA Panel, 2010d)
B-hydroxy B-methylbutyrate monohydrate (HBM) alone or in combination with α -ketoisocaproic acid (KIC)	Reduction of muscle tissue damage during exercise	Unfavourable	-	Art. 13(1)	(EFSA NDA Panel, 2011m)
	Increase in lean body mass	Unfavourable	-		
	Increase in muscle strength	Unfavourable	-		
	Increase in endurance performance	Unfavourable	-		
	Skeletal muscle tissue repair	Unfavourable	-		
	Faster recovery from muscle fatigue after exercise	Unfavourable	-		

Food constituent	Claimed effect	Outcome	Based on the essentiality of nutrients	Scope	References
Caffeine	Increase in physical performance during short-term high-intensity exercise	Unfavourable	-	Art. 13(1)	(EFSA NDA Panel, 2011j)
	Increase in endurance capacity	Favourable	NO		
	Increase in endurance performance	Favourable	NO		
	Reduction in the rated perceived exertion/effort during exercise	Favourable	NO		
Calcium	Maintenance of normal muscle function (contraction)	Favourable	YES	Art.13(1)	(EFSA NDA Panel, 2009a)
Carbohydrate solutions	Maintenance of physical performance during endurance exercise	Unfavourable	-	Art. 13(5)	(EFSA NDA Panel, 2014c)
	Improvement of physical performance during a high-intensity and long-lasting physical exercise	Favourable	NO	Art. 13(5)	(EFSA NDA Panel, 2018)
Carbohydrate-electrolyte solutions	Reduction in rated perceived exertion/effort during exercise	Unfavourable	-	Art. 13(1)	(EFSA NDA Panel, 2011h)
	Enhancement of water absorption during exercise	Favourable	NO		
	Maintenance of endurance performance	Favourable	NO		
Casein protein hydrolysates	Growth or maintenance of muscle mass	Unfavourable	-	Art. 13(1)	(EFSA NDA Panel, 2011n)
	Increase in endurance performance	Unfavourable	-		
	Faster recovery from muscle fatigue after exercise	Unfavourable	-		
Citruline malate	Faster recovery from muscle fatigue after exercise	Unfavourable	-	Art. 13(5)	(EFSA NDA Panel, 2012b, 2014a)
Coenzyme Q10	Contribution to normal energy-yielding metabolism	Unfavourable	-	Art. 13(1)	(EFSA NDA Panel, 2010f)
	Increase in endurance capacity and/or endurance performance	Unfavourable	-		
Creatine	Increase in physical performance during short-term, high intensity, repeated exercise bouts	Favourable	NO	Art. 13(1)	(EFSA NDA Panel, 2011k)
	Increase in endurance capacity	Unfavourable	-		
	Increase in endurance performance	Unfavourable	-		

Food constituent	Claimed effect	Outcome	Based on the essentiality of nutrients	Scope	References
	Improvement in muscle strength (in combination with resistance training)	Favourable	NO	Art. 13(5)	(EFSA NDA Panel, 2016b)
L-carnitine	Faster recovery from muscle fatigue after exercise	Unfavourable	-	Art.13(1)	(EFSA NDA Panel, 2011a)
	Skeletal muscle tissue repair	Unfavourable	-		
	Increase in endurance capacity	Unfavourable	-		
L-carnosine	Increase in muscle power	Unfavourable	-	Art.13(1)	(EFSA NDA Panel, 2011b)
	Increase in endurance capacity	Unfavourable	-		
Glycaemic carbohydrates	Recovery of normal muscle function (contraction) after strenuous exercise	Favourable	YES	Art.13(5)	(EFSA NDA Panel, 2013)
L-glutamine	Growth or maintenance of muscle mass	Unfavourable	-	Art.13(1)	(EFSA NDA Panel, 2011c)
	Faster restoration of muscle glycogen stores after strenuous exercise	Unfavourable	-		
	Skeletal muscle tissue repair	Unfavourable	-		
Magnesium	Maintenance of normal muscle function (contraction)	Favourable	YES	Art.13(1)	(EFSA NDA Panel, 2009c)
Potassium	Maintenance of normal muscle function (contraction)	Favourable	YES	Art.13(1)	(EFSA NDA Panel, 2010h)
Protein	Growth or maintenance of muscle mass	Favourable	YES	Art.13(1)	(EFSA NDA Panel, 2010a)
Ribose	Faster recovery from muscle fatigue after exercise	Unfavourable	-	Art.13(1)	(EFSA NDA Panel, 2011d)
Sodium	Maintenance of normal muscle function (contraction)	Favourable	YES	Art.13(1)	(EFSA NDA Panel, 2011g)
Sodium phosphate	Increase in endurance performance	Unfavourable	-	Art.13(1)	(EFSA NDA Panel, 2011f)
	Increase in endurance capacity	Unfavourable	-		
Soy phosphatidyl choline	Faster recovery from muscle fatigue after exercise	Unfavourable	-	Art.13(1)	(EFSA NDA Panel, 2010e)
	Improvement of neuromuscular function	Unfavourable	-		
	Contribution to normal fat metabolism	Unfavourable	-		
Superoxide dismutase (SOD)	Reduction of muscle fatigue during exercise	Unfavourable	-	Art.13(1)	(EFSA NDA Panel, 2010b)
Taurine	Maintenance of normal cardiac function	Unfavourable	-	Art.13(1)	(EFSA NDA
	Maintenance of normal muscle function	Unfavourable	-		

