2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 # DRAFT SCIENTIFIC OPINION # Scientific Opinion on Dietary Reference Values for chromium¹ EFSA Panel on Dietetic Products, Nutrition and Allergies (NDA)^{2, 3} European Food Safety Authority (EFSA), Parma, Italy ### ABSTRACT Following a request from the European Commission, the Panel on Dietetic Products, Nutrition and Allergies (NDA) considered the evidence for setting Dietary Reference Values for chromium. Trivalent chromium (Cr(III)) has been postulated to be necessary for the efficacy of insulin in regulating the metabolism of carbohydrates, lipids and proteins. However, the mechanism(s) for these roles and the essential function of Cr(III) in metabolism have not been substantiated. Criteria for essentiality of a trace element were considered. It was noted that attempts to create chromium deficiency in animal models have not produced consistent results, and that there is no evidence of essentiality of Cr(III) in animal nutrition. Evaluating the possibility of Cr(III) as an essential element for humans, the evidence from reported improvements associated with chromium supplementation in patients on total parenteral nutrition was considered to be the most convincing, but overall the data do not provide sufficient information on the reversibility of the possible deficiencies and the nature of any doseresponse curve in order to identify a dietary requirement for humans. The Panel concludes that no Average Requirement and no Population Reference Intake for chromium can be defined. Several studies assessed the effect of chromium supplementation on glucose and/or lipid metabolism. In the only study for which information on total chromium intake was available, there was no difference in parameters of glucose metabolism of normoglycaemic subjects between the placebo and chromium-supplemented periods. The Panel considers that there is no evidence of beneficial effects associated with chromium intake in healthy subjects. The Panel concludes that the setting of an Adequate Intake for chromium is also not appropriate. © European Food Safety Authority, 2014 25 26 27 ### KEY WORDS chromium, essentiality, Dietary Reference Value 28 Suggested citation: EFSA NDA Panel (EFSA Panel on Dietetic Products, Nutrition and Allergies), 2014; Scientific opinion on Dietary Reference Values for chromium. EFSA Journal 2014; volume(issue): NNNN, 27 pp. doi:10.2903/j.efsa.2014. NNNN. Available online: www.efsa.europa.eu/efsajournal On request from the European Commission, Question No EFSA-Q-2011-01209, endorsed for public consultation by written procedure on 21 May 2014. ² Panel members: Carlo Agostoni, Roberto Berni Canani, Susan Fairweather-Tait, Marina Heinonen, Hannu Korhonen, Sébastien La Vieille, Rosangela Marchelli, Ambroise Martin, Androniki Naska, Monika Neuhäuser-Berthold, Grażyna Nowicka, Yolanda Sanz, Alfonso Siani, Anders Sjödin, Martin Stern, Sean (J.J.) Strain, Inge Tetens, Daniel Tomé, Dominique Turck and Hans Verhagen. Correspondence: nda@efsa.europa.eu ³ Acknowledgement: The Panel wishes to thank the members of the Working Group on Dietary Reference Values for minerals for the preparatory work on this scientific opinion: Peter Aggett, Carlo Agostoni, Susan Fairweather-Tait, Marianne Geleijnse, Michael Hambidge, Ambroise Martin, Androniki Naska, Hildegard Przyrembel and Alfonso Siani. ### **SUMMARY** - 30 Following a request from the European Commission, the EFSA Panel on Dietetic Products, Nutrition - 31 and Allergies (NDA) was asked to review the evidence with regard to the setting of Dietary Reference - 32 Values for the European population, including chromium. - In 1993, the Scientific Committee for Food was unable to define a specific physiological requirement 33 - 34 of chromium and did not propose Dietary Reference Values (DRVs) for chromium, but other - 35 authorities have subsequently proposed DRVs for chromium. - 36 Trivalent chromium has been reported to be an essential trace element in that it has been postulated to - 37 be necessary for the efficacy of insulin in regulating the metabolism of carbohydrates, lipids and - 38 proteins. However, at present, the mechanism(s) for these roles and the essential function of - 39 chromium in metabolism have not been substantiated. The postulation of chromium's essentiality for - 40 humans was almost entirely based on case reports of patients on long-term total parenteral nutrition - 41 (TPN) who developed metabolic and neurological defects which were reported to respond to - 42 supplementation with trivalent chromium (Cr(III)). The Panel noted that the chromium concentrations - 43 in the TPN solutions which induced the presumed deficiency symptoms were not reported in all the - patients studied. In the three studies in which the concentration of chromium in the TPN solution was 44 - 45 reported, the daily chromium supply was between 5 and 10 µg; at an absorption efficiency of 5 % this - 46 amount of infused chromium is equivalent to an oral intake of 100-200 µg/day. The Panel notes that - 47 this intake is well above the estimated mean daily intakes in the 17 European countries for which data - 48 were available to perform an assessment of chronic dietary chromium intake. On the basis of these - 49 case reports, the Panel concludes that it is unclear whether deficiency of chromium has occurred in - 50 these patients and whether chromium deficiency occurs in healthy populations. - 51 The Panel considered criteria for essentiality of a trace element and noted that attempts to create - chromium deficiency in animal models have not produced consistent results, that there is no evidence 52 - 53 of essentiality of Cr(III) as a trace element in animal nutrition, and that Cr(III) requirements could not - 54 be established for animal feed. The Panel considered that there is a possibility that Cr(III) is an - 55 essential trace element for humans, but that there is, as yet, no convincing evidence of this. The - 56 evidence from reported improvements associated with chromium supplementation in patients on TPN - 57 is arguably the most convincing, but overall the data do not provide sufficient information on the - reversibility of the possible deficiencies and on the nature of any dose-response curve in order to 58 - 59 identify a dietary requirement for humans. The existence and functional characterisation of a - chromium-oligopeptide complex (chromodulin)) is still unclear. 60 - 61 The Panel concludes that no Average Requirement and no Population Reference Intake for chromium - 62 for the performance of physiological functions can be defined. - Nevertheless, as for fluoride, DRVs might be derived if a consistent dose-response relationship could 63 - be established between dietary chromium intake and a beneficial health outcome. A comprehensive 64 - search of the literature published between January 1990 and October 2011 was performed to identify 65 - relevant health outcomes upon which DRVs for chromium may potentially be based. Several studies 66 - 67 that assessed the effect of chromium supplementation on glucose and/or lipid metabolism were - 68 retrieved in the literature search. In most studies chromium intake from the diet was not assessed, and - 69 information on total chromium intake is therefore not available. In one cross-over study for which - total chromium intake was available, there was no significant difference in parameters of glucose 70 - 71 metabolism between the placebo and chromium-supplemented periods in normoglycaemic subjects. - 72 The Panel considered that there is no evidence of beneficial effects associated with chromium intake - 73 in healthy subjects. The Panel concludes that the setting of an Adequate Intake for chromium is also - 74 not appropriate. # TABLE OF CONTENTS | 76 | Abstract | 1 | |----|---|----| | 77 | Summary | 2 | | 78 | Table of contents | 4 | | 79 | Background as provided by the European Commission | 5 | | 80 | Terms of reference as provided by the European Commission | 5 | | 81 | Assessment | 7 | | 82 | 1. Introduction | 7 | | 83 | 2. Definition/category | 7 | | 84 | 2.1. Chemistry | 7 | | 85 | 2.2. Postulated function of chromium | 8 | | 86 | 2.2.1. Health consequences of deficiency and excess | 8 | | 87 | 2.2.1.1. Deficiency | 8 | | 88 | 2.2.1.2. Excess | 10 | | 89 | 2.3. Absorption, distribution, metabolism and excretion | 11 | | 90 | 2.4. Biomarkers | 11 | | 91 | 3. Dietary sources and intake data | 11 | | 92 | 4. Criteria on which to base Dietary Reference Values | 12 | | 93 | Conclusions | 13 | | 94 | References | | | 95 | Appendix A. Overview of Dietary Reference Values and recommendations | | | 96 | Adults | | | 97 | Infants and children | | | 98 | Pregnancy and lactation | 23 | | 99 | Appendix B. Chromium concentration of human milk from healthy mothers | 24 | | 00 | Abbreviations | 27 | ### BACKGROUND AS PROVIDED BY THE EUROPEAN COMMISSION - 103 The scientific advice on nutrient intakes is important as the basis of Community action in the field of - nutrition, for example such advice has in the past been used as the basis of nutrition labelling. The - Scientific Committee for Food (SCF) report on nutrient and energy intakes for the European - 106 Community dates from 1993. There is a need to review and if necessary to update these earlier - recommendations to ensure that the Community action in the area of nutrition is underpinned by the - 108 latest scientific advice. - In 1993, the SCF adopted an opinion on nutrient and energy intakes for the European Community.⁴ - The report provided reference intakes for energy, certain macronutrients and micronutrients, but it did - 111 not include certain substances of physiological importance, for example dietary fibre. - Since then new scientific data have become available for some of the nutrients, and scientific
advisory - bodies in many European Union Member States and in the United States have reported on - 114 recommended dietary intakes. For a number of nutrients these newly established (national) - recommendations differ from the reference intakes in the SCF (1993) report. Although there is - 116 considerable consensus between these newly derived (national) recommendations, differing opinions - 117 remain on some of the recommendations. Therefore, there is a need to review the existing EU - 118 Reference Intakes in the light of new scientific evidence, and taking into account the more recently - reported national recommendations. There is also a need to include dietary components that were not - covered in the SCF opinion of 1993, such as dietary fibre, and to consider whether it might be - appropriate to establish reference intakes for other (essential) substances with a physiological effect. - In this context the EFSA is requested to consider the existing Population Reference Intakes for - energy, micro- and macronutrients and certain other dietary components, to review and complete the - SCF recommendations, in the light of new evidence, and in addition advise on a Population Reference - 125 Intake for dietary fibre. - For communication of nutrition and healthy eating messages to the public it is generally more - appropriate to express recommendations for the intake of individual nutrients or substances in food- - based terms. In this context the EFSA is asked to provide assistance on the translation of nutrient - based recommendations for a healthy diet into food based recommendations intended for the - population as a whole. ### TERMS OF REFERENCE AS PROVIDED BY THE EUROPEAN COMMISSION - In accordance with Article 29 (1)(a) and Article 31 of Regulation (EC) No. 178/2002,⁵ the - 133 Commission requests EFSA to review the existing advice of the Scientific Committee for Food on - population reference intakes for energy, nutrients and other substances with a nutritional or - physiological effect in the context of a balanced diet which, when part of an overall healthy lifestyle, - contribute to good health through optimal nutrition. - 137 In the first instance the EFSA is asked to provide advice on energy, macronutrients and dietary fibre. - Specifically advice is requested on the following dietary components: - Carbohydrates, including sugars; ⁴ Scientific Committee for Food. Nutrient and energy intakes for the European Community. Reports of the Scientific Committee for Food, 31st series. Office for Official Publication of the European Communities, Luxembourg, 1993. . 131 ⁵ Regulation (EC) No 178/2002 of the European Parliament and of the Council of 28 January 2002 laying down the general principles and requirements of food law, establishing the European Food Safety Authority and laying down procedures in matters of food safety. OJ L 31, 1.2.2002, p. 1-24. - Fats, including saturated fatty acids, polyunsaturated fatty acids and monounsaturated fatty acids, *trans* fatty acids; - Protein; - Dietary fibre. - Following on from the first part of the task, the EFSA is asked to advise on population reference - intakes of micronutrients in the diet and, if considered appropriate, other essential substances with a - nutritional or physiological effect in the context of a balanced diet which, when part of an overall - healthy lifestyle, contribute to good health through optimal nutrition. - 148 Finally, the EFSA is asked to provide guidance on the translation of nutrient based dietary advice into - guidance, intended for the European population as a whole, on the contribution of different foods or - 150 categories of foods to an overall diet that would help to maintain good health through optimal - nutrition (food-based dietary guidelines). ### ASSESSMENT 153 ### 154 1. Introduction - 155 In 1993, the Scientific Committee for Food (SCF) published an opinion on nutrient and energy intakes - for the European Community but was unable to define a specific physiological requirement of - 157 chromium (SCF, 1993). Thereafter, other authorities have proposed DRVs for chromium (see - Appendix A). A labelling reference value has also been set (SCF, 2003a). - This evaluation is limited to trivalent chromium (Cr III) because it is the form of chromium naturally - occurring in food (Kovacs et al., 2007; Novotnik et al., 2013; EFSA CONTAM Panel, 2014). - During the assessment process for health claims pursuant to Article 13 of Regulation (EC) No - 162 1924/2006, the Panel assessed claims on chromium and maintenance of normal blood glucose - 163 concentrations, and on chromium and contribution to normal macronutrient metabolism with a - favourable outcome (EFSA NDA Panel, 2010). These claims were substantiated in light of the general - 165 consensus, which was available at that time among authoritative bodies, on the essentiality of - 166 chromium. In the context of the present Opinion on DRVs for chromium, the NDA Panel considered - in detail the criteria for essentiality and functionality of chromium when assessing the need for a - dietary intake of chromium ### 2. Definition/category # 170 **2.1.** Chemistry - 171 Chromium is ubiquitous, occurring in water, soil and biological systems. It has an atomic mass of - 51.9961 Da and occurs in each of the oxidation states from -2 to +6, with +3, and +6 being the most - often studied in relation to human health (Eckhert, 2014). Chromium compounds with oxidation states - below +3 are reducing, and above +3 are oxidising. The high energy needed to oxidise the trivalent to - the hexavalent form of chromium results in the fact that oxidation does not occur in biological - 176 systems. 169 - 177 Chromium has generally been measured with atomic absorption spectroscopy (AAS), although this - method does not allow the determination of the relative concentrations of Cr(III) and Cr(VI) without - initial separation of individual species. A great variety of separation techniques have been used; these - include the use of chelating and ion-exchange resins, chelation-extraction with organic solvents, and - 181 co-precipitation. The traditional methods of speciation analysis by AAS with pre-concentration by co- - precipitation allow the achievement of specificity and sensitivity equivalent to those obtained by - means of the more recent separation by high performance liquid chromatography (HPLC) with - inductively coupled plasma-mass spectrometric detection (ICP-MS) (Gomez and Callao, 2006). - For quantification of chromium in food samples ICP-MS has been used (Pacquette et al., 2011, 2012). - 186 The AOAC Official Method 990.08 for quantifying total chromium in food and water is based on - inductively coupled plasma atomic emission spectroscopy and does not discriminate between Cr(III) - and Cr(VI) (EFSA, 2009). There is a large amount of published data on total chromium content in - food, but a lack of data as to the presence of Cr(VI) in food (EFSA CONTAM Panel, 2014). The - reliability of chromium data for biological and food samples measured before the 1980s has been - questioned because of low sensitivity of the methods used as well as contamination (Anderson et al., - 192 1983a; SCF, 2003b). . ⁶ Regulation (EC) No 1924/2006 of the European Parliament and of the Council of 20 December 2006 on nutrition and health claims made on foods. OJ L 404, 30.12.2006, p. 9–25. 212 #### 2.2. Postulated function of chromium 194 Trivalent chromium has been reported to be an essential trace element in that it has been postulated to 195 be necessary for the efficacy of insulin in regulating the metabolism of carbohydrates, lipids, and proteins. However, at present, the mechanism(s) for these roles have not been substantiated: the 196 197 physico-chemical properties of trivalent chromium do not support ligand exchange and transitions on 198 oxidation states, as would be expected if Cr(III) were to be catalytic; rather it has been argued that 199 Cr(III) influences the conformation of insulin and its interaction with its peripheral receptors. A 200 circulating complex of Cr(III) and an oligopeptide of aspartate, glycine, cysteine and glutamate, 201 named low-molecular weight Cr-binding substance or chromodulin (Chen et al., 2011) has been 202 proposed as the means by which Cr(III) mediates responses to insulin. However, the Panel considers 203 that chromodulin's existence and function is unclear as is the functional essentiality of trivalent 204 205 The essentiality of Cr(III) has been questioned both for animals (Woolliscroft and Barbosa, 1977; 206 EFSA, 2009; Di Bona et al., 2011) and humans (Anonymous, 1988; Stearns, 2000, 2007; Vincent and 207 Love, 2012). The case for the essentiality of dietary Cr(III) for humans was uncertain when the SCF 208 considered the element twenty years ago (SCF, 1993); then, as now, the postulation of its essentiality 209 was almost entirely based on case reports of patients on long-term total parenteral nutrition (TPN) 210 who developed metabolic and neurological defects which were reported to respond to Cr(III) 211 supplementation. These case reports are described below (Section 2.2.1.1). #### 2.2.1. Health consequences of deficiency and excess #### 213 2.2.1.1. Deficiency chromium. - Jeejeebhoy et al. (1977) described a female receiving long-term TPN for 3.5 years when she exhibited 214 215 impaired glucose tolerance, weight loss, ataxia, peripheral sensory neuropathy, elevated plasma fatty 216 acid concentrations, reduced respiratory quotient and abnormalities in nitrogen metabolism. Blood 217 chromium concentration was reported to be 0.55 µg/L (normal range according to the authors: 4.9-9.5 µg/L) and hair chromium concentration 154-175 ng/g (normal range according to the authors: 218 219 > 500 ng/g). The TPN solution contained chromium as a contaminant and provided 5.3 µg 220 chromium/day. The symptoms were reported to be reversed following the addition of 250 µg/day of 221
chromium to the TPN solution for two weeks. Afterwards the patient was maintained on a TPN 222 solution that contained an added amount of 20 µg/day of chromium. - 223 In a second case report it was stated that a woman receiving TPN (chromium concentration in TPN 224 solution was not reported and chromium contamination could not be ruled out) for five months after 225 complete bowel resection developed severe glucose intolerance, weight loss and a metabolic 226 encephalopathy-like confusional state. The serum chromium concentration was reported to be 5 ug/L 227 (normal range according to the authors: 5-90 µg/L). All symptoms were reported to be reversed by 228 chromium supplementation of 150 µg/day for 3-4 days. Supplementation continued for approximately 229 1.5 months until the patient's death from sepsis (Freund et al., 1979). - 230 Brown et al. (1986) reported that chromium supplementation reversed the development of unexplained hyperglycaemia and glycosuria in a 63-year-old female during a TPN regimen of several 231 232 months' duration (providing 6 µg/day of chromium). Initially 200 µg/day of chromium chloride was 233 added to the TPN for 14 days. Following this initial intervention the patient thereafter received 234 26 µg/day of chromium in the standard TPN formula and glycosuria resolved. The patient was 235 discharged on home TPN with 32 µg/day of chromium, with no hyperglycaemia, neuropathy or 236 encephalopathy reported in the following year. 246247 248 249 250 251 252 253 254 255 256 257258 259 260 261 262 263 264 265266 267 268 269 270 271 272273 274 275 276277 An 8-year-old boy had received TPN containing an added 3 µg/day of chromium for more than two 237 238 years when the addition of chromium to the TPN was discontinued because one of two serum 239 measurements indicated an elevated serum chromium concentration. One year later a mild neuropathy 240 developed while glucose tolerance was normal. Despite serum chromium still exceeding the upper 241 range of normal according to the authors, chromium was again added to the TPN solution (3 µg/day), but the peripheral neuropathy persisted at follow-up assessments at three and ten months. It was 242 243 estimated that the TPN solution without the addition of chromium provided 4 µg/day of chromium 244 (Kien et al., 1986). Another case study by Verhage et al. (1996) reported on a 40-year-old man who had undergone multiple intestinal resections over 11 years as a result of Crohn's disease and received TPN for six months while recovering from an injury to the bowel. The TPN solution was reported to provide 5 μg/day of chromium with an estimated additional 2.4-10.5 μg/day of chromium by contamination from the component solutions (Ito et al., 1990). After five months, the patient began to experience hyperesthesia in his hands and feet, postural tremor, unsteady gait, and muscle weakness which was initially attributed to one of the medications. Concomitantly, multiple hyperglycaemic episodes with blood glucose concentrations ranging from 16-24 mmol/L were experienced by the patient, who required exogenous insulin and a reduction in the dextrose load of the TPN. Serum chromium (0.084 µmol/L, 4.4 µg/L) was reported as being above their "reference range". In the hospital the TPN formula was switched to one which contained 10 µg/day of chromium as chromium chloride; this solution also differed in its content of most vitamins and minerals. After 12 days an additional 250 µg/day of chromium as chromium chloride was added to the TPN solution for 14 days. Within four days the patient had an improvement in gait, paresthesia and postural tremor. Serum chromium concentration increased to 1.7 µmol/L (88.4 µg/L) and fractional glucose clearance during intravenous glucose tolerance test normalised. Tsuda et al. (1998) observed a 35-year-old man who was admitted to the hospital complaining of muscle weakness of the limbs and a progressive rise in serum creatine phosphokinase. He had been on TPN for 13 years as a result of chronic idiopathic intestinal pseudo obstruction. Selenium and chromium concentrations of the initial TPN solution were not reported. A muscle biopsy revealed myopathic changes with mild variation in size and regeneration of muscle fibres and muscle cell necrosis. Selenium deficiency was suspected as serum concentrations were low (0.1 µg/dL, normal range reported to be 9.7-16.0 µg/dL), and supplementation of 100 µg/day of selenium was administered for 99 days. After three months, the muscle weakness and serum creatine phosphokinase concentrations began to ameliorate. However, as the muscle weakness did not completely resolve and serum selenium concentrations were still low (3.9 µg/dL), supplementation with selenium was increased to 200 µg/day. On the 62nd hospital day there were elevated serum glucose concentrations (200-300 mg/dL), and glycosuria was found during and after administration of the TPN solution. Serum chromium concentrations were not detectable and an infusion with 200 µg chromium/day was initiated. After two weeks, the concentration of plasma insulin in response to an intravenous glucose tolerance test improved, but the concentration of plasma glucose did not. Therefore, 200 ug of chromium was added to the standard TPN solution every two weeks. About two months later, the serum glucose concentration decreased to within the normal range. - 278 Chromium supplementation of the TPN solution of five acute-care patients receiving TPN only upon 279 hospital admission provided inconclusive results, with two patients showing a possible benefit 280 through a decrease in the amount of insulin needed to control blood glucose, and three patients 281 reporting a slight or no benefit in terms of amount of insulin needed to control blood glucose (results 282 not given) (Wongseelashote et al. 2004) - not given) (Wongseelashote et al., 2004). - No symptoms have been reported in apparently healthy subjects that can be related to low chromium intakes (Stearns, 2007). 286287 288 289 290 291 292293 294 295 296 297298 299 300 301 302 303 304 305 306307 The Panel notes that the chromium concentrations in the TPN solutions given before the occurrence of presumed deficiency symptoms were not reported in all the patients studied. In the three studies in which the concentration of chromium in the TPN solution was reported the daily chromium supply was between 5 and 10 µg; at an absorption efficiency of 5 % this amount of infused chromium is equivalent to an oral intake of 100-200 µg/day. The Panel notes that this amount is above the estimated median daily intakes in the 17 European countries for which data were available to perform an assessment of chronic dietary chromium intake (see Section 3). The Panel concludes that it is unclear on the basis of these case reports whether deficiency of chromium could be considered the only cause of glucose intolerance in these patients, whether deficiency of chromium has occurred in these patients and whether chromium deficiency occurs in healthy populations. The essentiality of Cr(III) for humans has been questioned based on the criteria required for essential inorganic elements (Stearns, 2000). The traditional criteria for essentiality for human health are that absence or deficiency of the element from the diet produces either functional or structural abnormalities and that the abnormalities are related to, or a consequence of, specific biochemical changes that can be reversed by the presence of the essential trace element (WHO, 1996; Mertz, 1998). Criteria that need to be considered in assessing the essentiality include (1) absence from the diet causes reproducible and consistent functional and structural abnormalities; (2) reintroduction or addition to intakes reverses or prevents these abnormalities; (3) the abnormalities associated with deficiencies are accompanied by specific biochemical, and physiological, changes; (4) these biochemical and physiological changes are prevented or reversed by preventing or curing the deficiency. Implicit in these criteria are the needs for organisms to have systems to ensure the acquisition, systemic regulation and utilisation of the trace element, as well as a means to prevent its excessive acquisition (IPCS, 2002). 308 Considering the above-mentioned criteria, the Panel notes that attempts to create chromium deficiency 309 in animal models have not produced consistent results (Woolliscroft and Barbosa, 1977; EFSA, 2009; 310 Di Bona et al., 2011). In 2009, the EFSA FEEDAP Panel concluded that symptoms of chromium deficiency in animals have not been demonstrated in experimental conditions or observed in the field. 311 312 The FEEDAP Panel considered that there is no evidence of essentiality of Cr(III) as a trace element in animal nutrition and consequently, that Cr(III) requirements could not be established for animal feed 313 314 (EFSA, 2009). The Panel considers that the failure to create an unambiguous laboratory model of 315 Cr(III) deficiency is a particular obstacle to establishing Cr(III) as an essential trace element; this might be due to, amongst other things, a particularly low requirement for dietary Cr(III), 316 317 environmental and dietary contamination arising from the ubiquity of Cr(III), variations on the profile of metabolic substrates in the experimental diets used, and the possibility that Cr(III) is not an 318 319 essential trace element. The data from reported improvements associated with chromium 320 supplementation in patients are not sufficiently well characterised to provide sufficient information on 321 the reversibility of the possible deficiencies and the nature of any dose-response curve in order to 322 identify a dietary requirement for humans. - 323 2.2.1.2. Excess - Owing to limited data the SCF (2003b) was unable to set a Tolerable Upper Intake Level (UL). It was - 325 stated that in a number of limited studies there was no evidence of adverse effects
associated with - supplemental intake of chromium up to a dose of 1 mg/day. - 327 The CONTAM Panel of EFSA recently derived a Tolerable Daily Intake (TDI) of 300 µg - 328 Cr(III)/kg body weight per day from the lowest No Observed Adverse Effect Level (NOAEL) - identified in a chronic oral toxicity study in rats (EFSA CONTAM Panel, 2014). ### 330 2.3. Absorption, distribution, metabolism and excretion - In humans, absorption efficiency of supplemental chromium has been reported to be between 0.1 and - 5.2 % (Donaldson and Barreras, 1966; Anderson et al., 1983a; Offenbacher et al., 1986; Gargas et al., - 333 1994; Kerger et al., 1996) and to vary depending on the chromium complex ingested (Kerger et al., - 334 1996; DiSilvestro and Dy, 2007). Absorption of trivalent chromium from food has been estimated to - range from 0.4 to 2.5 % (SCF, 2003b), depending, among other factors, on the chemical properties of - the ingested source and on the presence of other dietary components. - Vitamin C has been reported to enhance the absorption of chromium (given as chromium chloride) in - women (Offenbacher, 1994). In rats, phytate reduced and oxalate enhanced ⁵¹Cr absorption (Chen et - 339 al., 1973). - 340 Following absorption, trivalent chromium binds to plasma proteins such as transferrin (Hopkins and - 341 Schwarz, 1964; Sayato et al., 1980), and only small amounts (~ 5 %) are present in an unbound form - 342 (Lim et al., 1983). Chromium is then transported to the liver where it is sequestered; uptake by the - 343 spleen, soft tissue, and bone also occurs. In humans, intravenously injected ⁵¹Cr was found to - accumulate mainly in the liver and spleen, but also in soft tissues and bone (Lim et al., 1983). - Chromium has been reported to be also present in the skin, heart, brain, kidneys, pancreas, and testes - 346 (Schroeder, 1968; Sumino et al., 1975). - 347 Urine is the main excretory route for absorbed chromium, with small amounts being excreted in - 348 perspiration and bile (Ishihara and Matsushiro, 1986). The majority of faecal chromium consists of - unabsorbed chromium (Donaldson and Barreras, 1966; Offenbacher et al., 1986). Mean chromium - concentrations in mature human milk from small groups of women in Europe have been found to be - 351 highly variable ranging from 0.14-10.8 μg/L (Appendix B). ### 2.4. Biomarkers 352 367 - 353 Urinary chromium excretion has been reported to be unrelated to chromium intakes ranging between - about 10 and 60 µg/day (Anderson and Kozlovsky, 1985). Chromium supplementation (182- - 355 200 μg/day) for 8 to 12 weeks significantly increased serum/plasma chromium concentrations in men - and women (Anderson et al., 1985; Offenbacher et al., 1985; Anderson et al., 1987; Lukaski et al., - 357 1996; Lukaski et al., 2007). Supplementation also significantly increased urinary chromium excretion - in men and women (Anderson et al., 1982b; Anderson et al., 1991; Uusitupa et al., 1992; Hallmark et - 359 al., 1996; Kerger et al., 1996; Lukaski et al., 1996; Kato et al., 1998; Campbell et al., 2002; Lukaski et - al., 2007). The Panel notes that studies addressing dose-response relationships are lacking. - Hair has been considered to reflect past fluctuations in chromium intake of individuals provided that - standardised procedures for sample collection have been followed (Hambidge et al., 1972b, 1972a). - 363 The Panel concludes that serum/plasma and urinary chromium concentrations reflect changes in - 364 chromium intake after chromium supplementation but that it is unknown whether these changes also - reflect habitual dietary chromium intakes. - No markers of chromium body burden have been identified. ### 3. Dietary sources and intake data - 368 Chromium is ubiquitous in the diet. Foods rich in chromium include meat and meat products, oils and - fats, breads and cereals, fish, pulses and spices. - 370 Currently, chromium (III) chloride and its hexahydrate, chromium (III) sulphate and its hexahydrate - and chromium (III) picolinate may be added to both foods⁷ and food supplements, 8 and chromium (III) 371 - lactate trihydrate and chromium (III) nitrate may be added to food supplements⁸ only. Directive 372 - 373 2006/141/EC on infant and follow-on formulae does not set minimum and maximum levels for - 374 chromium.9 - 375 Chronic dietary chromium intake has recently been estimated for various age groups using food - 376 consumption and body weight data at the individual level available from 26 dietary surveys carried - out in 17 EU countries. Median dietary chromium intakes were 30.1-42.9 µg/day (medians of lower 377 - 378 and upper bound) in young children (12 months to < 36 months), 54.3-71.2 µg/day in children (36 - 379 months to < 10 years), 63.5-83.4 µg/day in adolescents (10 years to < 18 years) and 57.3-83.8 µg/day - 380 in adults (≥ 18 years) (EFSA CONTAM Panel, 2014). - The main contributors to dietary chromium intake among children, adolescents and adults were the 381 - food categories "Milk and dairy products", "Bread and rolls", "Chocolate (cocoa) products" (except 382 - 383 for adults \geq 65 years) and "Non-alcoholic beverages". For example for adults (18 years to < 65 years), - 384 the main contributors to dietary chromium intake were the food categories "Bread and rolls" (median - 385 14 %), "Milk and dairy products" (median 8 %), "Non-alcoholic beverages" (median 7 %), and "Meat - 386 and meat products (including edible offal)" (median 7 %). The food categories "Chocolate (Cocoa) - products" (median 6%), "Vegetables and vegetable products (including fungi)" (median 6%) and 387 - 388 "Potatoes and potato products" (median 5 %) also contributed to chromium intake. Whereas the high - contribution of "Chocolate (cocoa) products" was mainly due to their high Cr(III) concentration, for 389 - 390 other foods the contribution to dietary chromium intake was rather because such foods (e.g. bread and - 391 rolls) are highly consumed (EFSA CONTAM Panel, 2014). #### 4. Criteria on which to base Dietary Reference Values - 393 The Panel notes that there is no convincing evidence for a role of chromium in human metabolism and - 394 physiology. The Panel also notes that there is no evidence that the general population is chromium- - 395 deficient, or has Cr(III)-responsive metabolic defects. The Panel therefore considers that there is no - 396 proof that chromium is an essential trace element. The Panel concludes that an Average Requirement - 397 for the performance of physiological functions cannot be derived. - 398 Nevertheless, as for fluoride (EFSA NDA Panel, 2013), DRVs might be derived if a consistent dose- - 399 response relationship could be established between dietary chromium intake and a beneficial health - 400 outcome. A comprehensive search of the literature published between January 1990 and October 2011 - 401 was performed as preparatory work for this assessment, to identify relevant health outcomes upon - 402 which DRVs for chromium may potentially be based (Mullee et al., 2012). - 403 Several studies have assessed the effect of chromium supplementation on glucose and/or lipid - 404 metabolism. Many of these included men and women with impaired glucose tolerance. In most studies - 405 chromium intake from the diet was not assessed and information on total chromium intake is therefore - 406 not available (Hopkins et al., 1968; Riales and Albrink, 1981; Anderson et al., 1983b; Offenbacher et - 407 al., 1985; Potter et al., 1985; Anderson et al., 1987; Press et al., 1990; Boyd et al., 1998; Hermann et - al., 1998; Kato et al., 1998; Cefalu et al., 1999; Joseph et al., 1999; Amato et al., 2000; Bahijri, 2000; 408 - 409 Volpe et al., 2001; Gunton et al., 2005; Anton et al., 2008; Krikorian et al., 2010; Yazaki et al., 2010; - 410 Kim et al., 2011; Masharani et al., 2012). The Panel considers that no conclusions can be drawn from ⁷ Regulation (EC) No 1925/2006 of the European Parliament and of the Council of 20 December 2006 on the addition of vitamins and minerals and of certain other substances to foods. OJ L 404, 30.12.2006, p. 26. Directive 2002/46/EC of the European Parliament and of the Council of 10 June 2002 on the approximation of the laws of the Member States relating to food supplements. OJ L 183, 12.7.2002, p. 51. Commission Directive 2006/141/EC of 22 December 2006 on infant formulae and follow-on formulae and amending Directive 1999/21/EC, OJ L 401, 30.12.2006, p.1. - these supplementation studies performed mainly in subjects with impaired glucose tolerance with regard to an effect of total dietary chromium intake on glucose metabolism in healthy populations. - Anderson et al. (1991) carried out a randomised double-blind placebo-controlled cross-over trial in 17 - men and women aged 22 to 65 years supplemented with 200 µg of chromium as chromium chloride or - 415 placebo daily for four weeks, with a one-week washout period in between. From four weeks before - and throughout the supplementation phase subjects were on a fixed diet containing less than 20 µg - 417 chromium/day. The diet was given as a four-day rotating menu and duplicate daily food composites - were taken 16 times during the study. Individuals with 90-minute blood glucose concentrations > 5.56 - but < 11.1 mmol/L were designated hyperglycaemic (n = 8) and individuals with concentrations - 420 < 5.56 mmol/L comprised the normoglycaemic group (n = 9). Subjects had a mean body mass index - 420 < 5.36 mmol/L comprised the normogrycaemic group (n = 9). Subjects had a mean body mass index</p> - of ~24 kg/m². Blood glucose, insulin and glucagon concentrations after an oral glucose tolerance test - were reported to be significantly lower at the end of the chromium-supplemented period compared to - 423 the placebo period in the hyperglycaemic subjects only, while there was no difference in the - 424 normoglycaemic subjects. - 425 The Panel considers there is no evidence of beneficial effects associated with
chromium intake in - 426 healthy normoglycaemic subjects. - The Panel therefore concludes that the setting of an Adequate Intake for chromium is not appropriate. ### 428 CONCLUSIONS - 429 The Panel concludes that the derivation of an Average Requirement and a Population Reference - 430 Intake for chromium for the performance of physiological functions is inappropriate. The Panel also - considered health outcomes that may be associated with chromium intake and concludes that there is - 432 no evidence of beneficial effects associated with chromium intake in healthy subjects. The Panel - concludes that the setting of an Adequate Intake for chromium is also not appropriate. #### 435 REFERENCES - Abdulrazzaq YM, Osman N, Nagelkerke N, Kosanovic M and Adem A, 2008. Trace element 436 - composition of plasma and breast milk of well-nourished women. Journal of Environmental 437 - Science and Health. Part A, Toxic/Hazardous Substances and Environmental Engineering, 43, 329-438 - 439 334. - 440 Afssa (Agence française de sécurité sanitaire des aliments), 2001. Apports nutritionnels conseillés pour la population française. Editions Tec&Doc, Paris, France, 605 pp. 441 - 442 Amato P, Morales AJ and Yen SSC, 2000. Effects of chromium picolinate supplementation on insulin - 443 sensitivity, serum lipids, and body composition in healthy, nonobese, older men and women. - Journals of Gerontology Series A Biological Sciences and Medical Sciences, 55, M260-M263. 444 - Anderson RA, Polansky MM, Bryden NA, Roginski EE, Patterson KY and Reamer DC, 1982a. Effect 445 - 446 of exercise (running) on serum glucose, insulin, glucagon, and chromium excretion. Diabetes, 31, - 212-216. 447 - 448 Anderson RA, Polansky MM, Bryden NA, Roginski EE, Patterson KY, Veillon C and Glinsmann W, - 449 1982b. Urinary chromium excretion of human subjects: effects of chromium supplementation and - glucose loading. American Journal of Clinical Nutrition, 36, 1184-1193. 450 - 451 Anderson RA, Polansky MM, Bryden NA, Patterson KY, Veillon C and Glinsmann WH, 1983a. - 452 Effects of chromium supplementation on urinary Cr excretion of human subjects and correlation of - Cr excretion with selected clinical parameters. Journal of Nutrition, 113, 276-281. 453 - Anderson RA, Polansky MM, Bryden NA, Roginski EE, Mertz W and Glinsmann W, 1983b. 454 - 455 Chromium supplementation of human subjects: effects on glucose, insulin, and lipid variables. - Metabolism: Clinical and Experimental, 32, 894-899. 456 - 457 Anderson RA, Polansky MM and Bryden NA, 1984. Strenuous running: acute effects on chromium, - 458 copper, zinc, and selected clinical variables in urine and serum of male runners. Biological Trace - Element Research, 6, 327-336. 459 - Anderson RA, Bryden NA and Polansky MM, 1985. Serum chromium of human subjects: effects of 460 chromium supplementation and glucose. American Journal of Clinical Nutrition, 41, 571-577. - 461 - 462 Anderson RA and Kozlovsky AS, 1985. Chromium intake, absorption and excretion of subjects - consuming self-selected diets. American Journal of Clinical Nutrition, 41, 1177-1183. 463 - 464 Anderson RA, Polansky MM, Bryden NA, Bhathena SJ and Canary JJ, 1987. Effects of supplemental - 465 chromium on patients with symptoms of reactive hypoglycemia. Metabolism: Clinical and - Experimental, 36, 351-355. 466 - 467 Anderson RA, Bryden NA, Polansky MM and Deuster PA, 1988. Exercise effects on chromium - 468 excretion of trained and untrained men consuming a constant diet. Journal of Applied Physiology, - 64, 249-252. 469 - 470 Anderson RA, Polansky MM, Bryden NA and Canary JJ, 1991. Supplemental-chromium effects on - 471 glucose, insulin, glucagon, and urinary chromium losses in subjects consuming controlled low- - 472 chromium diets. American Journal of Clinical Nutrition, 54, 909-916. - 473 Anderson RA, Bryden NA and Polansky MM, 1992. Dietary chromium intake. Freely chosen diets, - 474 institutional diet, and individual foods. Biological Trace Element Research, 32, 117-121. - 475 Anderson RA, Bryden NA, Patterson KY, Veillon C, Andon MB and Moser-Veillon PB, 1993. Breast - 476 milk chromium and its association with chromium intake, chromium excretion, and serum - chromium. American Journal of Clinical Nutrition, 57, 519-523. 477 - 478 Anonymous, 1988. Is chromium essential for humans? Nutrition Reviews, 46, 17-20. - Anton SD, Morrison CD, Cefalu WT, Martin CK, Coulon S, Geiselman P, Han H, White CL and Williamson DA, 2008. Effects of chromium picolinate on food intake and satiety. Diabetes Technology & Therapeutics, 10, 405-412. - 482 Aquilio E, Spagnoli R, Seri S, Bottone G and Spennati G, 1996. Trace element content in human milk during lactation of preterm newborns. Biological Trace Element Research, 51, 63-70. - Bahijri SM, 2000. Effect of chromium supplementation on glucose tolerance and lipid profile. Saudi Medical Journal, 21, 45-50. - Bougle D, Bureau F, Voirin J, Neuville D, Drosdowsky M and Duhamel JF, 1992. Chromium status of full-term and preterm newborns. Biological Trace Element Research, 32, 47-51. - Boyd SG, Boone BE, Smith AR, Conners J and Dohm GL, 1998. Combined dietary chromium picolinate supplementation and an exercise program leads to a reduction of serum cholesterol and insulin in college-aged subjects. Journal of Nutritional Biochemistry, 9, 471-475. - Briefel RR, McDowell MA, Alaimo K, Caughman CR, Bischof AL, Carroll MD and Johnson CL, 1995. Total energy intake of the US population: the third National Health and Nutrition Examination Survey, 1988-1991. American Journal of Clinical Nutrition, 62, 1072S-1080S. - Brown RO, Forloines-Lynn S, Cross RE and Heizer WD, 1986. Chromium deficiency after long-term total parenteral nutrition. Digestive Diseases and Sciences, 31, 661-664. - Campbell WW, Joseph LJ, Anderson RA, Davey SL, Hinton J and Evans WJ, 2002. Effects of resistive training and chromium picolinate on body composition and skeletal muscle size in older women. International Journal of Sport Nutrition and Exercise Metabolism, 12, 125-135. - Casey CE and Hambidge KM, 1984. Chromium in human milk from American mothers. British Journal of Nutrition, 52, 73-77. - Casey CE, Hambidge KM and Neville MC, 1985. Studies in human lactation: zinc, copper, manganese and chromium in human milk in the first month of lactation. American Journal of Clinical Nutrition, 41, 1193-1200. - Cefalu WT, Bell-Farrow AD, Stegner J, Wang ZQ, King T, Morgan T and Terry JG, 1999. Effect of chromium picolinate on insulin sensitivity in vivo. Journal of Trace Elements in Experimental Medicine, 12, 71-83. - 507 Chen NS, Tsai A and Dyer IA, 1973. Effect of chelating agents on chromium absorption in rats. Journal of Nutrition, 103, 1182-1186. - 509 Chen Y, Watson HM, Gao J, Sinha SH, Cassady CJ and Vincent JB, 2011. Characterization of the 510 organic component of low-molecular-weight chromium-binding substance and its binding of 511 chromium. Journal of Nutrition, 141, 1225-1232. - Clemente GF, Ingrao G and Santaroni GP, 1982. The concentration of some trace elements in human milk from Italy. Science of the Total Environment, 24, 255-265. - Cocho JA, Cervilla JR, Rey-Goldar ML, Fdez-Lorenzo JR and Fraga JM, 1992. Chromium content in human milk, cow's milk, and infant formulas. Biological Trace Element Research, 32, 105-107. - D-A-CH (Deutsche Gesellschaft für Ernährung, Österreichische Gesellschaft für Ernährung, Schweizerische Gesellschaft für Ernährungsforschung, Schweizerische Vereinigung für Ernährung), 2013. Referenzwerte für die Nährstoffzufuhr. Neuer Umschau Buchverlag, Neustadt an der Weinstraße, Germany, 292 pp. - Deelstra H, van Schoor O, Robberecht H, Clara R and Eylenbosch W, 1988. Daily chromium intake by infants in Belgium. Acta Paediatrica Scandinavica, 77, 402-407. - 522 DH (Department of Health), 1991. Dietary reference values for food energy and nutrients for the - 523 United Kingdom. Report of the Panel on Dietary Reference Values of the Committee on Medical - Aspects of Food Policy. HMSO, London, UK, 212 pp. - Di Bona KR, Love S, Rhodes NR, McAdory D, Sinha SH, Kern N, Kent J, Strickland J, Wilson A, - Beaird J, Ramage J, Rasco JF and Vincent JB, 2011. Chromium is not an essential trace element - for mammals: effects of a "low-chromium" diet. Journal of Biological Inorganic Chemistry, 16, - 528 381-390. - 529 DiSilvestro RA and Dy E, 2007. Comparison of acute absorption of commercially available chromium - supplements. Journal of Trace Elements in Medicine and Biology, 21, 120-124. - Donaldson RM, Jr. and Barreras RF, 1966. Intestinal absorption of trace quantities of chromium. - Journal of Laboratory and Clinical Medicine, 68, 484-493. - 533 Eckhert CD, 2014. Trace elements. In: Modern Nutrition in Health and Disease. Eds Ross AC, - Caballero B, Cousins RJ, Tucker KL and Ziegler TR. Lippincott Williams & Wilkins, - Philadelphia, USA, 245-259. - 536 EFSA CONTAM Panel (EFSA Panel on Contaminants in the Food Chain), 2014. Scientific Opinion - on the risks to public health related to the presence of chromium in food and drinking water. EFSA - 538 Journal 2014;12(3):3595, 261 pp. doi:10.2903/j.efsa.2014.3595 - 539 EFSA (European Food Safety Authority), 2009. Scientific Opinion of the Panel on Additives and - Products or Substances used in Animal Feed (FEEDAP) on the safety and efficacy of chromium - methionine (Availa®Cr) as feed additive for all species. The EFSA Journal 2009, 1043, 1-41. - 542 EFSA NDA Panel (EFSA Panel on Dietetic Products, Nutrition and Allergies), 2010. Scientific - Opinion on the substantiation of health claims related to chromium and contribution to normal - macronutrient metabolism (ID 260, 401, 4665, 4666, 4667), maintenance of normal blood glucose - concentrations (ID 262, 4667), contribution to the maintenance or achievement of a normal body - weight (ID 339, 4665, 4666), and reduction of tiredness and fatigue (ID 261) pursuant to Article - 547 13(1) of Regulation (EC) No 1924/2006. EFSA Journal
2010;8(10):1732, 23 pp. - 548 doi:10.2903/j.efsa.2010.1732 - 549 EFSA NDA Panel (EFSA Panel on Dietetic Products Nutrition and Allergies), 2013. Scientific - Opinion on Dietary Reference Values for fluoride. EFSA Journal 2013;11(8):3332, 46 pp. doi: - 551 10.2903/j.efsa.2013.3332 - Engelhardt S, Moser-Veillon PB, Mangels AR, Patterson KY and Veillon C, 1990. Appearance of an - oral dose of chromium (53Cr) in breast milk? In: Human lactation 4. Breastfeeding, Nutrition, - Infection and Infant Growth in Developed and Emerging Countries. Eds Atkinson SA, Hanson LA - and Chandra RK. ARTS Biomedical, St Johns, Newfoundland, 485-487. - Freund H, Atamian S and Fischer JE, 1979. Chromium deficiency during total parenteral nutrition. - Journal of the American Medical Association, 241, 496-498. - 558 Gargas ML, Norton RL, Paustenbach DJ and Finley BL, 1994. Urinary excretion of chromium by - humans following ingestion of chromium picolinate implications for biomonitoring. Drug - Metabolism and Disposition, 22, 522-529. - 561 Gomez V and Callao MP, 2006. Chromium determination and speciation since 2000. Trends in - 562 Analytical Chemistry, 25, 1006-1015. - 563 Gunton JE, Cheung NW, Hitchman R, Hams G, O'Sullivan C, Foster-Powell K and McElduff A, - 564 2005. Chromium supplementation does not improve glucose tolerance, insulin sensitivity, or lipid - profile: A randomized, placebo-controlled, double-blind trial of supplementation in subjects with - impaired glucose tolerance. Diabetes Care, 28, 712-713. - Hallmark MA, Reynolds TH, DeSouza CA, Dotson CO, Anderson RA and Rogers MA, 1996. Effects of chromium and resistive training on muscle strength and body composition. Medicine & Science - in Sports & Exercise, 28, 139-144. - Hambidge KM, Franklin ML and Jacobs MA, 1972a. Hair chromium concentration: effects of sample washing and external environment. American Journal of Clinical Nutrition, 25, 384-389. - Hambidge KM, Franklin ML and Jacobs MA, 1972b. Changes in hair chromium concentrations with increasing distances from hair roots. American Journal of Clinical Nutrition, 25, 380-383. - Health Council of the Netherlands, 2000. Voedingsnormen: calcium, vitamine D, thiamine, riboflavine, niacine, pantotheenzuur en biotine [Dietary reference intakes: calcium, vitamin D, thiamin, riboflavin, niacin, pantothenic acid, and biotin]. Health Council of the Netherlands, The - 577 Hague, 180 pp. - Heinig MJ, Nommsen LA, Peerson JM, Lonnerdal B and Dewey KG, 1993. Energy and protein intakes of breast-fed and formula-fed infants during the first year of life and their association with growth velocity: the DARLING Study. American Journal of Clinical Nutrition, 58, 152-161. - Hermann J, Chung H, Arquitt A, Goad C, Burns M and Chan B, 1998. Effects of chromium or copper supplementation on plasma lipids, plasma glucose and serum insulin in adults over age fifty. Journal of Nutrition for the Elderly, 18, 27-45. - Hopkins LL, Jr. and Schwarz K, 1964. Chromium (3) binding to serum proteins, specifically siderophilin. Biochimica et Biophysica Acta, 90, 484-491. - Hopkins LL, Jr., Ransome-Kuti O and Majaj AS, 1968. Improvement of impaired carbohydrate metabolism by chromium 3 in manourished infants. American Journal of Clinical Nutrition, 21, 203-211. - 589 IOM (Institute of Medicine), 2001. Dietary Reference Intakes for vitamin A, vitamin K, arsenic, 590 boron, chromium, copper, iodine, iron, manganese, molybdenum, nickel, silicon, vanadium, and 591 zinc. National Academy Press, Washington DC, USA, 773 pp. - 592 IPCS, 2002. Environmental Health Criteria 228. Principles and methods for the assessment of risk 593 from essential trace elements. International Programme on Chemical Safety, Available online: 594 http://www.inchem.org/documents/ehc/ehc/ehc/228.htm - Ishihara N and Matsushiro T, 1986. Biliary and urinary excretion of metals in humans. Archives of Environmental Health, 41, 324-330. - Ito Y, Alcock NW and Shils ME, 1990. Chromium content of total parenteral nutrition solutions. Journal of Parenteral and Enteral Nutrition, 14, 610-614. - Jeejeebhoy KN, Chu RC, Marliss EB, Greenberg GR and Bruce-Robertson A, 1977. Chromium deficiency, glucose intolerance, and neuropathy reversed by chromium supplementation, in a patient receiving long-term total parenteral nutrition. American Journal of Clinical Nutrition, 30, 531-538. - Joseph LJO, Farrell PA, Davey SL, Evans WJ and Campbell WW, 1999. Effect of resistance training with or without chromium picolinate supplementation on glucose metabolism in older men and women. Metabolism-Clinical and Experimental, 48, 546-553. - Kato I, Vogelman JH, Dilman V, Karkoszka J, Frenkel K, Durr NP, Orentreich N and Toniolo P, 1998. Effect of supplementation with chromium picolinate on antibody titers to 5-hydroxymethyl uracil. European Journal of Epidemiology, 14, 621-626. - Kerger BD, Paustenbach DJ, Corbett GE and Finley BL, 1996. Absorption and elimination of trivalent and hexavalent chromium in humans following ingestion of a bolus dose in drinking water. Toxicology and Applied Pharmacology, 141, 145-158. - Kien CL, Veillon C, Patterson KY and Farrell PM, 1986. Mild peripheral neuropathy but biochemical - chromium sufficiency during 16 months of "chromium-free" total parenteral nutrition. Journal of - Parenteral and Enteral Nutrition, 10, 662-664. - Kim CW, Kim BT, Park KH, Kim KM, Lee DJ, Yang SW and Joo NS, 2011. Effects of short-term - chromium supplementation on insulin sensitivity and body composition in overweight children: - randomized, double-blind, placebo-controlled study. Journal of Nutritional Biochemistry, 22, - 618 1030-1034. - 619 Kovacs R, Beni A, Karosi R, Sogor C and Posta J, 2007. Investigation of chromium content in - foodstuffs and nutrition supplements by GFAAS and determination of changing Cr(III) to Cr(VI) - during baking and toasting bread. Food Chemistry, 105, 1209-1213. - 622 Krikorian R, Eliassen JC, Boespflug EL, Nash TA and Shidler MD, 2010. Improved cognitive- - cerebral function in older adults with chromium supplementation. Nutritional Neuroscience, 13, - 624 116-122. - Kumpulainen J, Vuori E, Makinen S and Kara R, 1980. Dietary chromium intake of lactating Finnish - mothers: effect on the Cr content of their breast milk. British Journal of Nutrition, 44, 257-263. - Kumpulainen J and Vuori E, 1980. Longitudinal study of chromium in human milk. American Journal - 628 of Clinical Nutrition, 33, 2299-2302. - 629 Lim TH, Sargent T, 3rd and Kusubov N, 1983. Kinetics of trace element chromium(III) in the human - body. American Journal of Physiology, 244, R445-454. - 631 Lukaski HC, Bolonchuk WW, Siders WA and Milne DB, 1996. Chromium supplementation and - resistance training: Effects on body composition, strength, and trace element status of men. - American Journal of Clinical Nutrition, 63, 954-965. - 634 Lukaski HC, Siders WA and Penland JG, 2007. Chromium picolinate supplementation in women: - effects on body weight, composition, and iron status. Nutrition, 23, 187-195. - Masharani U, Gjerde C, McCoy S, Maddux BA, Hessler D, Goldfine ID and Youngren JF, 2012. - Chromium supplementation in non-obese non-diabetic subjects is associated with a decline in - insulin sensitivity. BMC Endocrine Disorders, 12, 31. - 639 Mertz W, 1998. Review of the scientific basis for establishing the essentiality of trace elements. - Biological Trace Element Research, 66, 185-191. - Mohamedshah FY, Moser-Veillon PB, Yamini S, Douglass LW, Anderson RA and Veillon C, 1998. - Distribution of a stable isotope of chromium (53Cr) in serum, urine, and breast milk in lactating - women. American Journal of Clinical Nutrition, 67, 1250-1255. - Mullee A, Brown T, Collings R, Harvey L, Hooper L and Fairweather-Tait S, 2012. Literature search - and review related to specific preparatory work in the establishment of Dietary Reference Values. - 646 Literature search and review related to specific preparatory work in the establishment of Dietary - Reference values for chromium, manganese and molybdenum. Project developed on the - procurement project CFT/EFSA/NDA/2010/02 (Lot 2), 171 pp. - Nordic Council of Ministers (Nordic Council of Ministers), 2014. Nordic Nutrition Recommendations - 650 2012. Integrating nutrition and physical activity. 5th edition. 627 pp. - Novotnik B, Zuliani T, Scancar J and Milacic R, 2013. Chromate in food samples: an artefact of - wrongly applied analytical methodology? Journal of Analytical Atomic Spectrometry, 28, 558-566. - Offenbacher EG, Rinko CJ and Pi-Sunyer FX, 1985. The effects of inorganic chromium and brewer's - yeast on glucose tolerance, plasma lipids, and plasma chromium in elderly subjects. American - Journal of Clinical Nutrition, 42, 454-461. - Offenbacher EG, Spencer H, Dowling HJ and Pi-Sunyer FX, 1986. Metabolic chromium balances in - men. American Journal of Clinical Nutrition, 44, 77-82. - Offenbacher EG, 1994. Promotion of chromium absorption by ascorbic acid. Trace Elements and Electrolytes, 11, 178-181. - Okolo NS, Okonji M, Ogbonna C, Ezeogu AF and Onwuanaku C, 2001. Levels of calcium, aluminium and chromium in serum of exclusively breastfed infants at six months of age in Savannah region of Nigeria. West African Journal of Medicine, 20, 13-16. - Pacquette LH, Szabo A and Thompson JJ, 2011. Simultaneous determination of chromium, selenium, and molybdenum in nutritional products by inductively coupled plasma/mass spectrometry: single-laboratory validation. Journal of AOAC International, 94, 1240-1252. - Pacquette LH, Szabo A and Thompson JJ, 2012. Application of inductively coupled plasma/mass spectrometry for the measurement of chromium, selenium, and molybdenum in infant formula and adult nutritional products: First Action 2011.19. Journal of AOAC International, 95, 588-598. - Parr RM, DeMaeyer EM, Iyengar VG, Byrne AR, Kirkbright GF, Schoch G, Niinisto L, Pineda O, Vis HL, Hofvander Y and Omololu A, 1991. Minor and trace elements in human milk from
Guatemala, Hungary, Nigeria, Philippines, Sweden, and Zaire. Results from a WHO/IAEA joint project. Biological Trace Element Research, 29, 51-75. - Potter JF, Levin P, Anderson RA, Freiberg JM, Andres R and Elahi D, 1985. Glucose metabolism in glucose-intolerant older people during chromium supplementation. Metabolism: Clinical and Experimental, 34, 199-204. - Press RI, Geller J and Evans GW, 1990. The effect of chromium picolinate on serum cholesterol and apolipoprotein fractions in human subjects. Western Journal of Medicine, 152, 41-45. - Riales R and Albrink MJ, 1981. Effect of chromium chloride supplementation on glucose tolerance and serum lipids including high-density lipoprotein of adult men. American Journal of Clinical Nutrition, 34, 2670-2678. - Sayato Y, Nakamuro K, Matsui S and Ando M, 1980. Metabolic-fate of chromium compounds. 1. Comparative behavior of chromium in rat administered with (Na2cro4)-Cr-51 and (Crcl3)-Cr-51. Journal of Pharmacobio-Dynamics, 3, 17-23. - 684 SCF (Scientific Committee for Food), 1993. Nutrient and energy intakes for the European Community. Reports of the Scientific Committee for Food, 31st series. Food Science and Techniques, Luxembourg, European Commission, 248 pp. - SCF (Scientific Committee on Food), 2003a. Opinion of the Scientific Committee on Food on the revision of reference values for nutrition labelling. 17 pp. http://ec.europa.eu/food/fs/sc/scf/out171_en.pdf. - SCF (Scientific Committee on Food), 2003b. Opinion on the Scientific Committee on Food on the Tolerable Upper Intake Level of trivalent chromium. SCF/CS/NUT/UPPLEV/67 Final. 18 pp. http://ec.europa.eu/food/fs/sc/scf/out197_en.pdf - 693 Schroeder HA, 1968. The role of chromium in mammalian nutrition. American Journal of Clinical Nutrition, 21, 230-244. - Stearns DM, 2000. Is chromium a trace essential metal? Biofactors, 11, 149-162. - Stearns DM, 2007. Multiple hypotheses for chromium(III) biochemistry: Why the essentiality of chromium(III) is still questioned. In: The nutritional biochemistry of chromium(III). Ed Vincent JB. Elsevier, Amsterdam, The Netherlands, 57-70. - Sumino K, Hayakawa K, Shibata T and Kitamura S, 1975. Heavy-metals in normal Japanese tissues amounts of 15 heavy-metals in 30 subjects. Archives of Environmental Health, 30, 487-494. - Tsuda K, Yokoyama Y, Morita M, Nakazawa Y and Onishi S, 1998. Selenium and chromium deficiency during long-term home total parenteral nutrition in chronic idiopathic intestinal pseudoobstruction. Nutrition, 14, 291-295. - Uusitupa MI, Mykkanen L, Siitonen O, Laakso M, Sarlund H, Kolehmainen P, Rasanen T, Kumpulainen J and Pyorala K, 1992. Chromium supplementation in impaired glucose tolerance of elderly: effects on blood glucose, plasma insulin, C-peptide and lipid levels. British Journal of Nutrition, 68, 209-216. - Verhage AH, Cheong WK and Jeejeebhoy KN, 1996. Neurologic symptoms due to possible chromium deficiency in long-term parenteral nutrition that closely mimic metronidazole-induced syndromes. Journal of Parenteral and Enteral Nutrition, 20, 123-127. - Vincent JB and Love ST, 2012. The need for combined inorganic, biochemical, and nutritional studies of chromium(III). Chemistry and Biodiversity, 9, 1923-1941. - Volpe SL, Huang HW, Larpadisorn K and Lesser, II, 2001. Effect of chromium supplementation and exercise on body composition, resting metabolic rate and selected biochemical parameters in moderately obese women following an exercise program. Journal of the American College of Nutrition, 20, 293-306. - Wappelhorst O, Kuhn I, Heidenreich H and Markert B, 2002. Transfer of selected elements from food into human milk. Nutrition, 18, 316-322. - WHO (World Health Organization), 1996. Trace elements in human nutrition and health. WHO, Geneva, Switzerland, 343 pp. - WHO/FAO (World Health Organization/Food and Agriculture Organization), 2004. Vitamin and mineral requirements in human nutrition: report of a joint FAO/WHO expert consultation, Bangkok, Thailand, 21-30 September 1998. 341 pp. - Wongseelashote O, Daly MA and Frankel EH, 2004. High insulin requirement versus high chromium requirement in patients nourished with total parenteral nutrition. Nutrition, 20, 318-320. - Woolliscroft J and Barbosa J, 1977. Analysis of chromium induced carbohydrate intolerance in the rat. Journal of Nutrition, 107, 1702-1706. - Yamawaki N, Yamada M, Kan-no T, Kojima T, Kaneko T and Yonekubo A, 2005. Macronutrient, mineral and trace element composition of breast milk from Japanese women. Journal of Trace Elements in Medicine & Biology, 19, 171-181. - Yazaki Y, Faridi Z, Ma Y, Ali A, Northrup V, Njike VY, Liberti L and Katz DL, 2010. A pilot study of chromium picolinate for weight loss. Journal of Alternative & Complementary Medicine, 16, 291-299. - Yoshida M, Takada A, Hirose J, Endo M, Fukuwatari T and Shibata K, 2008. Molybdenum and chromium concentrations in breast milk from Japanese women. Bioscience, Biotechnology and Biochemistry, 72, 2247-2250. ### 739 APPENDICES # 740 Appendix A. Overview of Dietary Reference Values and recommendations - 741 Several national authorities have considered chromium when setting DRVs, but few have actually - derived values for chromium. - 743 Adults - The Nordic countries (Nordic Council of Ministers, 2014), WHO/FAO (2004), the Health Council of - the Netherlands (2000), and the SCF (1993) did not derive DRVs for chromium for adults. - 746 The German-speaking countries (D-A-CH, 2013) based their Adequate Intake (AI) on the estimated - adult requirement of 20 µg/day by WHO (1996), which was thought to be sufficient for all - physiological functions but not for body reserves. Adding a certain requirement for body reserves and - in the absence of satisfactory data, an AI range for adults of 30-100 µg/day was derived. - 750 - 751 The US Institute of Medicine (IOM, 2001) considered that the mean chromium content of 22 adult - 752 diets designed by nutritionists was 13.4 μg/1 000 kcal (Anderson et al., 1992). Taking into account - energy intake estimates of 1 850 kcal for women and 2 800 kcal for men aged 19-30 years (Briefel et - al., 1995), AIs of 25 µg/day and 35 µg/day were derived for women and men, respectively, aged 19-50 - years. For women and men aged over 50 years AIs were set at 20 µg/day and 30 µg/day, considering - energy intake estimates of 1 500 kcal for women and 2 100 kcal for men aged 50-70 years. - 757 - 758 The French Food Safety Agency (Afssa, 2001) acknowledged that in a previous edition an AI range - for chromium of 50-200 μg /day was proposed considering the absence of clinical signs of deficiency - for an intake of 50 µg/day and the absence of toxicological effects for an intake of up to 200 µg/day. - With the aim to set a narrower AI range and considering the problems with chromium analysis prior - to the 1980s, AIs between 55 and 70 µg/day were set for women and men, respectively. - 763 767 - 764 The UK Committee on Medical Aspects of Food (COMA) (DH, 1991) did not set a Reference - Nutrient Intake (RNI) for chromium but considered that a safe and adequate level of intake for adults - 766 was above 20 μ g/day. ### Infants and children - The Nordic countries (Nordic Council of Ministers, 2014), WHO/FAO (2004), the Health Council of - 769 the Netherlands (2000), and the SCF (1993) did not derive DRVs for chromium for children and - adolescents. - 771 The German-speaking countries (D-A-CH, 2013) concluded that although breast milk concentrations - are low (Anderson et al., 1993), exclusively breast-fed infants are adequately supplied. In view of the - low absorption efficiency, the AI was considered to extend over a relatively wide range. Estimated - values for infants and children were extrapolated downwards from the adult AI range assuming - equally wide relative ranges and age-related energy intakes. - For infants aged 7 to 12 months, the IOM (2001) set an AI based on chromium intake from human - 777 milk and complementary foods. The average concentration of chromium in human milk was estimated - 778 to be 0.25 μg/L (Casey and Hambidge, 1984; Casey et al., 1985; Engelhardt et al., 1990; Anderson et - al., 1993; Mohamedshah et al., 1998) and the average volume of milk intake assumed to be 0.6 L/day - 780 (Heinig et al., 1993). The amount of chromium ingested via breast milk and balanced meals - 781 (Anderson et al., 1992) was estimated to be 5.5 $\mu g/day$, which was therefore set as the AI for infants - aged 7 to 12 months. In the absence of information on the chromium content of children's diets, for 788 789 790 791 794 783 children aged one to 18 years the AIs were set using data extrapolated from the adult AI. Because urinary excretion of chromium is increased with exercise (Anderson et al., 1982a; Anderson et al., 784 1984; Anderson et al., 1988) metabolic weight (kg^{0.75}) was used for extrapolation, resulting in AIs 785 ranging from 11-35 µg/day depending on age and sex (see Table 1). 786 Afssa (2001) indicated that no signs of deficiency had been seen in young children, apart from severe protein-energy malnutrition and TPN and that chromium concentrations in breast milk are very low, between 0.1-1.6 µg/day and with no variation between stages of lactation. They also considered the previous COMA (DH, 1991) estimates for an optimal intake of 0.1-1 µg/kg body weight per day, and set AIs between 25 and 50 µg/day for infants, children and adolescents. 792 The UK COMA (DH, 1991) did not set an RNI but considered that a safe and adequate level of intake 793 for children and adolescents was between 0.1 and 1.0 µg/kg body weight per day. Table 1: Overview of Dietary Reference Values for chromium for children and adults | | D-A-CH
(2013) | Afssa
(2001) | IOM
(2001) | |------------------------|------------------|-------------------|---------------| | Age (months) | 4-<12 | | 7-12 | | \mathbf{AI} (µg/day) | 20-40 | | 5.5 | | Age (years) | 1-<4 | 1-3 | 1-3 | | AI (μg/day) | 20-60
 25 | 11 | | Age (years) | 4-<7 | 4-6 | 4-8 | | AI (μg/day) | 20-80 | 35 | 15 | | Age (years) | 7-<15 | 7-9 | | | AI (μg/day) | 20-100 | 40 | | | Age (years) | 15-<19 | 10-12 | 9-13 | | AI | | | | | Boys (µg/day) | 30-100 | 45 | 25 | | Girls (µg/day) | 30-100 | 45 | 21 | | Age (years) | | 13-19 | 14-18 | | AI | | | | | Boys (µg/day) | | 50 | 35 | | Girls (µg/day) | | 50 | 24 | | Age (years) | ≥ 19 | 20-65 | 19-50 | | AI | | | | | Men (µg/day) | 30-100 | 65 | 35 | | Women (µg/day) | 30-100 | 55 ^(a) | 25 | | Age (years) | | > 65 | ≥ 51 | | AI | | | | | Men (µg/day) | | 70 | 30 | | Women (µg/day) | | 60 ^(b) | 20 | 795 (a): 20-55 years 796 (b): > 55 years 797 AI, Adequate Intake ### **Pregnancy and lactation** - The Nordic countries (Nordic Council of Ministers, 2014), the German-speaking countries (D-A-CH, 2013), WHO/FAO (2004), the Health Council of the Netherlands (2000), the SCF (1993), and the UK COMA (DH, 1991) did not derive (separate) DRVs for chromium for pregnant and lactating women. - 802 Because of a lack of data to estimate the additional chromium requirement during pregnancy, IOM 803 (2001) determined the AI by extrapolating from the AI for non-pregnant adolescent girls and adult 804 women. A median gestational weight gain of 16 kg was added to the reference weight for adolescent 805 girls and adult women for extrapolation. For pregnant girls aged 14 to 18 years the AI was set at 29 μg/day and for pregnant women aged 19 to 50 years the AI was 30 μg/day. For lactating women, 806 the AI was estimated on the basis of the chromium intake necessary to replace chromium secreted in 807 human milk plus the AI for non-lactating women. Based on a milk chromium concentration of 808 809 0.25 µg/L and a mean secreted volume of 0.78 L/day during the first six months of lactation, chromium losses with breast milk were assumed to amount to 200 ng/day. Taking into account an 810 811 absorption efficiency of 1 %, a chromium intake of 20 µg/day was considered for replacement of 812 these losses. For lactating girls aged 14 to 18 years the AI was thus set at 44 µg/day, and for women 813 aged 19 to 50 years the AI was 45 µg/day. - Afssa (2001) recommended to increase chromium intake by 5 μ g/day for pregnant women during the third trimester, resulting in an AI of 60 μ g/day. For breastfeeding women, Afssa (2001) did not recommend any additional chromium intake and advised the same intake as for non-pregnant, non- - 817 lactating women. Appendix B. Chromium concentration of human milk from healthy mothers | Reference | Country | n (number of samples) | Total maternal
intake (µg/day)
Mean (range) | Stage of lactation | Chromium concentration ($\mu g/L$) | | | Comments | |------------------------|-------------|-----------------------|---|----------------------|--------------------------------------|-------------|-----------|----------| | | | | | | mean ± SD | median ± SD | range | | | Abdulrazzaq et al. | United Arab | 209 (205) | Not reported | <1 week-80 | 0.689 ± 0.517 | 0.591 | 0.000- | | | (2008) | Emirates | 209 (200) | 1 tot 1 to posted | weeks | 0.000 = 0.017 | 0.0071 | 2.527 | | | Anderson et al. (1993) | USA | 17 | 41.08 ± 0.416 ^(a) | 60 days | 0.178 ± 0.021 (a, b) | | | | | Aquilio et al. (1996) | Italy | 8 | Not reported | 2-6 days | 1.1 ± 0.4 | | | | | _ | - | | _ | 12-16 days | 1.1 ± 0.2 | | | | | | | | | 21 days | 1.2 ± 0.5 | | | | | Bougle et al. (1992) | France | (8) | Not reported | 1-88 days | 1.2 ± 0.4 (c) | | | | | Casey and Hambidge | USA | 17 | Not reported | 0-14 days | 0.29 ± 0.09 | | 0.06-1.56 | | | (1984) | | 6 | - | 15-28 days | 0.27 ± 0.13 | | | | | • | | 26 | | 1-3 months | 0.28 ± 0.11 | | | | | | | 23 | | 4-6 months | 0.26 ± 0.12 | | | | | | | 9 | | 7+ months | 0.46 ± 0.41 | | | | | | | (overall 255) | | overall | 0.30 ± 0.17 | | | | | Casey et al. (1985) | USA | 11 (109) | Not reported | Day 1 | 0.24 ± 0.08 | | 0.12-0.53 | | | , , , | | ` , | 1 | Day 2 | 0.23 ± 0.08 | | | | | | | | | Day 3 | 0.23 ± 0.06 | | | | | | | | | Day 4 | 0.25 ± 0.08 | | | | | | | | | Day 5 | 0.34 ± 0.11 | | | | | | | | | Day $8 \pm 2 (6-10)$ | 0.27 ± 0.05 | | | | | | | | | Day 14 ± 3 | 0.22 ± 0.09 | | | | | | | | | Day 21 ± 3 | 0.28 ± 0.11 | | | | | | | | | Day 23 ± 3 | 0.26 ± 0.07 | | | | | | | | | Overall | 0.27 ± 0.10 | | | | | Clemente et al. | Italy | 21 (123) | Not reported | Mature | | ≤ 0.3 | ≤ 0.3-876 | | | (1982) | | | | (≥15 days) | | | | | | Cocho et al. (1992) | Spain | (21) | Not reported | 1-10 days | 1.80 ± 0.75 | | 0.45-3.00 | | | | | | | >10 days | 1.25 ± 0.74 | | 0.27-2.27 | | | | | | | Overall | 1.56 ± 0.78 | | 0.27-3.00 | | | Reference | Country | n (number of samples) | Total maternal
intake (µg/day)
Mean (range) | Stage of lactation | Chromium concentration (µg/L) | | | Comments | |---------------------------|---|-----------------------|---|--------------------|--|--|-----------|------------------------------| | | | | | | $mean \pm SD$ | $median \pm SD$ | range | | | Deelstra et al. (1988 | Belgium | (9) | Not reported | 0-3 days | 0.18 ± 0.34 | | 0.09-0.34 | | | | _ | (7) | - | 5-10 days | 0.21 ± 0.06 | | 0.15-0.33 | | | | | (10) | | 30-60 days | 0.14 ± 0.05 | | 0.10-0.23 | | | Kumpulainen and | Finland | 10 (10) | 30 | 8-18 days | 0.43 ± 0.13 | | | | | Vuori (1980) | | 5 (5) | | 47-54 days | 0.39 ± 0.21 | | | | | | | 5 (5) | | 128-159 days | 0.34 ± 0.12 | | | | | Kumpulainen et al. (1980) | Finland | 5 (5) | 34-40 | 6-8 weeks | $(0.19-0.69) \pm (0.02-0.06)^{(a, d)}$ | | | | | | | 4 (5) | 21-38 | 17-22 weeks | $(0.24-0.54) \pm (0.01-0.06)^{(a, d)}$ | | | | | Mohamedshah et al. | USA | 6 | 400 μg ⁵³ Cr (as Cr | 1-2 months | 0.09-0.46 ^(d) | | 0.05-1.06 | | | (1998) | | | chloride) for 4 days;
dietary intake not
reported | | No ⁵³ Cr detected | | (b) | | | Okolo et al. (2001) | Nigeria | 45 | Not reported | 6.1 months | 110 | | | | | Parr et al. (1991) | Guatemala
Hungary
Nigeria
Philippines
Sweden
Zaire | (51) | Not reported | 3 months | | 1.17 ± 0.14
0.78 ± 0.21
4.35 ± 1.78
3.46 ± 0.60
1.48 ± 0.57
1.07 ± 0.55 | | | | Wappelhorst et al. (2002) | Germany,
Poland, Czech
Republic | 19 (536) | 256 ± 187 ^(e)
Median: 206 | 3-68 weeks | 10.8 | 10.8 | 3.1-19.4 | | | Yamawaki et al. | Japan | (1 166) | Not reported | 1-5 days | 17 ± 10 | | | According to Yoshida et | | (2005) | | | - | 6-10 days | 35 ± 54 | | | al. (2008), the results of | | | | | | 11-20 days | 45 ± 53 | | | this study are not reliable, | | | | | | 21-89 days | 50 ± 33 | | | since no evaluation of | | | | | | 90-180 days | 76 ± 54 | | | analytical values using | | | | | | 181-365 days | 25 ± 17 | | | standard reference | | | | | | Summer | 67 ± 39 | | | materials was performed. | | | | | | Winter | 51 ± 52 | | | • | | | | | | Overall | 59 ± 47 | | | | | Reference | Country | n (number of samples) | Total maternal intake (µg/day) | Stage of lactation | Chromium concentration (µg/L) | | ıg/L) | Comments | |-----------------------|---------|------------------------|--------------------------------|--------------------|-------------------------------|-----------------|------------|----------| | | | | Mean (range) | | mean \pm SD | $median \pm SD$ | range | | | Yoshida et al. (2008) | Japan | 79 (64) ^(f) | Not reported | 5-191 days | 1.73 ± 2.57 | 1.00 | <0.1-18.67 | | (a): mean ± SE (b): calculated using atomic mass of chromium (see Section 2.1)(c): mean ± SEM (d): individual means (e): mean \pm SD 820 821 822 823 824 825 (f): 15 samples were below the limit of detection (<0.1 μg/L) # 826 ABBREVIATIONS Afssa Agence française de sécurité sanitaire des aliments AI Adequate Intake AR Average Requirement COMA Committee on Medical Aspects of Food Policy Cr(III) Trivalent chromium D-A-CH Deutschland- Austria- Confoederatio Helvetica DRV Dietary Reference Value EC European Commission EFSA European Food Safety Authority EU European Union FAO Food and Agriculture Organization IOM U.S. Institute of Medicine of the National Academy of Sciences NNR Nordic Nutrition Recommendations PRI Population Reference Intake RNI Reference Nutrient Intake SCF Scientific Committee for Food SD Standard deviation SEM Standard error of the mean TPN Total parenteral nutrition UL Tolerable Upper Intake Level WHO World Health Organization