

Threshold of Toxicological Concern Approach:

Conclusions and Recommendations of the EFSA/WHO Expert Workshop **DRAFT for public consultation**

These are the conclusions and recommendations as agreed by the experts.
A full workshop report will be published together with the final conclusions and recommendations after
the public comment period.

February 2015

Contents

1. Background	3
1.1 Objectives of the workshop	3
2. Preamble	4
3. Conclusions	5
3.1 General conclusions	5
3.2 The Cramer scheme is fit for purpose	5
3.3 Metabolism is an inherent part of the TTC values	7
3.4 TTC Domain of applicability is sufficiently broad.	7
3.5 The TTC for Genotoxic compounds is sufficiently protective.....	7
3.6 TTC Tiers are sufficient for non-DNA reactive carcinogens and non-cancer endpoints.....	8
3.7 Conclusions on other considerations	8
3.7.1 Point of Departure (POD) and database	8
3.7.2 Exposure considerations.....	9
3.7.3 Expression of TTC values	9
3.8 Overall conclusion.....	9
4. Recommendations	9
4.1 Cramer decision tree.....	9
4.2 Metabolism.....	10
4.3 Expand/modify the overall database and derivation of class thresholds.....	10
4.4 Chemical domain analyses	11
4.5 Point of departure	11
4.6 Exclusion of chemical categories	12
4.7 Specific TTC Values	12
4.8 Combined oral exposure to multiple chemicals and from multiple sources	13

4.9 Acute and other less than lifetime exposures	13
4.10 Infants and children, potentially sensitive life-stages	13
4.11 Additional recommendations	13
5. TTC Decision Tree.....	14
6. References	18
Appendix 1 – Explanations to Cramer scheme	19
Annex 1: List of participants to the Stakeholder hearing.....	24
Annex 2: List of participants of expert workshop.....	28
Annex 3: Agenda of expert workshop.....	30

1 **1. Background**

2 In light of ever improving methods in analytical chemistry, it is to be expected that many more
3 unintended chemicals will be detected in our environment, including food and drinking water, as well as
4 in our bodies. To allow for a health risk assessment of these exposures when there are insufficient
5 chemical-specific data, other methods need to be applied to estimate the potential human health impact
6 and to make informed risk management decisions. The Threshold of Toxicological Concern (TTC) is a
7 methodology that may be used to assess potential human health concerns for a chemical based on its
8 chemical characteristics and estimated exposure when chemical-specific toxicity data are scarce or absent.

9 Overall, the TTC approach integrates data on exposure, chemical structure, metabolism, and toxicity
10 consistent with standard risk assessment principles. It has been proven to be a pragmatic, scientifically-
11 valid approach for the safety evaluation of chemicals with relatively low oral exposure and for which
12 limited chemical-specific data are available. Application of a science-based systematic approach will
13 allow risk managers to prioritize actions and target further testing and evaluation strategies. It is important
14 that scientific research continues to provide refinement of and improvement to the TTC approach in order
15 to continue to assure its adequacy, appropriate application, and usefulness for public health protection.

16 *1.1 Objectives of the workshop*

17 EFSA and WHO initiated a project that intends to provide recommendations as to how the existing TTC
18 framework may be improved and expanded by updating/revising the Cramer classification scheme
19 (Cramer et al., 1978; hereafter referred to as the Cramer scheme or Cramer decision tree) and extending
20 the TTC approach, thereby building on existing and ongoing work in this area. A call for data was issued
21 by WHO in 2013 and information was collected regarding new proposals and on-going scientific work in
22 the area.

24 The overall goal of the project is to develop a globally harmonised decision tree for a tiered approach on
25 the application of the TTC in the risk assessment of chemicals.

26 To gain the broadest possible input for this project, a stakeholder public hearing was organised on 2
27 December 2014 in Brussels, where around 100 people representing NGOs, industry, government,
28 academia and consumer organisations participated (list of participants is included in annex 1).
29 Stakeholders who had submitted a written request, were given the opportunity to express their views with
30 short presentations that have been published on EFSA's website (link [here](#)). The points raised by the
31 stakeholders were considered in the subsequent expert meeting held on 3-5 December for which an open
32 call for experts was published on WHO's website in August 2014, deadline for submission of expression
33 of interest on 30 September 2014.

34 From the 50 applications received, 26 participants were selected to participate in the workshop according
35 to the expertise needed and published in the call, taking regional and gender aspects into account. A list
36 of participants is included in annex 2. Most of the participants in the expert workshop also participated in
37 the stakeholder hearing held the day before. The experts completed a declaration of interests and a
38 declaration of confidentiality that were evaluated by WHO according to the organisations' rules. WHO
39 concluded that the interests declared did not warrant experts to be excluded from the discussion at the
40 meeting. Five experts, who were found to have potential conflicts of interests, did not take part in the
41 development of conclusions and recommendations. Dr Diane Benford served as Chairperson of the
42 workshop and Dr Gordon Barrett and Dr Kristi Jacobs served as rapporteurs. The agenda as adopted is
43 included in annex 3.

44 The outcome of the workshop is a series of conclusions and recommendations agreed by the expert group.
45 The document, in the present form, is published for public consultation for a period of six (6) weeks on
46 the WHO and EFSA websites. Comments received will be considered and addressed by the expert group.
47 A final workshop report will then be published by mid-2015.

48 During the workshop, experts were divided in two breakout groups: the first group addressed questions in
49 relation to the Cramer classification scheme and underlying scientific concepts; the second group
50 addressed questions in relation to the TTC values and an overall TTC decision tree. Discussions from the
51 breakout groups were presented to and discussed by the whole expert group. The main questions
52 addressed by the experts are summarised below:

53 *Cramer classification Scheme*

54

- 55 • Is the framework in the Cramer classification scheme for sorting chemicals into structural classes
56 sufficient and representative of the most up-to-date scientific knowledge?
- 57 • Does the scientific evidence support replacing or expanding the potency classes of the Cramer
58 Scheme with a larger number of structural sub-categories? Are there other revisions to the Cramer
59 classification scheme that are supported by the available scientific database?
- 60 • How should Class II be treated (eliminated, strengthened etc.)?
- 61 • Are there classes of chemicals, other than those already excluded, that the TTC approach should not
62 be used to evaluate?
- 63 • Can the Cramer Classification Scheme be redesigned in order to avoid the high degree of overlap in
64 NOEL/NOAEL values between Classes I and III?
- 65 • Should phenols and primary amines be reassigned to Class II, based on outlier analysis of their
66 NOAEL/NOEL distributions, as proposed in Tluczkiewicz et al. (2011)?
- 67 • How can genotoxicity, ADME, and mechanism of action data be used to refine the classification
68 scheme and/or class toxicity thresholds?

69

70 *Background/Scientific Principles/Criticisms*

71

- 72 • Is the TTC concept based on scientific risk assessment principles and sufficiently conservative for
73 public health protection?
- 74 • What is the TTC approach intended for and when should it not be used?
- 75 • Can the TTC framework be modified to take possible effects of low-dose mixtures into account?
- 75 • Can the TTC approach take into account non-monotonic/low-dose only effects?

76 **2. Preamble**

77 The TTC approach is a screening and prioritizing tool for the safety-assessment of chemicals when hazard
78 data are incomplete. Exposures exceeding the relevant TTC value are not necessarily associated with any
79 health concerns but rather are flagged as warranting further evaluation. This may lead to a decision that
80 for some chemicals further work and risk mitigation steps are necessary while for others exposure is so
81 low that the probability of adverse health effects is also low and no further data are necessary. In
82 principle, the TTC approach can be applied in any area of chemical risk assessment for which human
83 exposures are low, whether exposure is from deliberate addition or due to contamination.

84 TTC provides a health protective approach in situations where it is not feasible to acquire chemical-
85 specific data (e.g. impurities and breakdown/reaction products in food additives, trace contaminants in
86 food and water), where evaluation of a large number of compounds with low exposure is required (such
87 as flavouring substances), in prioritization of large numbers of compounds where resources are limited
88 (e.g. contaminants in surface water), or when a rapid safety assessment (chemical food safety incidents) is
89 needed.

90 However, TTC is not applicable when compound-specific assessment and toxicity data are required under
91 existing regulations, and available compound-specific toxicity data should be examined except in certain
92 priority-setting or screening cases (see section 3.1). Moreover, specific classes of chemicals are excluded
93 from the TTC approach, either because of toxicological considerations or for lack of representation in the
94 underlying database (see section 3.4).

95 There are generic questions in the risk assessment of chemicals that are under discussion in the scientific
96 community, sometimes for decades (e.g. the existence of a toxicological threshold dose below which no
97 adverse effect is produced, low-dose effects due to non-monotonic dose-response relationships, mixtures,
98 interspecies extrapolation, adequacy of endpoints tested, fetal origin of adult disease, epigenetics, dose-
99 metric, extrapolation from subchronic to chronic studies, endocrine disruption). Such questions apply also
100 to the TTC approach but are not specific to it and discussion on such generic risk assessment
101 considerations are not in the scope of this report. The present report is also not intended to be a review of
102 all publications on the development and application of the TTC approach and therefore only a few
103 references are included. For recent, comprehensive reviews of the TTC approach the reader is referred to
104 EFSA (2012) and Dewhurst and Renwick (2013).

105 3. Conclusions

106 3.1 General conclusions

107 The TTC approach as currently applied is a valid, science-based screening tool useful for the
108 prioritisation of chemicals and for more general applications in chemical risk assessment. The TTC
109 approach was developed for chemicals where human exposure is estimated to be very low and chemical-
110 specific toxicological data are lacking. As such, conservatism was built into the approach to establish
111 sufficiently protective TTC values. It should be noted that the TTC approach is not appropriate to assess
112 the safety of chemicals for which a toxicological data-package is required. In any risk assessment all data
113 available on the chemical under consideration should be evaluated, and application of the TTC approach
114 is no different in this aspect, although in certain circumstances (e.g. prioritisation of a large number of
115 chemicals) it could be acceptable to perform a preliminary screening assessment based on the TTC
116 without evaluating all the data on each chemical as a first step. The TTC approach is not intended to
117 supersede evaluation of available toxicological data, as compound-specific data are generally preferred
118 for the purposes of a robust risk assessment. Moreover, when a class of structurally similar chemicals are
119 to be assessed and a well-studied lead chemical is available, this lead chemical can be used for the
120 assessment of the structural analogues by means of read-across, however, depending on the context a
121 TTC approach could also be used as a first step. This issue had already been raised by Kroes et al. (2004):
122 *“Prior to application of the TTC approach, all available toxicity data on the compound should be*
123 *collected and evaluated (Renwick et al., 2003). The TTC approach should be used only in cases where the*
124 *available chemical-specific data are inadequate for normal risk characterisation. Any available*
125 *information on the compound should be considered at the same time as the decision tree is applied, to*
126 *ensure that any decision is compatible with the available data. The TTC is not designed to replace*
127 *conventional approaches to risk characterisation for established and well-studied chemicals, such as*
128 *food additives and pesticides.”* It was further recognised in that publication that in-depth expert
129 knowledge is needed to reaching a conclusion to some of the questions in the Kroes et al. (2004) decision
130 tree: *“The decision tree and the TTC principle are designed as structured aids to expert judgement and*
131 *should be applied only by those who have a sufficient understanding of toxicology principles and*
132 *chemical risk assessment.”* The expert group concurred with this assessment.

134 3.2 The Cramer scheme is fit for purpose

135 The expert group concluded that major revisions to the tree are not warranted, as the Cramer decision tree
136 is well suited for its intended purpose and when used in conjunction with the associated TTC values is
137 sufficiently protective. The group acknowledged that the sorting process of the Cramer decision tree does
138 work, is reproducible and has been validated by *post hoc* comparison with numerous newer databases.
139 None of the alternative classification schemes developed in various published analyses have turned out to
140 be significantly better than the Cramer scheme. In consequence, the expert group concluded that there is
141 no scientifically-based justification for major restructuring of the decision tree.

143 The Expert group recommended minor suggestions to modify the Cramer decision tree to remove
144 ambiguity, improve its clarity and to harmonize with the electronic tool Toxtree. The expert group

145 recognised that there are a number of efforts underway, including those of the US Food and Drug
146 Administration (FDA) and the International Organization of the Flavour Industry (IOFI), that propose
147 significant modifications to the Cramer decision tree, indicating that the developers interpret a need for
148 revision of the scheme. Major modification to and restructuring of the Cramer decision tree could result
149 in a situation in which the original TTC values derived by Munro *et al.* (1996) and subsequently validated
150 using different databases may be altered, and the implications for existing safety assessments need to be
151 evaluated. Because the Cramer decision tree has been applied for the evaluation of flavouring agents for
152 over 15 years, there is a need for broad acceptance of any future changes.

153 The expert group noted that the reasoning underlying the development of individual nodes in the Cramer
154 decision tree in the 1970s is not transparent. Any revisions to the existing decision tree or the creation of
155 any new decision tree(s) should be thoroughly documented by capturing the scientific rationale for
156 creating branch points, and the questions associated with those branch points. This process would ensure
157 transparency of the development process and provide a strong foundation for peer review and validation.
158 In addition, any revisions to the current decision tree or the development of a new decision tree should be
159 discussed and agreed upon widely at an international level and the resulting output freely available as an
160 expert system.

161 The Cramer *et al.* (1978) decision tree has been computerised in the Toxtree computer program and is
162 described as the Cramer tree with extensions (version 2.6.0). The modified Cramer decision tree
163 proposed by this expert group incorporates some, but not all aspects of the Toxtree extensions (please
164 refer to Appendix I for additional details).

165 In the Joint EFSA/WHO stakeholder meeting on TTC on 02 December, 2014, stakeholders emphasized
166 that there would be great value in having a publically available database underlying the TTC approach
167 that could be consistently peer reviewed. The expert group concurred but noted in this regard that all of
168 the original data collected by Munro in support of the original TTC were peer-reviewed and publically
169 available at that time. However, some of these original studies may no longer be available.

170 Because there are a relatively small number of compounds that are classified in Cramer Class II, it has
171 been previously proposed to evaluate under the Class III TTC threshold all the chemicals categorized as
172 Class II (EFSA, 2012).

173 Kroes *et al.* (2004) proposed removing organophosphates (OPs) and carbamates from Cramer Class III
174 and assigning them their own TTC value of 18 µg/person per day, which is considered sufficiently
175 conservative to cover the anti-cholinesterase activity of these substances. However, the expert group is
176 aware of NOAELs for carbamates derived from studies involving humans that indicate these substances
177 are less potent in humans than in rodents. As such, the group concluded that they should remain in
178 Cramer Class III.

179 The group supported a separate class threshold for OPs. However, the group concluded that the current
180 Class III threshold value should be maintained and should not be recalculated by excluding the OP
181 chemicals from Class III. The rationale for not recalculating the threshold for Class III at this time is
182 twofold: (i) to maintain the current level of health protectiveness; and (ii) the evaluation of another
183 database (RepDose) that does not contains OPs or carbamates yielded a TTC value for Class III that is
184 similar to the Munro value. Therefore, it was considered premature to change the threshold at this time.

185 Some modifications to the Cramer decision tree were suggested by Tluczkiewicz *et al.* (2011) based on a
186 combined assessment of four databases of repeated-dose toxicity studies (RepDose, Munro, ToxRef, and
187 Toxbase). Analyses of the tails of the Cramer Class I, II and III distributions for the presence of different
188 functional groups showed that phenolic compounds and primary amines had higher ratios of outliers to
189 non-outliers (i.e. a larger proportion were in the tail of the distribution). However, interpretation of these
190 observations is complicated by the fact that some of the outlier phenols and primary amines contained
191 other structural characteristics, which could have resulted in assignment to Class III before the phenol or
192 amino function would have been considered. In consequence, it is premature to reassign these functional
193 groups to Cramer Class II.

194 The expert group concluded that additional consideration of Question 22 of the Cramer scheme, which
195 asks if a substance is “a common component of food or structurally closely related to a common
196 component of food” is required. It was generally agreed that it would be preferable to delete this
197 question, since it is not well defined what ‘common component of food’ means, nor is the question related
198 to specific structural considerations that can be linked to toxicological properties. However, since Q22 is
199 linked with many other questions (12, 14, 15, 20, 26, 32), the consequences of removing this question
200 from the decision tree need to be carefully evaluated, and the implication for Class II considered when
201 this is re-evaluated in the future with an expanded database.

202 *3.3 Metabolism is an inherent part of the TTC values*

203
204 Analysis of the Cramer classification scheme and the TTC values used in the Kroes et al. (2004) decision
205 tree shows that metabolism (metabolic bioactivation/metabolic detoxication and hindered metabolism as
206 well as the potential for rapid elimination) is an inherent critical component of the TTC approach that
207 contributes to the assignment of chemicals to a particular structural class.

208 The experts also discussed whether the Cramer decision tree could be used in the evaluation of plant-
209 metabolites of pesticide. It was concluded by the expert group that plant metabolites of pesticide can be
210 evaluated by the TTC concept including the Cramer decision tree. For pesticide plant metabolites of
211 unknown structure, the group recommended these substances be placed directly in Cramer Class III,
212 provided it can be reasonably argued that there is no concern for genotoxicity based on knowledge of the
213 parent compound.

214 *3.4 TTC Domain of applicability is sufficiently broad.*

215
216 The expert group considered the available chemical domain assessments conducted on the TTC dataset
217 sufficient to conclude that the domain of applicability of the chemicals in the TTC is sufficiently robust;
218 but acknowledged that some known categories are not in the TTC database. The TTC approach should be
219 limited to the evaluation of the structure(s) that are represented by the chemicals in the database used to
220 derive the respective TTC value; therefore, the TTC approach should not be used for the following
221 categories of chemicals: inorganic chemicals, metals and organometallics, proteins, steroids, organo-
222 silicon compounds, chemicals that are predicted to bio-accumulate, nanomaterials, radioactive substances.
223 The TTC value for chemicals with certain structural alerts for genotoxic carcinogenicity may not be
224 sufficiently protective for high potency carcinogens (i.e. aflatoxin-like, azoxy- or N-nitroso-compounds
225 and benzidines) and therefore, these classes of compounds should also be excluded from the current TTC
226 approach.

227 The current database has been evaluated and found to sufficiently cover a wide range of chemicals.
228 Testing the databases with alternative methods available for performing chemical domain analyses would
229 add additional evidence for concluding that the structure of a chemical under consideration is represented
230 by the chemicals in the database used to derive the respective TTC value.

231 *3.5 The TTC for Genotoxic compounds is sufficiently protective.*

232
233 The TTC value for substances with certain structural alerts for genotoxicity and carcinogenicity in the
234 Kroes et al. (2004) decision tree is considered adequate and fit for purpose since it was derived from the
235 largest available rodent carcinogenicity database, and was calculated by deriving the exposure at which
236 the vast majority of chemicals with TD₅₀ values would not exceed the level of 1 in 10⁶ risk for
237 carcinogenesis. The values in the CPDB database are derived assuming linearity of the dose response
238 curve by extrapolation from the lowest TD₅₀ for each chemical. In addition, it was assumed that any
239 chemical with a relevant structural alert for genotoxicity could be a human carcinogen, irrespective of the
240 human relevance of the tumour observed in the rodent database or a possible threshold mode of action.
241 Although further expansion of the CPDB is desirable, it is not considered a priority as it is not expected
242 that the overall distribution of the TD₅₀ would significantly change.

243 The expert group considered whether alternative approaches to establishing TTC values for carcinogens
244 such as using BMD/MOE values or using the geometric mean of the TD₅₀ in cases where several studies
245 are available are warranted. The group concluded that the current approach is reasonable since it relies on
246 linear low dose extrapolation to a 1 in 10⁶ risk which is generally regarded as a conservative approach to
247 evaluating carcinogenic risk.

248 High potency carcinogens should be evaluated case-by-case. For high potency carcinogens, any TTC
249 value(s) derived to adequately ensure low concern for health would be extremely low and possibly
250 impracticable due to difficulties in obtaining reliable exposure data.

251 *3.6 TTC Tiers are sufficient for non-DNA reactive carcinogens and non-cancer endpoints.*

252
253 Carcinogens which are not directly DNA reactive can be considered to have a threshold mode of action
254 and, in general, NOAELs for these are in the same range or higher than NOAELs for other types of
255 toxicity. Thus, EFSA (2012) concluded that TTC values that are higher than the value of 0.15
256 µg/person/day are appropriate for any chemical where the weight of evidence for DNA reactivity is
257 negative. The expert group concurred with this statement.

258 For non-cancer endpoints the Munro *et al.* (1996) database covers a range of chemical classes and end-
259 points relevant to the vast majority of chemicals. This database is considered adequate and fit for purpose,
260 and is additionally supported by TTC values derived from several subsequent analyses of different
261 chemical datasets which result in TTC values similar to those derived using the Munro database..
262 Classification by the Cramer decision tree is based on the single functional group with the greatest
263 potential toxicity present in the molecule. Most complex chemicals are assigned to Class III, the class
264 with the lowest TTC value of the 3 Cramer classes. The group acknowledges that there are very few
265 chemicals in Class II and therefore the TTC value for this class is not well supported within the current
266 TTC approach. Merging the different non-cancer databases would increase the power of the calculated
267 respective TTC values.

268 *3.7 Conclusions on other considerations*

269 *3.7.1 Point of Departure (POD) and database*

270
271 The current TTC database for non-cancer effects is based on the lowest NOELs or NOAELs in mg/kg
272 bw/day identified in repeated dose animal studies. Newer approaches to dose-response analysis, such as
273 BMD derivations, determining doses on a molar basis, or using allometric assessment factors, can be seen
274 as having greater scientific rigour but the expert group concluded that they would not significantly affect
275 the approach or add real benefit.

276 A merge of the different non-cancer databases is desirable as it would increase the statistical power and
277 improve transparency in the database. If a new non-cancer database is generated, then the “overall
278 TTC’s” should be recalculated. It remains to be seen whether after merging the different databases the
279 number of chemicals in the Cramer Class II increases to a more representative number of compounds as
280 seen for the other classes. Should the recalculated TTC values for the respective classes increase, it needs
281 to be determined if the new TTC values can still be considered sufficiently protective for adverse effects
282 on specific endpoints, such as reproductive or developmental toxicity, as has been demonstrated for
283 current TTC values.

284 In order to keep the future use of TTC contemporary with evolving databases, it would be ideal to have a
285 centralized dataset that would be continually maintained to allow inclusion of new data as they become
286 available. This would keep the chemical domain of the TTC dataset from stagnating as well as ensuring
287 the current data are available for use and that any TTC values derived are representative of the current
288 state of science. There would be a need for an organisation or group (preferably independent) to manage
289 the overall database to ensure consistency, quality, public access and maintenance.

290 Combining different databases would be facilitated by agreement on the method of dose-response
291 analysis and the appropriate dose-metric should be harmonised. Application of the TTC approach would
292 benefit from the development of a standardised approach to defining chemical domain and agreed
293 method(s) to identify structural alerts for DNA reactivity.

294 To determine the applicability of TTC to a certain chemical or group of chemicals, it is important to
295 identify the key functional groups of interest and determine if those groups are within the TTC database.
296 The ability to readily interrogate the databases supporting TTC would be of considerable benefit in this
297 area.

298 *3.7.2 Exposure considerations*

300 As with any risk assessment, when using the TTC approach, exposure to a chemical from all sources (i.e.
301 exposure from all relevant pathways and routes) should be considered, if possible. In a tiered approach to
302 assessment of combined exposures to multiple chemicals, proposed by the International Programme on
303 Chemical Safety (Meek et al., 2011), a case study on lower tier assessment demonstrated how TTC values
304 could be used as the hazard point of departure for groups of substances belonging to specific Cramer
305 classes and combined with their exposure potential used to evaluate the need for further combined
306 exposure assessment.

307 Pending the outcome of the EFSA project on low-dose effects and non-monotonic dose-response, it is
308 premature to make conclusions on this issue, and the TTC is not different from other methods of risk
309 assessment in this respect.

310 *3.7.3 Expression of TTC values*

312 TTC values should be expressed in terms of $\mu\text{g}/\text{kg}$ body weight/day to allow for application of the TTC
313 approach to the whole population, including infants and children. Since the $\mu\text{g}/\text{person}$ values were
314 initially derived by multiplying by a default adult body weight of 60kg, the TTC values in $\mu\text{g}/\text{kg}$ body
315 weight are obtained by dividing the $\mu\text{g}/\text{person}$ values by 60. In cases where the estimated exposure is in
316 the range of the TTC value, additional consideration needs to be given on a case-by-case basis.

317 *3.8 Overall conclusion*

319 The TTC approach is a valid screening tool, based on scientific risk assessment principles, to assess low
320 dose chemical exposures and to distinguish those for which further data are required to assess the human
321 health risk from those with no appreciable risk. The scope of this meeting was to provide
322 recommendations on how the method can be refined considering the toxicological databases and the
323 Cramer *et al.* (1978) and Kroes *et al.* (2004) decision trees.

324 **4. Recommendations**

325 *4.1 Cramer decision tree*

- 327 • The expert group concluded that the sorting process of the Cramer decision tree does work; it is
328 reproducible and has been validated by applying it to numerous newer databases, and therefore no
329 major restructuring is recommended. However, the group acknowledges that the toxicological
330 rationale underlying the development of each Cramer decision tree question is not provided
331 and, therefore, it is not possible to address whether the decision tree reflects the most up-to-
332 date scientific knowledge. Should the Cramer scheme be modified in the future, the
333 scientific rationale for each question should be made explicit for increased transparency.
- 335 • The expert group is aware of efforts, including those of the US FDA and the International
336 Organization of the Flavour Industry (IOFI), that propose significant modifications to the Cramer

337 decision tree. It is the recommendation of the expert group that once these revisions are peer-
338 reviewed and validated, any new schemes need to be discussed and agreed upon widely at the
339 international level before implementation.

340

- 341 • The group recommended only minor changes to a small number of Cramer questions to clarify
342 and remove ambiguity (see Appendix I). It is recommended that the proposed minor changes to
343 the Cramer et al. (1978) decision tree as outlined in Appendix I are implemented in Toxtree.
- 344
- 345 • After review of Question 22 of the current Cramer scheme, the expert group recommended
346 further consideration of this question as the term “common component of food” is not sufficiently
347 defined, nor is the question related to specific structural considerations that can be linked to
348 toxicological properties. The expert group recommended that the implications of deletion of Q22
349 be evaluated and if minor the question should be deleted. However, if this is not feasible at this
350 point, clear and harmonised criteria of what ‘common component of food’ means need to be
351 developed, and lookup tables within Toxtree updated in accordance with the criteria.
- 352
- 353 • It is recommended that phenols and primary amines not be reassigned to Class II, based on an
354 outlier analysis of their NO(A)EL distributions, at this time. The group recommended that for
355 such reassessments an enlarged and consolidated database is needed to assess the toxicity data for
356 these structural groups. This will allow for consideration of sorting into different toxicity tiers
357 based on appropriate modification of the decision tree.
- 358
- 359 • The working group recommended that Cramer Class II continue to be used and applied to the
360 TTC approach. The working group recommends that the applicability of Class II be reviewed
361 once the different non-cancer databases have been merged as this may enrich and increase the
362 confidence in the class. It was also recommended that this review include an evaluation of the
363 distributions to determine if there is a need to modify the decision tree to strengthen the
364 specificity of sorting to Class II.
- 365
- 366 • The expert group recommended caution in developing additional classes to ensure that the
367 process does not introduce too much granularity into the decision tree such that the end product
368 becomes a “read-across” tool rather than a screening tool.
- 369
- 370 • The Cramer scheme has been criticized as lacking specificity due to the high degree of overlap in
371 NO(A)EL values between Classes I and III. However, the expert group emphasized that overlap
372 per se is not a deficiency of the scheme but in fact contributes to its overall conservatism, and that
373 only clear differentiation at the 5th percentiles is critical. The group recommended that the
374 distributions be re-evaluated following the development of any new or consolidated/merged
375 databases.
- 376

377 **4.2 Metabolism**

- 378 • The experts considered that mammalian metabolism is an inherent and critical component of the
379 current TTC approach and no additional measures to incorporate metabolism were recommended.
- 380
- 381 • The group also recommended that plant metabolites of pesticides of known structure could
382 proceed down the decision tree, and that metabolites of unknown structure be placed directly in
383 Class III provided there are no concerns for genotoxicity based on knowledge of the parent
384 structure.
- 385

386 **4.3 Expand/modify the overall database and derivation of class thresholds**

- 387 • The expert group recommended that a permanent repository for data supporting TTC and the
388 Cramer decision tree should be created and a body responsible for holding the data should be

389 identified. In addition to the development of a centralized database for supporting TTC values, it
390 is recommended that minimum criteria for inclusion of data in the TTC databases should be
391 developed and published. At a minimum, it is recommended that supporting data should be of
392 sufficient detail to recreate decisions on NO(A)ELs and LO(A)ELs.
393

- 394 • It is recommended that the different non-cancer databases should be merged and made public as it
395 would increase the power, transparency, and the confidence in the TTC values. Once the
396 databases are merged:
 - 397 ○ It is recommended that any new combined databases select the lowest appropriate NOAEL
398 per compound as a starting point for deriving TTC levels as this approach will provide the
399 most reasonably conservative values.
 - 400 ○ BMD levels could be considered for inclusion in cases where a study has not identified a
401 NOAEL.
 - 402 ○ Future combined datasets should consider the most up to date science, such as subchronic to
403 chronic extrapolation factors, allometric scaling, *etc*, when selecting NOAEL levels for the
404 derivation of TTC values.
 - 405 ○ Recalculating the “overall TTC’s” for the respective classes is necessary:
 - 406 ➤ OPs should be analysed separately and the consequence for the threshold value for class
407 III evaluated,
 - 408 ➤ the impact on specific endpoints (e.g. developmental toxicity) needs to be checked,
 - 409 ➤ it should be checked whether the number of chemicals in the Cramer Class II is sufficient
410 to provide a robust TTC value.
- 411
- 412 • Expanding the CPDB (e.g with the TOXREF database) would enhance the power and range of
413 chemical structures covered. However, this is not considered a priority as it would be resource
414 demanding and is not expected to significantly affect the approach.
- 415
- 416 • If a revision of the carcinogenicity/genotoxicity based TTC were to be envisaged, it is
417 recommended considering approaches other than TD₅₀-based linear extrapolation, which may be
418 overly conservative.

419 *4.4 Chemical domain analyses*

- 420 • The current database has been evaluated and found to sufficiently cover a wide range of
421 chemicals, and although additional analyses could be performed, this is not considered a high
422 priority. However, it is recommended that any new combined database be tested using chemical
423 domain analyses methods. These analyses are considered to be informative and would provide
424 further reassurance that the databases cover a wide range of chemical structures, but are not
425 considered to be a high priority.
- 426 • In addition, it is recommended that a tool for evaluating whether a chemical, or group of
427 chemicals, is represented in the underlying TTC databases be developed once the databases have
428 been consolidated. This is likewise not considered a high priority.

429 *4.5 Point of departure*

- 430 • A reanalysis of all toxicological studies present in the current TTC databases using BMD analysis
431 is not recommended as it would be very resource intensive and not all studies have sufficient
432 datasets to allow for BMD analysis. A reanalysis using allometric scaling is also not
433 recommended for the current databases, as the current approach already incorporates a factor for
434 interspecies extrapolation that is appropriate for a screening tool.
- 435
- 436 • The inclusion of sub-chronic studies in the non-cancer database is supported, and when
437 extrapolating from subchronic to chronic study duration in rodents the group finds the current
438 extrapolation factor of 3 is appropriate for a screening tool.

439

440 • The expert group acknowledged that expressing TTC values on a molar basis may have greater

441 scientific rigour, but recommended maintaining the units in $\mu\text{g}/\text{kg bw/day}$ for greater consistency

442 with other health-based guidance values.

443 *4.6 Exclusion of chemical categories*

444

445 • The application of the TTC approach is not recommended for the following categories of

446 chemicals: High potency carcinogens (i.e. aflatoxin-like, azoxy- or N-nitroso-compounds,

447 benzidines), compounds not adequately covered in the database, inorganic chemicals, metals and

448 organometallics, proteins, steroids, nanomaterials, radioactive substances and organo-silicon

449 compounds or chemicals that are known or predicted to bioaccumulate.

450

451 • The applicability of the TTC as a tool for the evaluation of mixtures that are not fully

452 characterised is only endorsed if sufficient information or analysis is available to confirm that the

453 mixture does not contain compounds from the exclusion classes, in which case the unknown

454 component could be treated as potentially genotoxic and the TTC of $0.0025 \mu\text{g}/\text{kg bw}$ would

455 apply. However, if it can also be determined that there are no concerns for genotoxicity, the

456 substance may be placed directly in Cramer Class III.

457

458 • TTC values for Cramer Classes are considered sufficiently protective for adverse effects on

459 reproduction and development and no changes are recommended. However, the TTC values

460 would need reconsideration should the point of departure or the overall database be changed.

461

462 • Specific consideration was given to pyrrolizidine alkaloids (PAs), since they have been suggested

463 as an exclusion class. The group considered the available information as insufficient at this point

464 and recommended the issue to be reconsidered once potency estimates for additional PAs are

465 available¹.

466 *4.7 Specific TTC Values*

467

468 • The expert group recommended organophosphates be treated as a separate class within the TTC

469 approach, with a threshold value of $0.3 \mu\text{g}/\text{kg body weight per day}$. It is also recommended not to

470 group carbamates with organophosphates and to address them within the standard decision tree

471 (Class III).

472

473 • Despite comprising a distinct class with a specific TTC value, the group recommends that prior to

474 consolidation and review of the non-cancer databases, the organophosphate NO(A)ELs should

475 remain in Cramer Class III in order that the current threshold for this class be maintained.

476

477 • The group did not recommend the setting of an additional generic TTC value(s) to cover high

478 potency carcinogens and recommended evaluation on a case-by-case basis.

479

480 • The group recommended that the Threshold of Regulation value of $1.5 \mu\text{g}/\text{person/d}$ in the Kroes

481 et al. (2004) decision tree should be removed as although it is of historical importance it is of

482 little practical application.

483

¹ JECFA will evaluate the health risk of PAs in the 80th meeting in June 2015.

485 4.8 *Combined oral exposure to multiple chemicals and from multiple sources*

486

487 Accounting for combined oral exposure is not specific to the TTC approach, but applies to all approaches
488 of risk characterisation. Therefore, case-by-case considerations were recommended in most
489 circumstances:

490

- 491 • Applying the TTC approach to mixtures of known composition is possible. A tiered approach is
492 recommended beginning with the assumption of dose addition. In the case of more complex
493 mixtures containing compounds with dissimilar structures or in the event of known or anticipated
494 interactions among components of the mixture, additional methodological refinements are
495 needed.

496

497 4.9 *Acute and other less than lifetime exposures*

498

- 499 • If acute, or other less than lifetime TTCs were to be generated, it is recommended that a database
500 for acute or other less than lifetime toxicity should be produced and methodology for the analysis
501 determined. When performing these assessments there is a need to ensure that developmental
502 toxicity endpoints are covered.
- 503 • Until such databases and analyses are developed, it is recommended considering less than
504 lifetime or intermittent exposure on a case-by-case basis.

505

506 4.10 *Infants and children, potentially sensitive life-stages*

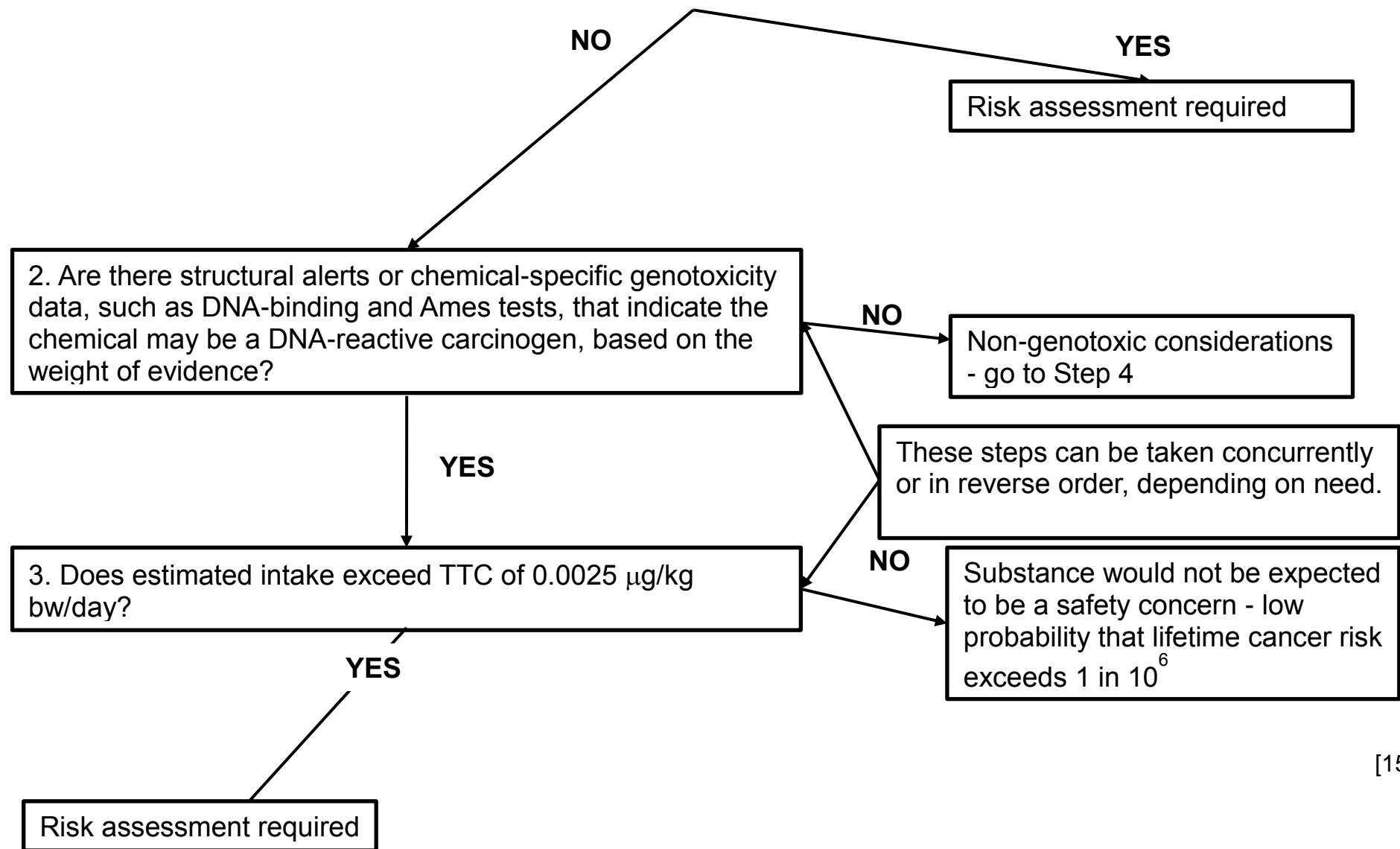
507

- 508 • The TTC approach can be used to evaluate the safety of exposures in infants in the same way as
509 would be done with any risk assessment. For infants under 3 months of age, case-by-case
510 considerations are needed if the estimated exposure approaches the TTC value.
- 511 • There is a need to ensure that exposure data are suitable for an infant assessment, an adult
512 exposure assessment is not appropriate.
- 513 • There is no need to derive specific TTC values for infants and children. A number of analyses
514 have shown that the NOAELs in the current TTC approach cover reproductive and developmental
515 studies.
- 516 • It is recommended to express TTC values as $\mu\text{g}/\text{kg}$ body weight (rather than on a per person
517 basis) to facilitate the application of the TTC approach to the whole population including infants
518 and children.

519

520 4.11 *Additional recommendations*

521


522 A leaflet explaining the TTC approach in accessible language should be produced

5. TTC Decision Tree

Taking the above considerations into account the expert group reviewed the overall TTC decision tree proposed by Kroes et al. (2004), and recommended a revised decision tree as proposed in Figure 1. An explanation of decision tree steps is given below the scheme.

Figure 1. Schematic diagram of the revised TTC decision tree

1. Is the substance part of the exclusionary categories?

4. Is the compound a organophosphate that would inhibit acetylcholine esterase?

NO

YES

6. Is the compound in Cramer class III?

NO

YES

8. Is the compound in Cramer class II?

NO

YES

7. Does estimated intake exceed TTC of 1.5 $\mu\text{g}/\text{kg bw/day}$?

YES

NO

NO

YES

Risk assessment required

Substance would not be expected to be a safety concern

10. Does estimated intake exceed 30 $\mu\text{g}/\text{kg bw/day}$?

YES

NO

9. Does estimated intake exceed 9 $\mu\text{g}/\text{kg bw/day}$?

NO

YES

Risk assessment required

Substance would not be expected to be a safety concern

Decision Tree Explanations

A literature search should be undertaken on the chemical to be evaluated, prior to applying the TTC decision tree. The TTC approach should be used only for chemicals of known structure (or those that are sufficiently characterised to confirm they are not in the exclusion groups) that lack adequate chemical-specific toxicity data and with low predicted human exposures.

Prior to applying the TTC - The TTC approach should not be used if the chemical is a member of a group that has well-established toxicity data. The TTC approach should also not be used if the structural characteristics of the chemical are not adequately represented in the TTC database. Therefore, proteins; steroids; chemicals that are known or predicted to bioaccumulate; nanomaterials; radioactive chemicals were also added to the list of chemicals for which the TTC approach is not appropriate.

Step 1 – The TTC approach should not be used for compounds that are part of the Cohort of Concern (CoC) proposed by Kroes et al. (2004) because more than 10% of chemicals with this structural alert would give a risk >1 in 10^6 at an exposure at the TTC value given in Step 3. The CoC includes: aflatoxin-like compounds, N-nitroso-compounds, azoxy-compounds, steroids, benzidines and polyhalogenateddibeno-p-dioxins and-dibenzofurans. Step 2 - The weight of evidence for genotoxicity should be evaluated to indicate if the chemical is likely to be a DNA-reactive carcinogen. This should include an analysis of the structure by considering the presence of structural alerts (identified using the Benigni / Bossa rulebase as implemented in Toxtree) as well as any available genotoxicity tests for DNA reactivity, such as the Ames test.

Step 3 – The TTC value (expressed per kg body weight) is based on the TD_{50} data for chemicals with positive carcinogenicity data in the CPDB and with structural alerts given in Table 1 of Kroes et al. (2004).

Step 4 – Identifies whether the chemical has the potential to act as an OP, such as trialkyl-phosphates, phosphorothionates and phosphonates.

Step 5 – Gives the TTC value for organophosphates expressed per kg body weight.

Step 6 – Identifies chemicals in Cramer Class III.

Step 7 – Gives the Cramer Class III TTC value expressed per kg body weight.

Step 8 – Identifies chemicals in Cramer Class II.

Step 9 – Gives the Cramer Class II TTC value expressed per kg body weight.

Step 10 – Gives the Cramer Class I TTC value expressed per kg body weight.

6. References

Cramer, G.M., Ford, R.A., Hall, R.L., 1978. Estimation of toxic hazard - a decision tree approach. *Food and Cosmetic Toxicology* 16, 255-276.

Dewhurst, I. and Renwick, A.G., 2013. Evaluation of the Threshold of Toxicological Concern (TTC) – Challenges and Approaches. *Regulatory Toxicology and Pharmacology* 65, 168–177

EFSA, 2012. Scientific Opinion on Exploring options for providing advice about possible human health risks based on the concept of Threshold of Toxicological Concern (TTC). EFSA Journal 10(7), 2750 [103 pp.]. Available at: <http://www.efsa.europa.eu/en/publications/efsajournal.htm>

Kroes, R., Renwick, A.G., Cheeseman, M., Kleiner, J., Mangelsdorf, I., Piersma, A., Schilter, B., Schlatter, J., van Schothorst, F., Vos, J.G., Würtzen, G., 2004. Structure-based thresholds of toxicological concern (TTC): guidance for application to substances present at low levels in the diet. *Food Chem. Toxicol.* 42, 65–83.

Meek, M. E., Boobis, A. R., Crofton, K. M., Heinemeyer, G., Van Raaij, M., Vickers, C. 2011. Risk assessment of combined exposure to multiple chemicals: A WHO/IPCS framework. *Regul Toxicol Pharmacol*, 60(2 suppl 1), S1-S14.

Munro, I.C., Ford, R.A., Kennepohl, E., Sprenger, J.G., 1996. Correlation of a structural class with No-Observed-Effect-Levels: a proposal for establishing a threshold of concern. *Food Chem. Toxicol.* 34, 829–867.

Renwick, A. G., Barlow, S. M., Hertz-Pannier, I., Boobis, A. R., Dybing, E., Edler, L., Eisenbrand G, Greig JB, Kleiner J, Lambe J, Müller DJ, Smith MR, Tritscher A, Tuijtelaars S, van den Brandt PA, Walker R, Kroes R. 2003. Risk characterisation of chemicals in food and diet. *Food and Chemical Toxicology*, 41(9), 1211-1271.

Tluczkiewicz, I, Buist, H.E., Martin c, M.T. , Mangelsdorf, I., Escher, S.E., 2011. Improvement of the Cramer classification for oral exposure using the database TTC RepDose – A strategy description *Regulatory Toxicology and Pharmacology* 61, 340–350.

Appendix 1 – Explanations to Cramer scheme

Q	Question	NO	YES	Additional explanation
1	Is the substance a normal endogenous constituent of the body that undergoes metabolism to CO ₂ and water?	2	I	<i>Endogenous substances</i> are intermediary metabolites of normal biological processes present in human tissues and fluids, whether free or conjugated; hormones and other substances with biochemical or physiological regulatory functions are not included.
2	Does the substance contain any of the following functional groups: an aliphatic secondary amine or a salt thereof, cyano, N-nitroso, diazo (e.g. CH ₂ N ₂), triazeno (RN=NNH ₂) or quaternary nitrogen, except in any of the following forms: >CN ⁺ =R ₂ , >CN ⁺ =H ₂ or the organic anion salts thereof?	3A	III	Classifies chemicals that have functional groups associated with enhanced toxicity early in the decision tree.
3A	Does the structure contain elements other than carbon, hydrogen, oxygen, nitrogen, or divalent sulphur?	5	3B	
3B	<i>Is any phosphorus atom present as a simple ionic phosphate ester R-O-PO₃²⁻, either as the free acid or as a Na, K, Ca, Mg or NH₄ salt (if so proceed based on the hydrolysis product R-OH)?</i>	III	4	
4	Do all elements not listed in Q3A occur only as a Na, K, Ca, Mg or NH ₄ salt of a carboxylic acid, or as a SO ₄ or HCl salt of an amine, or a Na, K, Ca, sulphonate, sulphamate or sulphate?	III	7	
5	Is it a simply branched acyclic aliphatic hydrocarbon or a common carbohydrate?	6A	I	
6A	Is the substance a benzene derivative bearing substituents consisting only of (a) hydrocarbon chains or 1'-hydroxy or hydroxyl ester-substituted hydrocarbon chains and (b) one or more alkoxy groups, one of which must be para to the hydrocarbon chain in (a)?	6B	III	In Toxtree the answer NO goes to Q 42 <i>Does the compound consist of one aromatic ring, with at most one heavy atom connected to each aromatic atom?</i> which aims to assign “possibly harmful analogue of benzene” to Class III.
6B	<i>Does the compound consist of one benzene ring, with at most one heavy atom (oxygen, nitrogen or sulphur) connected to one or more of the aromatic carbon atoms?</i>	7	III	
7	Is the substance heterocyclic?	16	8	
8	Is it a lactone or cyclic diester?	10	9	

Q	Question	NO	YES	Additional explanation
9	Is it a lactone fused to another ring, or a 5- or 6-membered α,β -unsaturated lactone?	*	III	* If it is a lactone treat the structure as if it were the hydroxy acid in the form of its more stable tautomer and proceed to Q20 if it is open chain, to Q10 if it heterocyclic, and to Q23 if it is carbocyclic; if it is a cyclic diester treat as the separate components (i.e. the predicted hydrolysis products).
10	Is it a 3-membered heterocycle?	11	III	
11	Disregarding only the heteroatoms in any one ring, does that heterocyclic ring contain or bear substituents other than simply branched hydrocarbons (including bridged chains and monocyclic aryl or alkyl structures), alkyl alcohols, aldehydes, acetals, ketones, ketals, acids, esters (including cyclic esters other than lactones), mercaptans, sulphides, <i>thioesters</i> , methyl ethers, hydroxy or single rings (hetero or aryl) with no substituents other than those just listed?	12	33	Under Q11, do not consider the atom(s), usually O, N or S making the ring heterocyclic. If there is more than one hetero ring, regard each ring separately, with the remainder of the structure as substituents of that hetero ring. Addition of “thioesters” accounts for their rapid hydrolysis.
12	Is it heteroaromatic?	22	13	This question separates the aromatic heterocyclics for the purpose of considering whether they are polynuclear (Q14) or unsubstituted (Q13).
13	Does the ring bear any substituents?	III	14	
14	Does the structure contain more than one aromatic ring?	22	15	
15	Is it readily hydrolysed to mononuclear residues? (If yes, treat the mononuclear heterocyclic residues by Q22 and any carbocyclic residue by Q16.)	33	22	
16	Is it a common terpene (D)-hydrocarbon, -alcohol -aldehyde or -carboxylic acid (not a ketone)?	17	I	
17	Is the substance readily hydrolysed (H) to a common terpene (D), -alcohol, -aldehyde or -carboxylic acid? (If yes, treat the hydrolysed residues separately and proceed to Q18 for the terpene moiety and to Q19 for any non-terpenoid moiety.)	19	18	
18	Is the substance one of the following? i. a vicinal diketone; or a ketone or ketal of a ketone attached to a terminal vinyl group or, ii. a secondary alcohol, ester or <i>thioester</i>	I	II	Addition of “thioester” accounts for their rapid hydrolysis.

Q	Question	NO	YES	Additional explanation
	<p>of a secondary alcohol attached to a terminal vinyl group or,</p> <p>iii. allyl alcohol or its acetal ketal or ester derivative or,</p> <p>iv. allyl mercaptan, an allyl sulphide, an allyl thioester or allyl amine or,</p> <p>v. acrolein, a methacrolein or their acetals or,</p> <p>vi. acrylic or methacrylic acid or,</p> <p>vii. an acetylenic compound or,</p> <p>viii. an acyclic aliphatic ketone, ketal or ketoalcohol with no other functional groups and with four or more carbons on either side of the keto group or,</p> <p>ix. a substance in which the functional groups are all sterically hindered.</p>			
19	Is the substance open chain?	23	20	
20	<p>Is the structure a linear or simply branched aliphatic compound containing any one or combination of only the following functional groups:</p> <p>i. four or less, each, of alcohol, aldehyde, carboxylic acid or esters and/or</p> <p>ii. one each of one or more of the following: acetal, either ketone or ketal but not both, mercaptan, sulphide (mono- or poly-), thioester, polyoxyethylene $[-OCH_2CH_2-]^x$ with x no greater than 4], or primary or tertiary amine</p> <p>iii. a readily reducible disulphide group (if so continue the assessment for each resulting thiol or dithiol separately)?</p>	22	21	The rapid reduction of disulphides to the corresponding thiols by thioltransferases and exchange reactions with glutathione, cysteine and other endogenous thiols has been taken into account.
21	Does the structure contain three or more different types of functional groups (exclude methoxy and consider acids and esters as one functional type)?	18	III	Aliphatic (A) compounds with three or more different functional groups (excluding methoxy) are too complex to permit prediction of toxicity.
22	Is the substance a common component of food or structurally closely related to a common component of food <i>and is the ratio between natural occurrence and the amounts added >10?</i>	33	II	<i>For flavouring agents and other chemicals added to food, the ratio between natural occurrence and the amounts added should be >10.</i>
23	Is the substance aromatic?	24	27	
24	Is the substance monocarbocyclic (excluding cyclopropane or cyclobutane and their derivatives) with ring or aliphatic side chains, unsubstituted or containing only alcohol, aldehyde, side-chain ketone,	25	18	

Q	Question	NO	YES	Additional explanation
	acid, ester, or Na, K or Ca sulphonate or sulphamate, or acyclic acetal or ketal?			
25	Is the substance either i. a cyclopropane or cyclobutane with only the substituents mentioned in question 24 or ii. a mono- or bicyclic sulphide or mercaptan?	26	II	
26	Does the structure contain no functional groups other than those listed in Q24 and is it either a monocyloalkanone or a bicyclic compound with or without a ring ketone?	22	II	
27	Does (do) the ring(s) have any substituents?	III	28	
28	Does the structure contain more than one aromatic ring?	30	29	
29	Is it readily hydrolysed <i>or reduced</i> to mononuclear residues? (If yes treat the individual aromatic mononuclear residues by Q30 and any other residue by Q19.)	33	30	
30	Disregarding ring hydroxy or methoxy does the ring bear substituents other than 1-5 -carbon aliphatic groups, either hydrocarbon or containing alcohol, ketone, aldehyde, carboxyl or simple esters that may be hydrolysed to ring substituents of five or less carbons? (If a simple ester that may be hydrolysed, treat the aromatic portion by Q18 and the residue by Q19.)	18	31	
31	Is the substance an acyclic acetal, -ketal or -ester <i>or an alkylaryl disulphide</i> of any of the above substances (see Q30)? (If yes, assume hydrolysis <i>or reduction</i> and treat the aromatic residue by Q18 and the non-aromatic residues by Q19).	32	18	
32	Does the substance contain only the functional groups listed in Q30, or their derivatives listed in Q31, but with any or all of the following: i. a single fused non-aromatic carbocyclic ring or, ii. aliphatic substituent chains longer than five carbon atoms or, iii. a polyoxyethylene [(-OCH ₂ CH ₂)-] _x with x no greater than 4] chain either "on the aromatic ring or on an aliphatic side chain?	22	II	Part (i) is intended to allow simple derivatives of tetralin into Class II while putting polycyclic compounds such as the steroids ultimately into Class III (except those that may be normal food), Part (ii) allows compounds with permitted functional groups but longer side chains into Class II instead of Class III. Part (iii) puts short-chain polyoxyethylene derivatives of aryl compounds into Class II

Q	Question	NO	YES	Additional explanation
				rather than Class III.
33	Does the substance bear on every major structural component at least one sodium, potassium, or calcium sulphonate or sulphamate for every 20 or fewer carbon atoms without any free primary amines except those adjacent to the sulphonate or sulphamate.	III	I	

Extensions to the Cramer decision tree

Toxtree Rule ID 4 and Rule ID 40 – adds phosphate to list of elements that do not automatically go to Class III (Q4 in scheme above) and then under Rule ID 40 questions whether it is a possibly harmful organophosphate type of chemical. If the answer to this is yes then it is assigned to Class III, but if the answer is no and it is a simple phosphate ester it is assigned to Class I; but this assumes that the non-phosphate hydrolysis product would be Class I – which may not always be correct. This Rule *has not* been incorporated into the modified decision tree given above.

Toxtree Rule ID 42 – assigns to Cramer Class III possibly harmful analogues of benzene that “consist of one aromatic ring with at most one heavy atom connected to each aromatic atom”. The examples shown in the explanation for this step under Toxtree version 2.6.0 are phenol and benzamide. Benzene with one or more hydroxyl-, amino- or thiol- group, or a combination of these groups, with or without an aromatic methyl group, but without further substitution are assigned using this step; more complex benzene derivatives such as benzoic acid, benzamide, acetamido-benzene, phenylhydrazine, and ethyl-substituted phenol, ethyl-substituted aniline etc are not. This Rule *has* been incorporated in a simplified form into the modified decision tree given above.

Toxtree Rule ID 43 – assigns “possibly harmful divalent sulphur” to Class III. The explanation to this rule given in the program is “*Does the compound [contain] a non-natural divalent sulphur?*” It appears that this is a question about natural occurrence, which is not related to the potential for toxicity. Interestingly, none of the different types of structures in the 10 sub-groups of sulphur-containing flavouring agents evaluated by the JECFA (WHO, 2000) would have been assigned to Class III using Rule ID 43. This Rule *has not* been incorporated into the modified decision tree given above.

Toxtree Rule ID 44 – assigns any free α,β -unsaturated heteroatom, such as an α,β -unsaturated alcohol or ketone to Class III. In its evaluations of flavouring agents the JECFA has considered the extent of detoxication processes for such chemicals and concluded that “metabolic processes such as oxidation and conjugation effectively eliminate reactive aldehyde functional groups from such substances when they are consumed in the amounts that would arise from their use as flavouring agents” (WHO, 2002). Therefore, as the TTC approach is only applicable at low levels of exposure, this Rule *has not* been incorporated into the modified decision tree given above.

Annex 1: List of participants to the Stakeholder hearing

Stakeholder hearing on Threshold of Toxicological Concern 2 December 2014 Brussels, Belgium			
Last name	First name	Affiliation	Country
ARNAUD	Ludovic	FEFANA	BEL
ARNAUTS	Jan	DSM Ahead	NLD
ARNICH	Nathalie	ANSES	FRA
ARVIDSON	Kirk	Food and Drug Administration	USA
BAKEN	Kirsten	KWR Watercycle Research Institute	NLD
BARRETT	Gordon	Health Canada	CAN
BARTOLO	Ivan	Seafood Importers and Processors Alliance	GBR
BENFORD	Diane	Food Standards Agency	GBR
BLUM	Rene	Lonza Ltd	CHE
BRÜSCHWEILER	Beat	Federal Food Safety and Veterinary Office	CHE
BURNETT	Thomas	Elanco Animal Health	USA
CACHET	Thierry	IOFI	BEL
CAVALLINI	Eugenio	CEPI aisbl	BEL
CHEESEMAN	Mitchell	Steptoe & Johnson LLP	USA
CIMMARUSTI	Floriana	Healthy Food Europe	BEL
COREA	Namali	SC Johnson	GBR
CREANGA	Adina	Bunge	BEL
DE LUCA	Lucia	European Food Safety Authority	
DEMPE	Julia	Dr. Knoell Consult GmbH	DEU

DETKEN	Dirk	European Food Safety Authority	
DEWHURST	Ian	Health and Safety Executive	
DOURSON	Michael	Toxicology Excellence in Risk Assessment	USA
EARL	Lesley	LSR Associates	GBR
ESCHER	Sylvia	Fraunhofer Institute for Toxicology and Experimental Medicine	DEU
ESPEISSE	Olivier	IFAH	FRA
FATTORI	Vittorio	Food and Agriculture Organization of the United Nations	
FEELEY	Mark	Health Canada	CAN
FEESCHE	Joerg	Henkel AG & Co. KGaA	DEU
FEIGENBAUM	Alexandre	Technopole Alimentec	FRA
FELTER	Susan	Procter & Gamble	USA
FLETCHER	Samuel	Veterinary Medicines Directorate	GBR
FRUTH	Lothar	ATC GmbH	DEU
FUART-GATNIK	Mojca	National Institute of Public Health	SVN
GEUEKE	Birgit	Food Packaging Forum	CHE
GRANERO-ROSELL	Miguel Angel	European Commission	(EC)
GUNDERT-REMY	Ursula	Federal Institute for Risk Assessment	DEU
HÜSER	Anja	Knoell Consult GmbH	DEU
HYNES	Geoffrey	Givaudan	GBR
JACOBS	Kristi	Food and Drug Administration	USA
JEONG	Sang-Hee	Hoseo University	KOR
JIA	Xudong	World Health Organization	
JUNGHANS	Angelika	Clariant Produkte GmbH	DEU

KANUNGO	Debabrata	Ministry of Agriculture	IND
KRUL	Lisette	TNO	NLD
LEINALA	Eeva	OECD	FRA
LEYDECKER	Matthias	FEICA	DEU
LIEM	Djien	European Food Safety Authority	
LIU	Zhaoping	China National Centre for Food Safety Risk Assessment	CHN
LUPTON-BOWERS	Pamela	Moderator of the event	UK
LYSSIMACHOU	Angeliki	PAN Europe	BEL
MAURICI	Daniela	European Food Safety Authority	
MEROLLA	Luciano	Dow AgroSciences Ltd	GBR
MILLSTONE	Erik	University of Sussex	GBR
MORTENSEN	Alicja	Technical University of Denmark	DNK
MUELLER	Utz	Food Standards Australia New Zealand	AUS
MUILERMAN	Hans	PAN Europe	BEL
ORISAKWE	Orish Ebere	University of Port Harcourt	NGA
PLATZEK	Thomas	Federal Institute for Risk Assessment	DEU
POLITANO	Valerie	Research Institute for Fragrance Materials Inc.	USA
PRIETO ARRANZ	Miguel Angel	Cefic	BEL
RENWICK	Andrew G.	University of Southampton	GBR
REYNDERS	Hans	Flemish Government	BEL
RICHERT	Susann	Evonik Industries AG	DEU
ROBINSON	Tobin	European Food Safety Authority	
RONGA-PEZERET	Sylvaine	EDF – DRH Groupe - Direction Emploi et Développement des Salariés	FR

ROSSI	Annamaria	European Food Safety Authority	
ROVIDA	Costanza	University of Konstanz	DE
SCHLATTER	Josef		CHE
SCHNABEL	Juergen	Givaudan International AG	CHE
SHAH	Prakashchandra	US Environmental Protection Agency	USA
SHEN	Jie	Research Institute for Fragrance Materials Inc.	USA
STIENON	Sarah	ISK Biosciences Europe NV	BEL
STROHEKER	Thomas	Nestlé	CHE
SUSIN	Carolina	European Chemical Industry Council	BEL
TAYLOR	Sean	International Organization of the Flavor Industry	USA
TERRON	Andrea	European Food Safety Authority	
TRITSCHER	Angelika	World Health Organization	
TROISFONTAINES	Paul	Scientific Institute for Public Health	BEL
TWEEDALE	Anthony C.		BEL
UMEMURA	Takashi	National Institute of Health Sciences	JPN
VAN BOSSUYT	Melissa	Scientific Institute for Public Health	BEL
VANSTHERTEM	David	Japan Agro Services S.A.	BEL

Annex 2: List of participants of expert workshop

Joint EFSA/WHO Expert Workshop on Threshold of Toxicological Concern 3-5 December 2014 Brussels, Belgium			
Last name	First name	Affiliation	Country
ARVIDSON	Kirk	Food and Drug Administration	USA
BARRETT	Gordon	Health Canada	CAN
BENFORD	Diane	Food Standards Agency	GBR
BOOBIS*	Alan	Imperial College London	GBR
BRÜSCHWEILER	Beat	Federal Food Safety and Veterinary Office	CHE
CHEESEMAN*	Mitchell	Steptoe & Johnson LLP	USA
DEWHURST	Ian	Health and Safety Executive	GBR
DORNE	Jean-Lou	European Food Safety Authority	
DOURSON	Michael	Toxicology Excellence in Risk Assessment	USA
ESCHER	Sylvia	Fraunhofer Institute for Toxicology and Experimental Medicine	DEU
FATTORI	Vittorio	Food and Agriculture Organization of the United Nations	
FEELEY	Mark	Health Canada	CAN
FELTER*	Susan	Procter & Gamble	USA
GUNDERT-REMY	Ursula	Federal Institute for Risk Assessment	DEU
JACOBS	Kristi	Food and Drug Administration	USA
JEONG	Sang-Hee	Hoseo University	KOR
JIA	Xudong	World Health Organization	

KANUNGO	Debabrata	Ministry of Agriculture	IND
KRUL*	Lisette	TNO	NLD
LEINALA	Eeva	OECD	FRA
LIEM	Djien	European Food Safety Authority	
LIU	Zhaoping	China National Centre for Food Safety Risk Assessment	CHN
MAURICI	Daniela	European Food Safety Authority	
MENNES	Wim	National Institute for Public Health and the Environment	NLD
MÜLLER	Utz	Food Standards Australia New Zealand	AUS
ORISAKWE	Orish Ebere	University of Port Harcourt	NGA
RENWICK*	Andrew G.	University of Southampton	GBR
ROSSI	Annamaria	European Food Safety Authority	
SCHLATTER	Josef		CHE
SHAH	Prakashchandra	US Environmental Protection Agency	USA
TRITSCHER	Angelika	World Health Organization	
UMEMURA	Takashi	National Institute of Health Sciences	JPN
YANG	Chihae	Molecular Networks GmbH	DEU
<p>Experts taking part in the workshop were selected following a public call for expert published on the WHO website (http://www.who.int/foodsafety/call-data-expert/en/). Experts were selected according to the criteria indicated in the call for expert. The screening of their DOIs was performed by WHO according to the organisation's rules.</p> <p>*Following this screening, experts who have been found to have a potential conflict of interests, did not attend on the last day of the workshop where the group agreed on conclusions and recommendations.</p>			

Annex 3: Agenda of expert workshop

EFSA/WHO Expert workshop on Threshold of Toxicological Concern (TTC)

Brussels, 3-5 Dec 2014

Management Centre Europe

Rue de l'Acqueduc 118, Brussels, Belgium

Day 1 – Wednesday, 3 December 2014	
08.30-09.00	Registration
09.00- 09.10	Welcome and Opening
Session 1: Introduction: setting the stage	
09.10 – 09.30	Background to the WHO project
09.30 – 09.50	EFSA's work on TTC
9.50 – 10.10	Stakeholder meeting summary
10.10 – 10.30	Coffee break
10.30-11.30	Report on TTC approach
11.30-12.00	Discussion
12.00-13.00	Lunch
Session 2: Introduction to work in the breakout groups	
13.00- 13.20	Breakout Group1: Cramer Decision Tree
13.20-13.40	Breakout Group2: TTC threshold levels & TTC decision tree
13.40-14.00	Discussion
Session 3: Breakout groups	
BOG1	Cramer Decision Tree
BOG2	TTC threshold levels & TTC decision tree
14.00-15.30	Breakout group discussions
15.30-16.00	Coffee break
16.00-17.00	Continuation of breakout groups

17.00-18.00	Summary and report back to plenary
	<i>End of the first day</i>
Day 2 - Thursday, 4 December 2014	
Session 3 (continued):	Breakout groups
BOG1	Cramer Decision Tree
BOG2	TTC threshold levels & TTC decision tree
09.00-10.30	Breakout group discussions
10.30-11.00	Coffee break
11.00-12.30	Continuation of breakout groups
12.30-13.00	Brief report back from breakout groups to plenary
13.00-14.00	Lunch
14.00-15.00	Continuation of breakout groups
15.00-15.30	Coffee break
15.30-17.30	Continuation of breakout groups
17.30-18.30	Report back from breakout groups to plenary
	<i>End of the second day</i>
Day 3 - Friday, 5 December 2014	
Session 4:	Report back from breakout groups
09.00 - 09.30	Summary of the two-day discussion and report back from Cramer Decision Tree (BOG1)
09.30 - 10.00	Summary of the two-day discussion and report back from TTC threshold levels & TTC decision tree (BOG2)
10.00-10.30	Discussion on the outcomes
10.30-11.00	Coffee break
Session 5:	Summing up
11.00- 12.20	Discussion and agreement on recommendations
12.20-12.30	Closing remarks and end of the workshop