

DRAFT SCIENTIFIC OPINION

Guidance on the Use of Probabilistic Methodology for Modelling Dietary Exposure to Pesticide Residues¹

EFSA Panel on Plant Protection Products and their Residues (PPR)^{2,3}

European Food Safety Authority (EFSA), Parma, Italy

ABSTRACT

This guidance document proposes a methodology for performing probabilistic assessment of dietary exposure to single and multiple active substances, as a potential additional tool to deterministic methodologies.

© European Food Safety Authority, 20YY

KEY WORDS

Probabilistic, dietary exposure assessment, pesticide residues, MRL, monitoring, enforcement, consumer safety, cumulative exposure assessment

¹ On request from EFSA, Question No EFSA-Q-2008-754, adopted on DD Month YYYY.

² Panel members: Jos Boesten, Claudia Bolognesi, Theo Brock, Ettore Capri, Anthony Hardy, Andy Hart, Karen Ildico Hirsch-Ernst, Susanne Hougaard Bennekou, Robert Luttik, Michael Klein, Kyriaki Machera, Bernadette Ossendorp, Annette Petersen, Yolanda Pico, Andreas Schäffer, Paulo Sousa, Walter Steurbaut, Anita Strömberg, Maria Tasheva, Ton Van Der Linden And Christiane Vleminckx. Correspondence: pesticides_ppr@efsa.europa.eu

³ Acknowledgement: The Panel wishes to thank the members of the Working Group on Probabilistic Methodology Mandate for the preparation of this opinion: Andy Hart, Bernadette Ossendorp, Peter Craig, Paul Hamey, Jacob van Klaveren, Marc Kennedy, David Miller, Annette Petersen, Yolanda Pico, Anita Stromberg, Hilko van der Voet and EFSA staff member Mr. Luc Mohimont for the support provided to this scientific opinion.

Suggested citation: EFSA Panel on Plant Protection Products and their Residues (PPR); Draft Scientific Opinion on the Guidance on the Use of Probabilistic Methodology for Modelling Dietary Exposure to Pesticide Residues. EFSA Journal 20YY;volume(issue):NNNN. [79 pp.] doi:10.2903/j.efsa.20YY.NNNN. Available online: www.efsa.europa.eu/efsajournal

SUMMARY

The European Food Safety Authority (EFSA) asked the Panel on Plant Protection Products and their Residues (PPR) to propose a methodology for performing probabilistic assessment of dietary exposure to single and multiple active substances, as a potential additional tool to deterministic methodologies.

1 TABLE OF CONTENTS

2 Abstract	1
3 Summary	2
4 Table of contents	3
5 Background as provided by EFSA	5
6 Terms of reference as provided by EFSA	5
Assessment	6
7 1. Introduction.....	6
8 1.1. Interpretation of the Terms of Reference by the PPR Panel	6
9 1.2. Scope and objectives of the guidance document.....	6
10 1.3. Case studies.....	8
11 2. Tiered approach to probabilistic assessments	8
12 2.1. Using optimistic and pessimistic model runs to address uncertainties	8
13 2.2. Basic and refined probabilistic assessment.	9
14 3. Problem definition	12
15 3.1. Acute and chronic exposures	14
16 3.2. Population and individuals to be included	15
17 3.3. Types of commodities and foods to be considered	15
18 3.4. Pesticide residues	16
19 3.5. Metabolites, degradates and other transformation products.....	17
20 3.6. Cumulative exposure to multiple substances	18
21 3.7. Exposure by routes other than food	18
22 4. Modelling acute exposure.....	19
23 4.1. Consumption	21
24 4.1.1. Data organisation and adjustment.....	21
25 4.1.2. Modelling of consumption.....	22
26 4.1.3. Food conversion factors and unit weights	23
27 4.2. Residues	23
28 4.2.1. Data organisation and adjustment.....	23
29 4.2.2. Conceptual model for variation of residues	25
30 4.2.3. Modelling variation in residues between lots or samples	27
31 4.2.4. Modelling the mean residue in the focal commodity for a high residue event.....	29
32 4.2.5. Modelling uncertainty due to the limited size of residue datasets	29
33 4.2.6. Using residue data from different sources to increase sample size.....	30
34 4.2.7. Handling of untreated commodity and residues below the limit of reporting	32
35 4.2.8. Addressing non-random sampling in residue monitoring data	34
36 4.2.9. Modelling unit to unit variability of residues	34
37 4.2.10. Simulating the combinations of residues encountered by consumers.....	37
38 4.3. Processing factors	38
39 4.4. Residues in prepared foods	38
40 4.5. Combining consumption and residues by Monte Carlo simulation	39
41 5. Modelling chronic exposure	42
42 5.1. Consumption	44
43 5.1.1. Data organisation and adjustment.....	44
44 5.1.2. Empirical use of consumption data and parametric modelling of chronic exposure.....	44
45 5.1.3. Food conversion factors.....	46
46 5.2. Residues	46
47 5.2.1. Data organisation and adjustment.....	46
48 5.2.2. Modelling of residues	46
49 5.2.3. Using residue data from different sources to increase sample size.....	47
50 5.2.4. Handling of untreated commodity and residues below the limit of reporting	48

52	5.2.5. Addressing targeted sampling.....	48
53	5.3. Processing factors	49
54	5.4. Simulation of chronic exposures.....	49
55	6. Additional methodology for cumulative exposure assessment.....	51
56	6.1. Cumulation of toxicity	51
57	6.2. Co-occurrence of residues.....	53
58	7. Types and format of model outputs	54
59	8. Evaluation of uncertainties	60
60	9. Checklist of key issues for report-writing and peer reviewers.....	62
61	10. Interpretation of results and options for risk managers	64
62	11. Validation	65
63	12. Software quality requirements.....	65
64	Conclusions	66
65	References	68
66	Appendix	72
67	Glossary and abbreviations.....	75
68		

69 BACKGROUND AS PROVIDED BY EFSA

70 The assessment of dietary exposure to pesticide residues is a key step in process for
71 authorisation of plant protection products and establishment of related maximum residue
72 levels (MRLs) in plant commodities. This is required by Council Directive 91/414/EEC of 15
73 July 1991 concerning the placing on the market of plant protection products⁴, as well as by
74 Regulation 396/2005 of the European Parliament and of the Council of 23 February 2005 on
75 maximum residue levels of pesticides in or on food and feed of plant and animal origin⁵.

76 Currently, deterministic methods based on WHO guidelines^{6,7} are used for assessing dietary
77 exposure. These methods provide an estimation of the exposure of one single virtual
78 consumer and have the advantage of being of simple and fast to use.

79 In the recent years there has been growing interest internationally in the application of
80 probabilistic techniques to the estimation of exposure to chemicals in food. In contrast with
81 the deterministic methodology, these techniques allow the distribution of intakes⁸ amongst
82 multiple individuals in a specified population to be estimated, taking into consideration the
83 variability in food consumption between and within individuals and in occurrence of residues
84 in food commodities.

85 The European Commission funded research on this methodology from 2000 to 2003 through
86 the Monte Carlo project on the ‘Development, validation and application of stochastic
87 modelling of human exposure to food chemicals and nutrients’ under the EC Fifth Framework
88 Programme (Quality of Life Key Action 1 on Food Nutrition & Health).

89 Regarding pesticide residues in particular, the European Commission tendered a project
90 aiming to develop draft guidelines on the use of probabilistic exposure assessment. This
91 resulted in the publication of a report proposing ‘guidelines regarding probabilistic exposure
92 assessment in the safety evaluation of pesticides in the EU market⁹’. To date, such guidelines
93 have not been adopted for routine use in decision-making related to authorization of plant
94 protection products or MRL-setting.

95 The PPR Panel is of the opinion that probabilistic methodology is a potentially useful tool for
96 conducting refined consumer exposure assessments. In particular, in its opinion on cumulative
97 risk assessment¹⁰, the PPR Panel stated that refined cumulative exposure assessments cannot
98 be done without probabilistic methods and recommended that guidance for performing
99 probabilistic exposure assessments should be developed.

100 TERMS OF REFERENCE AS PROVIDED BY EFSA

101 The PPR Panel was asked by EFSA to provide guidance on how probabilistic methodologies
102 can be used for estimating dietary exposure, as tools additional to deterministic methods, in
103 the authorisation of plant protection products, in MRL-setting and in the assessment of actual
104 exposure based on residue-monitoring data.

105

⁴ OJ L 230,19.8.1991, now replaced by Regulation (EC) No 1107/2009.

⁵ OJ L 70,16.3.2005

⁶ WHO/FSF/FOS/97.7: Guidelines for predicting dietary intake of pesticide residues (WHO, 1997a).

⁷ WHO/FSF/FOS/97.5: Food consumption and exposure assessment of chemicals (WHO, 1997b).

⁸ In the Background provided by EFSA, the word “intake” refers to the amount of chemical taken up by the dietary route, i.e. dietary exposure. In the remainder of this document, “exposure” is used for chemical intake and “consumption” for food intake, to avoid any ambiguity whether “intake” refers to food or chemical.

⁹ Boon and Van Klaveren (2003c).

¹⁰ The EFSA Journal (2008) 704, 1-84

106 **ASSESSMENT**

107

108 **1. Introduction**

109 **1.1. Interpretation of the Terms of Reference by the PPR Panel**

110 The Terms of Reference provided by EFSA request guidance on probabilistic methodologies
111 for use in the context of authorization, MRL-setting, and assessment of actual dietary
112 exposure of consumers. The specific exposure questions to be assessed in each context differ,
113 and are discussed and defined in section 3.

114 The Background provided by EFSA includes a reference to cumulative risk assessment.
115 Regulation (EC) No 396/2005 includes a requirement that when suitable methods are
116 available, cumulative exposure from multiple pesticides should also be assessed, as well as
117 exposure to pesticides considered individually. The basic methodology is the same for both
118 types of assessment. Additional methodology specific to cumulative assessments is presented
119 in section 6.

120 As implied by the terms of reference, the methodologies proposed in this guidance document
121 are not intended to replace the existing deterministic methodologies for assessing consumer
122 exposure, but are rather to be seen as complementary approaches. As probabilistic
123 assessments are more complex and require more time to do, it will be logical to reserve them
124 for those cases where deterministic assessment is insufficient to reach a risk management
125 decision, e.g. where the deterministic assessment indicates cause for concern and the risk
126 manager wishes to consider more refined estimates. Defining specific criteria for this would
127 require risk management considerations, which are outside the remit of the Panel.

128 **1.2. Scope and objectives of the guidance document**

129 This guidance document proposes a methodology for performing probabilistic dietary
130 exposure assessment of single or multiple active substances in the contexts of authorisation,
131 MRL setting, enforcement actions, and periodic reviews of monitoring data on actual
132 exposures as potential additional tools to supplement or complement the standard
133 deterministic methodologies which are currently used in the EU for conducting dietary
134 exposure assessments. It is designed to provide clear and concise recommendations on key
135 methodological issues that arise in the conduct and review of probabilistic exposure
136 assessments.

137 A key feature of the recommended approach is the distinction made between basic and refined
138 probabilistic assessments (see section 2). This document provides specific guidance for basic
139 assessments but not for refined assessments, where it is intended that expert practitioners will
140 select methods appropriate to the assessment in hand. The reasons for this approach are
141 explained in section 2.

142 The PPR Panel did not consider it appropriate to restrict its recommendations to
143 methodologies already available in ready-to-use software. However, all of its
144 recommendations for basic probabilistic assessments can be implemented without further
145 research and most are available in existing ready-to-use software. Those approaches that are
146 not included in existing software are likely to be added in the near future.

147 This guidance document should support EFSA in performing tasks resulting from Regulations
148 (EC) No 396/2005 and 1107/2009 regarding consumer dietary risk assessments when
149 deterministic approaches are insufficient to reach a risk management decision (see previous

150 section). These methodologies may also be used by governmental bodies and industry in
151 regulatory procedures when considered relevant.

152 The primary audience for this guidance document comprises scientists who need to conduct
153 or evaluate probabilistic exposure assessments at national and EU levels. As such, it is
154 assumed that the reader is already familiar with types and sources of data on food
155 consumption (e.g. EFSA PRIMo 2¹¹) and pesticide residues (e.g., EU guidelines 1996/97
156 Appendix A- I¹²), with basic principles of exposure assessment, and with risk assessment in
157 general. Importantly, it is also assumed that the reader is already familiar with the principles
158 and practices of probabilistic exposure assessment. Introductions to the principles, theory and
159 methods of probabilistic modelling may be found in other publications (e.g., Cullen and Frey,
160 1999; Vose, 2008; IPCS/WHO, 2008; Van der Voet et al., 2009; Bosgra et al., 2009; Van
161 Klaveren and Boon, 2009; Van der Voet and Slob, 2007; Boon and Van Klaveren, 2003;
162 Pieters et al., 2005; Codex Committee on Pesticide Residues, 2002; U.S. EPA, 1997). It is
163 also assumed that the reader is fully familiar with the technical details of the specific models
164 and software they are using, e.g., from training courses or user manuals.

165 The document does not address risk management issues such as criteria for acceptable limits
166 to exposure and risk, as these are outside the remit of EFSA, which is confined to risk
167 assessment.

168 The document is divided into the following main sections:

- 169 170 • Section 2 introduces the Panel's distinction between basic and refined probabilistic
assessments.
- 171 172 • Section 3 discusses problem definition, the exposure scenarios to be considered, and the
scope of the assessment.
- 173 174 • Section 4 describes the Panel's detailed recommendations for probabilistic modelling of
acute exposures to single substances.
- 175 176 • Section 5 describes the Panel's detailed recommendations for probabilistic modelling of
chronic exposures to single substances.
- 177 178 • Section 6 describes additional approaches required for modelling exposure to multiple
substances (cumulative assessment).
- 179 180 • Section 7 considers the types and formats of outputs that should be produced by a
probabilistic assessment.

¹¹ <http://www.efsa.europa.eu/en/mrls/mrlteam.htm>

¹² EU guidelines

Appendix A- Metabolism in Plants. Commissio of the European Communities 7028/VI/95 rev. 3_22/7 1997

Appendix B- Residue Trials in Plants. Commissio of the European Communities 7029/VI/95 rev. 5_22/7 1997

Appendix C- Rotational Crops. Commissio of the European Communities 7524/VI/95 rev. 2_22/7 1997

Appendix D-Guidelines on comparability, extrapolation, group tolerance and data requirements for setting MRLs, Commissio of the European Communities 7525/VI/95 – rev. 8 ½ 2008.

Appendix E- Processing studies. Commissio of the European Communities 7035/VI/95 rev. 5_22/7 1997

Appendix F- Metabolism in Livestock. Commissio of the European Communities 7030/VI/95 rev. 3_22/7 1997

Appendix G- Livestock Feeding Studies. Commissio of the European Communities 7031/VI/95 rev. 4_22/7 1996

Appendix H- Storage Stability. Commissio of the European Communities 7032/VI/95 rev. 5_22/7 1997

Appendix I-Calculation of MRLs. Commissio of the European Communities 7039/VI/95_22/7 1997

181 • Section 8 summarises the recommended approach for evaluation of uncertainties affecting
182 the model outputs.

183 • Section 9 provides a checklist of key issues to be considered when writing or peer-
184 reviewing reports on probabilistic exposure assessments.

185 • Section 10 offers some comments on the interpretation of results, without prejudice to
186 risk management judgements which are outside the remit of EFSA.

187 • Section 11 discusses approaches to validating probabilistic assessment approaches.

188 • Section 12 summarises desirable characteristics of software for probabilistic exposure
189 modelling.

190 Key technical terms used in this document are defined in the glossary (see section 15).

191 **1.3. Case studies**

192 The PPR Panel was not yet able to conduct case studies that follow the proposed approaches
193 in full, because some aspects of the proposed approaches are not yet implemented in ready-to-
194 use software and the Panel lacked the time and resources to program them itself. It is intended
195 to publish case studies with the final version of this document. The purpose of these case
196 studies will be to illustrate the general approach, especially the types of outputs and reporting
197 format recommended by the PPR Panel.

198 **2. Tiered approach to probabilistic assessments**

199 Probabilistic approaches are complementary to, and not replacements for, deterministic
200 approaches. They introduce more realism by using distributions to represent the range of
201 variation in consumption, residues (in acute assessments), and other relevant parameters
202 rather than using point estimates as in deterministic assessments. They also allow
203 quantification of uncertainties affecting the assessment.

204 Rigorous modelling of variability and uncertainty is difficult, requiring refined approaches
205 and advanced statistical expertise to take proper account of the complex nature of variability
206 in the real world, and the many uncertainties that arise from limitations in the types and
207 amounts of data available. This level of analysis is not practical for every assessment.
208 Furthermore, in many cases, basic probabilistic assessments may be sufficient to support a
209 risk management decision. When refined probabilistic assessments are required, they can
210 focus on those sources of uncertainty that have been shown to be important in the basic
211 probabilistic assessment. In both basic and refined assessments, alternative assumptions may
212 be used to explore major sources of uncertainty that remain unquantified. These strategies are
213 explained in more detail below.

214 **2.1. Using optimistic and pessimistic model runs to address uncertainties**

215 When a model component is uncertain, this implies that a range of alternative assumptions
216 could be made for it. Where possible, it would be preferable to represent the uncertainty
217 probabilistically, i.e. as a distribution specifying the probability of each alternative
218 assumption. However, for some uncertainties, specifying probabilities may require refined
219 approaches that are not reasonable to apply in a basic assessment (e.g. specialised statistical
220 modelling and/or the use of expert judgments), and that may not be necessary to reach or
221 support a risk management decision.

222 A more practical strategy for basic assessment is to carry out alternative model runs using
223 alternative deterministic assumptions for major uncertainties to examine their impact on the

224 estimated dietary exposures. These are referred to here as pessimistic and optimistic model
225 runs.

226 • **Pessimistic model runs** treat major uncertainties using assumptions that are expected to
227 lead to over-estimation of exposure. The resulting distribution can be considered an upper
228 estimate of the true distribution: this is not an absolute upper bound, but the true
229 exposures are considered unlikely to be higher. If the estimated exposures from
230 pessimistic runs do not exceed the reference dose, then risk managers can be confident
231 that true exposures are unlikely to be of concern. If some of the estimated exposures do
232 exceed the reference dose, then risk managers can be confident that the true proportion of
233 exposures exceeding the reference dose is smaller than the estimated proportion.

234 • **Optimistic model runs** treat major uncertainties using assumptions that are expected to
235 lead to lower estimates of exposure. For acute assessments, the resulting distribution can
236 be considered a lower estimate of the true distribution: the true exposures are unlikely to
237 be lower. If the estimated exposures deriving from the optimistic runs exceed the
238 reference dose, then risk managers can be confident that true exposures are also likely to
239 exceed the reference dose. If some of the estimated exposures exceed the reference dose,
240 then risk managers can be confident that the true proportion of exposures exceeding the
241 reference dose is larger than the estimated proportion. For chronic assessments the basic
242 optimistic model run is less conservative than the basic pessimistic model, but cannot be
243 guaranteed to under-estimate the true exposure and may be nearly as conservative as the
244 pessimistic model. Nevertheless the optimistic chronic assessment is still useful for
245 indicating when parametric modelling should be considered for the refined assessment
246 (see later, section 5.1.2).

247 The results of the optimistic and pessimistic model runs can be used to determine whether
248 further refinement of the assessment is useful, as explained in the following section.

249 It is important to emphasise that both estimates relate to the range of use conditions that are
250 realistically likely to occur.

251 2.2. Basic and refined probabilistic assessment.

252 The Panel proposes a tiered approach to probabilistic assessment, as follows:

253 1. **Basic probabilistic assessment.** The basic assessment comprises two alternative model
254 runs, pessimistic and optimistic, as explained in the preceding section. Sources of
255 variability and uncertainty which are impractical to treat probabilistically in a basic
256 assessment are represented using alternative deterministic assumptions in the pessimistic
257 and optimistic model runs leading, respectively, to upper and lower estimates for the true
258 distribution of exposure. Sources of variability and uncertainty which are practical to treat
259 probabilistically in a basic assessment are represented by the same distributions in both
260 model runs.

261 If the results of the pessimistic model raise no concern for risk managers, it can be
262 assumed that the true dietary exposure would also cause no concern, so the assessment
263 can stop¹³. If both the optimistic and pessimistic estimates raise concern and if the level of
264 concern indicates an unacceptable risk, then it can be assumed the true exposure would
265 also raise a similar level of concern. In this case, further refinement is unlikely to be
266 worthwhile if the assessment is acute, whereas in a chronic assessment refinement may
267 require the use of parametric modelling¹⁴. If the pessimistic estimate raises concern but

¹³ In this situation, it is not necessary to conduct the optimistic model run.

¹⁴ See sections 2.1 and 5.1.2 for more detail.

268 the optimistic estimate does not, it is uncertain whether the true exposure would raise
269 concern, so refined assessment may be helpful¹⁵.

270 **2. Sensitivity analysis.** Refined assessment will usually involve replacing one or more of
271 the pessimistic elements of the pessimistic basic assessment with more refined
272 assumptions. The choice of which elements to refine may be guided by a simple form of
273 sensitivity analysis: additional models are run with different combinations of the
274 pessimistic and optimistic assumptions from the basic assessment. The purpose of these
275 runs is to help the assessor choose which assumptions to replace with refined modelling
276 in the refined assessment. They should not be used for deciding on the acceptability of the
277 risk because they replace pessimistic assumptions with optimistic assumptions, and are
278 therefore likely to underestimate true exposures.

279 **3. Refined probabilistic assessment.** Here, pessimistic assumptions of the basic assessment
280 are progressively replaced with refined modelling based on available data and/or expert
281 judgment, taking account of the associated uncertainties¹⁶. This is likely to require more
282 sophisticated methods than are currently feasible for basic assessment, and specialised
283 expertise. The details are likely to vary case-by-case, depending on the amount and nature
284 of data available and whether extrapolation and/or expert judgment is required. Some
285 pessimistic assumptions from the basic assessment may remain, so the assessments
286 remain somewhat conservative. Optimistic assumptions must not be used in model runs
287 that will be used for deciding on the acceptability of the risk, but could be used for further
288 sensitivity analysis to evaluate the potential value of still further refinements. As the
289 models are progressively refined, the results of the optimistic and pessimistic runs will
290 gradually converge.

291 The Panel envisages that the basic approaches are suitable for use by anyone who has access
292 to suitable software and is trained in its use. Refined approaches generally involve difficult
293 scientific and statistical issues, and it is recommended that they should be used only within a
294 team possessing expertise in probabilistic modelling and statistics as well as in toxicology,
295 food consumption, pesticide residue behaviour, food preparation and processing, and
296 pesticide usage.

297 Figure 1 summarises the main steps of the approach recommended by the Panel, including the
298 basic and refined assessments, and optimistic and pessimistic model runs. Refined assessment
299 can be an iterative process, in which different elements of the model are refined progressively
300 until a risk management conclusion is reached. If the assessment indicates cause for concern,
301 options available to risk managers include not only performing refined probabilistic
302 assessment but also collection of further data or risk mitigation.

¹⁵ Other possible options in such cases include collecting additional data to reduce uncertainty, or precautionary management action to reduce the chance of unacceptable exposures.

¹⁶ Although refinements should be designed to improve the realism of the assessment, they will often introduce additional uncertainties, e.g. assumptions regarding the shape of additional distributions.

303



304

305 **Figure 1:** Summary of the main steps of the recommended approaches for probabilistic
306 exposure assessment, with references to the relevant sections of this document.

307 **3. Problem definition**

308 An essential first step in any exposure or risk assessment is to clearly define the purpose of
309 the assessment, and the specific question(s) and scenario(s) to be addressed.

310 The Terms of Reference, identify three different contexts for dietary exposure assessment
311 within the regulatory process for pesticides: authorisation of plant protection products, MRL-
312 setting; and assessment of actual exposure based on residue monitoring data.

313 In practice, the last of these occurs in two different situations: in relation to individual cases
314 of residues exceeding the MRL (high residue events), to inform decisions on the need for
315 enforcement actions, and in EFSA's annual reviews of monitoring data as required by Article
316 32 of Regulation 396/2005. There is also a distinction in Regulation 1107/2009 between
317 authorisation of plant protection products, which occurs at National level, and the approval of
318 substances, which occurs at EU level.

319 Figure 2 illustrates how these different situations fit into the overall sequence of events for
320 authorisation, use, monitoring, review and enforcement. This is helpful in identifying the
321 different types of exposure assessment that may be required (see below).

322 Figure 2 includes arrows in both directions between MRL-setting at EU level and
323 Authorisation of Products at National level. This is because where a new use considered at
324 National level requires modification of an MRL, this has to be assessed at EU level.

325 As indicated in Figure 2, a small proportion of residues exceeding the MRL occur in the
326 marketplace (e.g. EFSA 2010a), even though the MRL is a legal limit. These residues are
327 critical for risk assessment, so it is important to understand how and why they occur.

328 A proportion of residues generated by use of an authorised product may be expected to
329 exceed the MRL, even when the conditions of use are complied with. This is because the
330 methods used for calculating MRLs are not aimed at identifying an absolute upper limit:
331 rather they aim to produce a conservative estimate of the 95th percentile of the underlying
332 residue distribution¹⁷. However, at least some of the residues that exceed the MRL are caused
333 by unauthorised uses (e.g. EFSA 2010a).

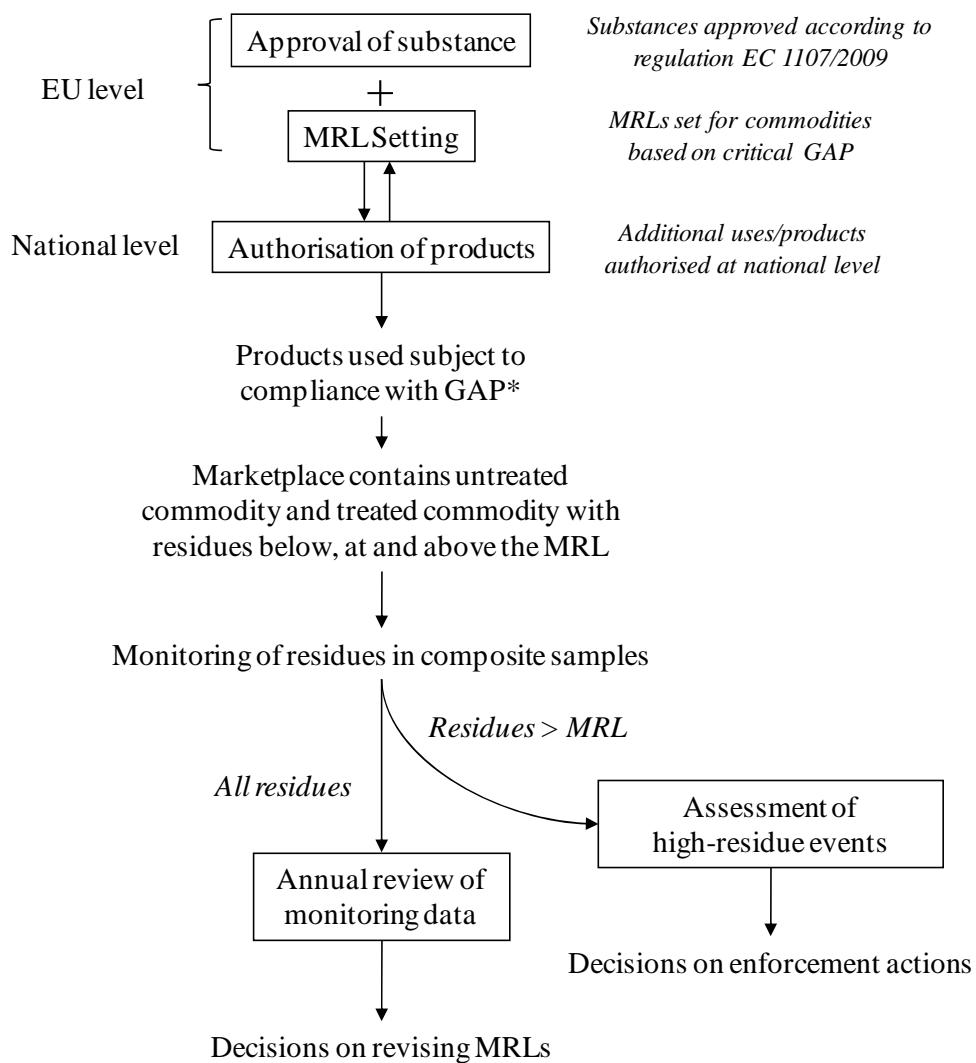
334 One purpose of monitoring programmes is to identify where lots or consignments of
335 commodity in the marketplace contain residues above the MRL so that enforcement action
336 can be taken to remove them. However, only a small proportion of all lots of a commodity is
337 monitored, so the majority of those batches that have mean residues above the MRL may
338 remain unidentified on the market.

339 The finding of a residue above the MRL does not automatically lead to removal of
340 commodity from the market. The detailed procedure varies between Member States but, in
341 general, enforcement is only considered when the residue found by an official laboratory
342 exceeds the MRL by some specified margin, normally double to allow for measurement error
343 of $\pm 50\%$ (SANCO, 2009). This is intended to provide confidence (at the 95% level) that the
344 measured value is actually above the MRL, and has not been over-estimated due to
345 measurement uncertainty. In some Member States, additional samples are tested for
346 confirmation. When considering the need for enforcement action, exposure assessment is

¹⁷ Although the OECD MRL calculator is not yet adopted for use in the EU, the white paper on it states that its statistical goal 'in common with previous methodologies', is to produce a MRL proposal in the region of the 95th percentile of the underlying residue distribution, which is conservative in the sense that it will have a much greater propensity to make errors by overestimating the 95th percentile than by underestimating it for most datasets. (OECD, 2011, page 13).

347 sometimes used to check what level of risk is posed by the observed level of residues (as
 348 indicated in Figure 2).

349 In conclusion, there are a number of reasons why residues above the MRL are expected in the
 350 marketplace, and do indeed occur. This has been taken into consideration by the Panel in
 351 developing its recommendations for probabilistic modelling of exposure. The design of basic
 352 probabilistic exposure assessments depends on the context of the assessment, as summarised
 353 in Table 1 and explained in the following subsections.



354

355 **Figure 2:** Illustration of regulatory contexts in which exposure assessment is required
 356 (indicated by boxed text). * GAP = Good Agricultural Practice.

357

358
 359
 360
 361 **Table 1:** Impact of assessment context on the major design elements of basic probabilistic
 dietary exposure assessment. Relevant metabolites and degradates should be included in all
 assessments. Unit-to-unit variability of residues should be included in acute but not chronic
 assessments. See text for more details.

Assessment context	Acute/chronic	Population	Focal ¹⁸ commodities	Primary data ¹⁹ for modelling residues	
				Focal commodities	Background commodities
Approval of substances	Acute & chronic	Whole of relevant population - OR - only persons/person-days with consumption of focal commodities ²⁰	Commodity(ies) relating to the proposed uses	Supervised trial at critical GAP	Monitoring
MRL-setting					
Authorisation of products					
Annual review of monitoring data	Acute & chronic	Whole of relevant population	All	Distribution based on monitoring data	
High residue events	Acute	Only person-days in which the food in question is consumed	Single lot of commodity in which high residue occurred	Observed high residue	Monitoring
High residue events	Chronic	No assessment needed (chronic exposure not relevant for a single lot of commodity)			

362

363 **3.1. Acute and chronic exposures**

364 Consistent with general practice in dietary exposure assessment, acute exposures are
 365 calculated over a period of one day²¹. In principle, chronic exposure should be assessed as the
 366 average exposure of an individual over their lifetime. In practice, averaging may be applied
 367 over the duration of the survey providing the consumption data (in empirical modelling) or
 368 over an indefinite period (in parametric modelling, see Section 5). In addition, other patterns
 369 of exposure should be considered if there is a possibility of periods of exposure above the
 370 long-term average that might have toxicological significance (Renwick et al. 2003); however,
 371 this would require non-standard modelling approaches.

372 Both acute and chronic assessments can be relevant for all assessment contexts except high
 373 residue events, where only acute assessment is relevant (Table 1). This is because each high
 374 residue event relates to a particular lot of commodity in which the high residue has been

¹⁸ The focal commodity is the commodity to which the approval, MRL, authorisation or high residue event relates. All other commodities in which residues of the substance may be present are referred to as background commodities.

¹⁹ Table 1 shows primary data: where this is not available, or in refined assessments, other options may apply (see sections 4 and 5).

²⁰ For explanation of choice here, see section on Population and individuals to be included.

²¹ Shorter periods than 1 day may be justified for some types of chemical, but this involves special considerations and should be considered as a refined assessment.

375 found, and it is unrealistic to suppose that the same person will eat for chronic periods food
376 from the same lot, or from different lots all with measured residues exceeding the MRL.

377 **3.2. Population and individuals to be included**

378 Dietary exposure assessments could in principle consider the whole of the EU or national
379 population relating to the marketplace for which a use or MRL is authorised. However, both
380 Regulation 396/2005 and 1107/2009 require that particular attention be paid to protection of
381 vulnerable groups including pregnant women/unborn children, infants and children. This
382 could be addressed either by conducting specific exposure assessments focussed on one or
383 more vulnerable groups, or by assessing the overall population and displaying results
384 separately for vulnerable groups. The choice of population(s) to be considered should
385 therefore be defined in consultation with risk managers and may include the whole
386 population, or specific subpopulations of interest.

387 In assessments for annual reviews of monitoring data, all individuals in the relevant
388 population or subpopulation should be included, including non-consumers.

389 Acute assessments for high exposure events should consider those individuals who will
390 consume the food in question²², that is, the specific lot in which the high residue was found.
391 To achieve this, the assessment should include only those person-days on which the focal
392 commodity is consumed.

393 For approval of substances, MRL-setting and authorisation of products, assessment could in
394 principle address the whole of the relevant population or subpopulation, not only those who
395 consume the commodities in question. However, as the legislation requires that residues
396 consequent on pesticide application ‘shall not have any harmful effects on human health’
397 (Regulation 1107/2009, Article 4.2), i.e., no harmful effects at all, it may be better to restrict
398 assessment to individuals or person-days where the focal commodity(ies) is/are consumed
399 because this will enable the upper end of the distribution of potential exposures to be explored
400 more fully (for any given size of simulation) than if the whole population is included.
401 Therefore, both options are included in Table 1 and either could be chosen, in consultation
402 with risk managers. When reporting and interpreting the results, it is essential to make clear
403 which population and individuals have been included.

404 **3.3. Types of commodities and foods to be considered**

405 Assessment of dietary exposure should include consideration of all plant and animal
406 commodities in the form they are consumed (raw and/or processed) when they are expected to
407 contain residues of the pesticide in question, and all foods that contain those commodities.

408 In assessments for approval of substances, MRL-setting and authorisation, a distinction is
409 made between the **focal commodity**, to which the approval, MRL or authorisation relates, and
410 all other commodities in which residues of the substance may be present, which are referred
411 to as **background commodities**. This distinction is necessary because the data available for
412 modelling residues generally differs between focal and background commodities (see next
413 section). If new uses for more than one commodity are being considered at the same time,
414 then a single assessment should be done in which all the commodities affected by the new
415 uses are treated as focal commodities, with other commodities as background.

²² Assessing exposure for consumers of the food in question is appropriate to inform decisions about ‘suspension of the placing on the market or use of the food in question’, one of the measures specified in Article 53 of Regulation 178/2002 (referred to by Article 35 of Regulation 396/2005).

416 In assessments of high residue events, the commodity in which the high residue has been
417 found is the focal commodity and all other commodities in which residues of the substance
418 may be present are considered as background commodities.

419 In assessments for annual review of monitoring data, all commodities are considered in the
420 same way and no distinction is made between focal and background commodities.

421 **3.4. Pesticide residues**

422 In assessments for approval of substances, MRL-setting and authorisation, residues in the
423 focal commodity or commodities must be modelled using data from supervised trials, as the
424 new uses under assessment will not yet be reflected in monitoring data. The supervised trial
425 data should be used to model the whole distribution of residues expected to result from the
426 use. The whole distribution must be taken into account to meet the requirements of the
427 respective legislation. Article 4.2 of Regulation 1107/2009 states 'the residues of the plant
428 protection products, consequent on application consistent with good plant protection practice
429 and having regard to realistic conditions of use...shall not have any harmful effects on human
430 health'. Since the residues consequent on application vary, it is necessary to take account of
431 the whole distribution in order to assess whether any harmful effects might occur. Article 29
432 of Regulation 396/2005 requires 'an assessment of the risks of the ADI or ARfD being
433 exceeded as a result of the modification of the MRL'. To assess acute risks it is necessary to
434 consider the whole distribution of residues that will occur after modification of the MRL,
435 including values both above and below the MRL itself²³. The current version of the Uniform
436 Principles²⁴ requires estimation of 'the potential exposure of consumers' (Part B: Evaluation,
437 paragraph 2.4.2.5), which again implies consideration of the full distribution of residues. As
438 well as considering the residues foreseen in the focal commodities, it is necessary to include
439 also the residues present in background commodities as these contribute to the total dietary
440 exposure which is what determines the 'risks of the ADI or ARfD being exceeded' and
441 whether 'any harmful effects' will occur²⁵. The modelling of residues in background
442 commodities should be based on monitoring data as far as possible, but for commodities with
443 authorised uses or import tolerances²⁶ that may contain residues but have too few
444 measurements (or none), it will be necessary to make estimates based on extrapolation from
445 monitoring data for other relevant commodities or based on supervised trial data (see section
446 4.2.6).

447 Assessments for the annual review of monitoring data should include 'an analysis of chronic
448 and acute risks to the health of consumers from pesticide residues' (Article 32, Regulation
449 396/2005). These risks depend on the full distribution of exposures occurring in the relevant
450 population from all the commodities that may contain the substance, not just the particular
451 residues found in the small proportion of commodity that is monitored. As far as possible,
452 these distributions should be based on the monitoring data supplemented by extrapolation or
453 supervised trial data for commodities with insufficient monitoring data.

454 In assessments of high residue events, the population considered is the group of people who
455 consume the food in question, that is, the specific lot in which the high residue was found. To

²³ A small proportion of residues exceeding the MRL is expected because the methods for calculating MRLs aim at a conservative estimate of the 95th percentile of the underlying distribution (OECD, 2011). This expectation is confirmed by monitoring data (e.g. EFSA 2010).

²⁴ Council Directive 97/57/EC of 22 September 1997 establishing Annex VI to Directive 91/414/EEC concerning the placing of plant protection products on the market. Official Journal L 265, 27/09/1997 pp. 0087 – 0109.

²⁵ The level of exposure that might cause harmful effects will generally be expected to be higher than the ADI or ARfD, as these incorporate uncertainty factors that are intended to be protective.

²⁶ An import tolerance is an MRL set for imported products (see Glossary for definition).

456 achieve this, the assessment should model the distribution of residues expected in that lot.
457 This will vary above and below the measured value due to the combination of sampling
458 variation (the measured value may be above or below the true mean of the lot) and unit-to-
459 unit variability (individual units of commodity will vary above and below the true mean).
460 Again, it is necessary to take account of residues in background commodities consumed by
461 the same people, as these contribute to determining the risk.

462 Note that assuming all of a commodity contains residues at the levels found in supervised
463 trials will generally lead to over-estimation of exposure. On the other hand, using monitoring
464 data implies an assumption that current or future levels of use are similar to those during the
465 period to which the monitoring data relate, which might cause either over- or underestimation
466 of exposure. These complications are taken into account in the approaches recommended in
467 Sections 4 and 5.

468 In all types of assessment, residues in animal commodities resulting from veterinary use of
469 the same active substance should be included based on monitoring data, where relevant.
470 Where monitoring data are not available at national or EU level, the veterinary MRL could be
471 used as a worst case estimate.

472 Measured residues generally relate to raw commodity. Food as eaten by the consumer
473 comprises partly of raw commodity (e.g. raw apples), and partly of prepared foods (e.g. apple
474 pie). The residue levels in prepared foods are influenced by several factors, including the
475 composition or recipe for the food (e.g. apple pie is partly apple, and partly pastry) and
476 processing effects (e.g. cooking). The effects of these factors may be taken into account using
477 appropriate methods (see Sections 4 and 5). A special complication arises in assessments for,
478 high residue events, because consumers will sometimes (perhaps rarely) consume commodity
479 from the lot in question in both raw and processed form (e.g. apples from the same purchase
480 might be consumed raw and also after juicing, pureeing or cooking). This is taken into
481 account in Sections 4 and 5.

482 Transfer of residues from preparation surfaces²⁷ to food can occur but is not normally
483 considered in EU assessments. If it was considered that this might contribute significantly to
484 risk, it should be included in the evaluation of unquantified uncertainties in basic assessments
485 and, if appropriate, accounted for quantitatively in refined assessment.

486 **3.5. Metabolites, degradates and other transformation products**

487 Metabolites, degradates, or other transformation products (hereafter collectively referred to as
488 "metabolite/degradate") that significantly contribute to the dietary risk (complying with the
489 residue definition for dietary risk assessment) should be included in the dietary exposure
490 assessment (OECD, 2009). For each metabolite/degradate that is considered to contribute
491 significantly to the risk, two factors must be addressed: 1) the potential for exposure to the
492 metabolite/degradate in the human diet; and 2) the toxicity of the metabolite/degradate
493 relative to the parent compound.

494 Only those metabolites and degradates identified as relevant in the regulatory assessment need
495 be considered in probabilistic assessment. Where residues are quantified according to the
496 residue definition for risk assessment, this will take account of relevant metabolites and
497 degradates. In other cases, residues quantified according to the residue definition for
498 monitoring should be adjusted to the residue definition for risk assessment. Where needed and
499 possible, appropriate factors for conversion of monitoring data to the residue definition for
500 risk assessment are listed in the EFSA conclusion reports on peer-reviewed substances.

²⁷ This could include transfer between commodities prepared on the same surface, or transfer of substances used for treating or cleaning the preparation surface.

501 Further guidance on the treatment of metabolites and degradates is currently being developed
502 by the Panel under a different mandate (EFSA, 2008b).

503 **3.6. Cumulative exposure to multiple substances**

504 Both Regulation 1107/2009 (Article 4) and Regulation 396/2005 (Article 14) require that
505 account should be taken of known cumulative and synergistic effects where scientific
506 methods to assess such effects are available. All of the methodology described in this
507 document for assessing dietary exposure to single substances is also relevant for assessing
508 cumulative exposure to multiple substances via food. Guidance on additional methodology
509 needed for assessing cumulative exposure to multiple substances is provided in Section 6.
510 Guidance on methodology for identifying which substances should be considered together in
511 assessments of cumulative exposure is being developed under a separate mandate to the Panel
512 (EFSA, 2009b).

513 **3.7. Exposure by routes other than food**

514 This guidance is restricted to assessment of dietary exposure to pesticide residues in food. The
515 PPR Panel recognises that other sources and routes of exposure also contribute to overall risk,
516 including drinking water, surface-to-hand transfers, and professional or residential exposure
517 to pesticides. Article 14 of Regulation 396/2005 requires that decisions on setting,
518 modification or deletion of an MRL should take account of the possible presence of pesticide
519 residues arising from sources other than current plant protection uses of active substances,
520 when the methods to assess such effects are available. However, this requires further research
521 and development before being addressed in a guidance document²⁸.

522

²⁸ For example, two research projects in EU Framework 7 are addressing different aspects of aggregate exposure (www.acropolis.eu and www.browseproject.eu).

523 **4. Modelling acute exposure**

524 Acute dietary exposures should be estimated for time periods of one day, for the scenarios
525 indicated in Table 1. Acute exposure for the same individual varies between days due to day-
526 to-day variation in consumption by individuals and unit-to-unit variation of residues in the
527 foods they consume.

528 The basic inputs required for modelling dietary exposure are the amounts of pesticide *residue*
529 that is present in and on foods and the *types and amounts of those food consumed* in a
530 person's diet. However, a number of additional variables are also used. Some of these are
531 adjustments required to allow the assessment to be conducted with the types of data that are
532 normally available, while others allow the user to take account of factors that may modify
533 exposure. They include:

- 534 • food conversion factors, to convert composite food products as recorded in dietary
535 surveys (i.e. as eaten) to their individual raw agricultural commodities (RACs) or these
536 commodities in the forms for which monitoring data are available;
- 537 • unit weights, required in acute assessments to divide weights of foods recorded in dietary
538 surveys into individual items for some commodities (e.g., apples), so that between-unit
539 residue variation can be modelled;
- 540 • variability factors, or other measures of the variation of residues between individual items
541 of commodities;
- 542 • processing factors, to take account of changes in nature and amount of residues during the
543 processing of raw agricultural commodities or commodities as monitored into processed
544 commodities or ingredients (including peeling, juicing etc.); and
- 545 • estimates of the percentage of commodity that is treated with the pesticide under
546 assessment, for use in conjunction with supervised trial data in optimistic basic
547 assessments and in refined assessments.

548 Note that it is important to ensure that, for each ingredient of each food as eaten, the food
549 conversion and processing factors are compatible with each other and do not double-count
550 either the conversion or processing effects. For some foods, there may be more than one
551 processing step between the commodity for which residue data are available and the food as
552 eaten (e.g., wheat is milled to flour, then flour is baked in a pizza or other food). Usually only
553 one food conversion factor and one processing factor are used for each food as eaten;
554 therefore it is important to ensure that the different steps of processing are taken into account
555 within the single factors in an appropriate way, without double-counting or omission.

556 The following sections discuss the possibilities for how each element of the acute exposure
557 model could be handled in a probabilistic assessment and the difficulties that arise (e.g. due to
558 limited data). They also explain the Panel's conclusions on which options should be used in
559 optimistic and pessimistic runs for a basic probabilistic assessment, and which of them might
560 be options for refined assessment. These conclusions are summarised in Table 2.

561

562 **Table 2:** Summary of recommended approaches for acute dietary exposure assessment (see
 563 the indicated text sections for detail).

Assessment component	Basic assessment		Options for refined assessment include:	Section no.
	Optimistic	Pessimistic		
Modelling consumption	Empirical + bootstrap	Empirical + bootstrap; examine commodity contributions to upper tail exposures	Parametric modelling	4.1.2
Separation of within & between individual variation of exposures	Not done		Parametric modelling (if separation is required)	4.1.2
Food conversion factors (recipes)	Use available recipe databases		Quantify variability and uncertainty for foods driving exposure	4.1.1, 4.1.3
Unit weights	Use same values as in deterministic assessments		Quantify variability and uncertainty for foods driving exposure	4.1.3
Residue definitions	Use residue definition for risk assessment. Evaluation of unquantified uncertainties.		Consider more sophisticated methods (see 4.2.1)	4.2.1
Unmeasured residues in animal commodities	Zero	MRL	More sophisticated estimates (see 4.2.1)	4.2.1
Between lot/sample variation of residues	Empirical	Lognormal for positive values (if n>2)	Parametric mixture models; extreme value models	4.2.3
Sampling uncertainty for lot/sample residues	Empirical bootstrap	Parametric for binomial & lognormal (if >2 positive values)		4.2.5
Treatment of residues below LOR ²⁹	Treat as true zeroes	Set <LOR to LOR		4.2.7
Sampling uncertainty of proportion of residues below LOR	Empirical bootstrap	Parametric model		
Percent crop treated (when using supervised trials data)	Approximate estimate of % crop treated	Assume 100% of crop treated	Refined estimate of % crop treated and the uncertainty of this	4.2.7
Limited amounts of monitoring data	Use available data empirically	Use appropriate data from other countries, other commodities or supervised trials	Future options might include extrapolation between substances	4.2.6
No supervised trials (as substitute for monitoring data)	If no trials or monitoring data, assume no residues.	Use appropriate trials data from other commodities	Future options might include extrapolation between substances	4.2.6
Residues for non-authorised use	Treat as for authorised uses	Treat as for authorised uses except set <LOR to zero	Treat as for authorised uses	4.2.1 and 4.2.7
Mean residue of focal commodity in high residue event	Set equal to mean of measured value(s) for high residue event	Model uncertainty due to sample size and apply unit variability model	Model uncertainty due to sample size and apply refined model for unit variability	4.2.4

²⁹ LOR: Limit of Reporting.

Between unit variation (e.g. variability factors, VF, or coefficient of variation CV)	None – unit residues all equal to lot/sample mean	Beta or Lognormal – conservative VF or CV (<i>advice on this in final version of guidance to be decided from simulation study, see 4.2.9</i>)	Refined model, CV or VF varies between lots/samples, include correlation with lot/sample mean	4.2.9
Residues in prepared foods containing same commodity	Assume purchased, no unit variability	Assume prepared from single sample of raw commodity, include unit variability	Refined assessment based on data or expert judgment	4.1.1, 4.4
Processing factors	Value used in deterministic assessment	Set to 1 (no change) or use value from deterministic assessment if >1	Quantify variability and uncertainty using data and/or expert judgment	4.3
Cumulative assessment		See section 6		6
Unquantified uncertainties	Optional	Evaluate using uncertainty table	More sophisticated evaluation or quantification	8

564

565 **4.1. Consumption**

566 **4.1.1. Data organisation and adjustment**

567 As the outcome of probabilistic exposure assessment is to be compared to toxicological
 568 reference values which are expressed on a body weight basis (e.g., mg pesticide/kg
 569 bodyweight), exposure must similarly be expressed in relation to body weight so that these
 570 two quantities can be properly compared and evaluated. Therefore, consumption data should
 571 be linked to body weights for the same individuals, where possible.

572 Dietary consumption surveys collect data on foods “as eaten” (e.g., pizza, hamburger, beef
 573 stew) and not on their component parts (i.e. ingredients) and pesticide residue monitoring
 574 programmes generally collect residue data on raw agricultural commodities (e.g., apples,
 575 oranges, maize oil, etc.). Therefore, it is necessary to translate consumption of prepared foods
 576 from an “as eaten” food basis to a food commodity basis. This conversion is generally
 577 achieved using standard recipes which can be a part of the probabilistic dietary exposure
 578 software. More information on this conversion process is available in the Panel’s previous
 579 Opinion on cumulative risk assessment (EFSA, 2008a).

580 It is necessary to identify those prepared foods that can potentially be prepared at home from
 581 raw commodity. This is necessary because consumers will sometimes consume part of a
 582 single purchase of commodity raw, and part processed. If that purchase of commodity
 583 happens to contain above average-residues, the consumer will experience higher exposure
 584 than if they had purchased the prepared food separately or prepared it from a separate
 585 purchase of raw commodity. This will occur sometimes though not frequently, e.g. a person
 586 who purchases apples with above-average residues and consumes some raw and some after
 587 juicing. Although this may be infrequent, it might be an important cause of upper tail
 588 exposures. Therefore, in **pessimistic model runs** for **basic probabilistic assessments**, it will
 589 be assumed that all meals of such food are prepared at home and that if the same individual
 590 consumes the raw commodity on the same day, both will come from the same sample or lot
 591 (see section 4.3.1 for more detail on how this can be implemented). In **optimistic model runs**,
 592 it will be assumed that all prepared foods are purchased. If these alternative assumptions have
 593 a substantial impact on the overall exposure estimates, then one option for refined
 594 probabilistic assessment might be to model the proportion of prepared foods that is prepared
 595 at home in a more refined way based on appropriate data or expert judgment, if available.

596 In order to take account of unit-to-unit variation in residues in acute assessments (see section
597 4.2.9), it is necessary to divide the daily consumption of food items by the same person into
598 individual units (e.g., convert “300g of apples” into an appropriate number of individual
599 apples) using unit weights. Normally, this is done only for commodities with unit weights
600 exceeding 25g (JMPR, 2003).

601 **4.1.2. Modelling of consumption**

602 For acute exposure dietary assessment, variation in consumption has often been modelled
603 “empirically”, using the actual observed consumption data as recorded in a dietary survey,
604 rather than by fitting parametric models to the data. Generally, one estimate of acute exposure
605 is produced for each person-day in the survey, and consequently the output of the assessment
606 represents variation between person-days.

607 Because even a large survey includes only a sample of the individuals in the total population,
608 consumption data is subject to sampling uncertainty and will not represent perfectly the true
609 diet of the population. This may be addressed by bootstrapping, a random resampling
610 technique for quantifying sampling uncertainty (Efron, 1993). The assessment is repeated
611 multiple times, each time replacing the dietary records with a sample of the same size drawn
612 at random, with replacement, from the observed dietary records. This indicates the degree of
613 sampling uncertainty in the distribution, but will only generate values that occur in the
614 observed data and omits other values (most importantly, higher values) that would be found if
615 the whole population were surveyed. Therefore, it is essential to examine the consumption
616 data underlying the upper tail of the exposure distribution, consider by expert judgement how
617 much higher the true upper tail of consumption could credibly be (i.e. whether higher
618 consumption is plausible for the foods that contribute most to exposure), and take account of
619 this when evaluating unquantified uncertainties affecting the assessment (see Section 8).

620 A particular advantage of the empirical approach to modelling consumption is that it retains
621 potentially complex patterns that are present in the dietary survey, especially correlations
622 between consumption of different foods (e.g., cereal products and potato products are eaten
623 together less often than would be expected from their individual frequencies in the diet,
624 Breuninger et al. 2003). However, this requires that the sample survey be of sufficient size
625 such that these correlations are adequately represented in the data. This is less likely to be true
626 for combinations of less-frequently consumed foods (e.g. turkey and cranberries). To guard
627 against under-estimation, it is important to identify the foods underlying the upper tail of the
628 exposure distribution, consider by expert judgement whether unobserved but credible
629 combinations of those foods might give rise to higher exposures, and take account of this
630 when evaluating unquantified uncertainties affecting the assessment (see Section 8).

631 Parametric modelling is an alternative approach, which uses distributions fitted to the survey
632 data and can estimate the frequency of extreme consumption events by extrapolating beyond
633 the range of the observed data. Some recent parametric approaches also estimate correlations
634 between foods and quantify uncertainty (e.g., Kennedy, 2010). However, parametric methods
635 require assumptions about the shapes of the distributions and the form of correlations (e.g.
636 linear/nonlinear), which are themselves very uncertain. Further research is needed on these
637 approaches and they are not yet available in readily-accessible software. Therefore, the Panel
638 recommends that empirical modelling of consumption is used in both *pessimistic and*
639 *optimistic runs* for **basic probabilistic assessments** of acute exposure, subject to
640 bootstrapping and examination of tail values as outlined above. Parametric modelling of
641 consumption may however be considered as one of the options for **refined assessment**.

642 The empirical approach is also limited to estimating the proportion of person-days that exceed
643 toxicological reference doses. If some exposures above the reference dose are expected, the

644 empirical approach will not indicate how they are distributed between individuals, e.g.,
645 whether a few individuals experience repeated high exposures or whether these exposures are
646 spread over a larger number of individuals. If this information is needed by risk managers, it
647 would require a **refined probabilistic assessment** using a parametric approach and formal
648 separation of within- and between-individual variation, similar to the parametric approaches
649 used for modelling chronic exposure (see below).

650 **4.1.3. Food conversion factors and unit weights**

651 Food conversion factors are used to convert dietary survey records of foods as eaten into the
652 corresponding weights of their constituent raw agricultural commodities: e.g., to calculate the
653 weights of wheat, tomatoes and other ingredients used in producing a given weight of pizza.
654 These factors are generally derived from manufacturers ingredient lists and/or recipe books.
655 They are usually organised in large “recipe” databases, which group prepared composite
656 foods into a limited number of types and do not distinguish variations within these (e.g., it
657 may be assumed that all pizzas contain the same proportion of tomato). Food conversion
658 factors are often an integral part of the model software (i.e. not open for modification by the
659 user) and are rarely if ever treated probabilistically. Clearly, actual food conversion factors
660 are both variable and uncertain, but to quantify this for all food types would be a major
661 undertaking.

662 Unit weights are used in acute dietary exposure assessment to divide portions of commodity
663 recorded in a single survey record into the appropriate number of individual units. This is
664 necessary in acute assessments to allow the modelling of variation in residues between units
665 (see later). Recommended fixed default values are unit weights used by EFSA for acute risk
666 assessment of pesticide residues (EFSA PRIMo 2³⁰). The source of these data has been
667 described in EFSA’s reasoned opinion on the potential acute and chronic risk to consumers’
668 health arising from temporary MRLs (EFSA, 2007b).

669 The limited data available for estimating food conversion factors and unit weights make it
670 difficult to quantify their variation and the associated uncertainty. For *optimistic and*
671 *pessimistic model runs in basic probabilistic assessments*, the Panel recommends using the
672 same estimates for these parameters as are used in deterministic assessments. The source of
673 the values used should be clearly documented, and the limitations of these estimates and their
674 potential impact on the exposure estimates should be considered as part of the evaluation of
675 unquantified uncertainties (section 8). In cases where these uncertainties are considered large
676 enough to potentially change the risk management decision, more sophisticated modelling
677 and/or collection of data could be considered as options for **refined probabilistic**
678 **assessment**, targeted on those foods that contribute most to exposure in the basic assessment.

679 **4.2. Residues**

680 **4.2.1. Data organisation and adjustment**

681 The main types of residue data used in dietary exposure assessment are obtained from
682 monitoring programmes and supervised field trials. The exposure scenarios specified in
683 problem definition determine which types of residue data are preferred for each commodity in
684 each assessment, although it will often be necessary to use supervised trial data as a substitute
685 for monitoring data when the latter are absent or limited (see rationale in Section 3 and
686 specific guidance below).

687 Where monitoring data are used, they should be taken only from time periods and regions
688 where the actual use pattern of the substance is considered representative of the time period

³⁰<http://www.efsa.europa.eu/en/mrls/mrlteam.htm>

689 and region to which the assessment refers. In general, uncertainty will be reduced by using all
690 relevant data. Often there will be little or no monitoring data: approaches for coping with this
691 are discussed in section 4.2.6. If a large quantity of monitoring data is available for a
692 particular commodity, and the number of positive values is large, then consideration could be
693 given to using only those for the time periods and regions closest to the focus on the
694 assessment. However, if examination of these data suggests significant variation between
695 years or regions, sufficient data should be included to be representative of the range of that
696 variation. More data should also be added if sensitivity analysis shows that residues for the
697 commodity in question are a major contributor to uncertainty in basic probabilistic
698 assessment.

699 The majority of data on pesticide residues in food, whether from monitoring or supervised
700 trials, are measured for composite samples³¹ containing multiple units of the raw commodity
701 in question (e.g., 12 apples).

702 Supervised trials should use the residue definition for risk assessment, but residues from
703 monitoring are in most cases quantified according to the residue definition for monitoring. In
704 the latter case, they need to be adjusted to the residue definition for risk assessment (OECD,
705 2009) to take account of toxicologically relevant metabolites and degradates. Conversion
706 factors for converting monitoring data to residue definition for risk assessment are sometimes
707 available (see section 3.5). In principle, one might expect the ratio of metabolite or degradate
708 to parent substance to increase over time, as increasing amounts of parent are metabolised or
709 degraded, unless the metabolites or degradates are themselves lost more rapidly. A large
710 number of supervised trial data for captan examined by the Panel showed a negative
711 correlation between the concentrations of parent and metabolite (unpublished). Such patterns
712 could lead to underestimation of exposure, since factors for converting monitoring data to the
713 residue definition for risk assessment are normally estimated from supervised trial data
714 whereas monitoring data, to which those factors are applied, are collected at longer time
715 intervals after pesticide application when the ratio of metabolite to parent may often be
716 higher. These issues may be further resolved in specific guidance on the establishment of the
717 residue definition for risk assessment, which is currently being developed by the Panel under
718 a different mandate (EFSA, 2008b). Until more guidance is available, the Panel recommends
719 that both *optimistic and pessimistic model runs* in **basic probabilistic assessment** should use
720 residue definitions for risk assessment according to current practice for deterministic
721 assessment, and consider the impact of this as part of the evaluation of unquantified
722 uncertainties (Section 8). More sophisticated methods for modelling metabolite levels could
723 be an option for **refined assessment**, when more guidance is available and where suitable
724 data to support this are available.

725 It is common that residue data contain a proportion of concentrations that are reported only as
726 being below a given limit, which is referred to as the limit of reporting (LOR) in this
727 document³². The proportion of values below the LOR can be very high in monitoring data
728 (e.g., >80%). In case of pesticide/commodity combinations for which there is no registered
729 use in their region of production, monitoring results showing no detection should be treated as
730 true zeroes. All other censored residue data should be addressed using the approaches
731 described in Section 4.2.7 (below).

³¹ The term “composite sample” in this Opinion is equivalent to “laboratory sample” as used in EU Directive 96/23 on Official Control of Food Commodities, and is used here to refer to samples comprising multiple units of the commodity in question.

³² Both the LOR and the reported values are subject to measurement uncertainty. This can be modelled probabilistically (e.g. Kennedy and Hart 2009) but is not proposed here for inclusion in basic probabilistic assessments and should therefore be considered when evaluating unquantified uncertainties (section 8).

732 No residues are normally expected in commodities for which no use of the pesticide is
733 authorised and no import tolerance exists. Where monitoring data however show unexpected
734 residues in commodities for which use of the pesticide in question is not authorised, these data
735 should be used, so that the assessment reflects the exposures experienced by consumers.

736 When monitoring data for a plant commodity are not available but that commodity may
737 contain residues transferred from treatments of previous crops through the soil, the level of
738 residues present in the commodity may need to be estimated using expert judgment.

739 In cases where an animal commodity for which monitoring data are lacking may contain
740 significant residues, levels may be estimated using *worst-case assumptions in pessimistic runs*
741 of the **basic probabilistic assessment**, and set to zero for *optimistic runs*. A worst-case
742 assumption would be the MRL level in animal commodities. In **refined assessments**, it may
743 be possible to use more realistic assumptions based on data or expert judgment on the
744 percentage of the animal feed crop that is treated, animal diet, and information from
745 metabolism and feeding studies.

746 4.2.2. Conceptual model for variation of residues

747 The residues in different lots or samples of commodity vary, and this needs to be taken into
748 account when modelling acute dietary exposure. In addition, the residues in individual units
749 within the same lot or sample will also vary, above and below its mean value. Thus there are
750 two levels of residue variation to be taken into account in acute exposure assessment:
751 variation between lots or samples and unit-to-unit variation.

752 This section discusses the conceptual framework for modelling residue variation. Detailed
753 guidance on model implementation is provided in following sections. Sections 4.2.3 to 4.2.8
754 deal with issues affecting the modelling of variation in residues between lots or samples,
755 while modelling of unit-to-unit variation is addressed in section 4.2.9.

756 Deterministic acute exposure assessments for commodities with a unit weight over 25g aim to
757 deal with residue variation in a conservative manner by using a “high residue” derived from
758 the composite sample values, multiplied by a fixed “variability factor” to represent the degree
759 to which residues in individual units may exceed the mean residue of a composite (JMPR,
760 2003). The variability factor is defined as the ratio between the 97.5th percentile and mean of
761 the distribution of unit residues, and this procedure is meant to ensure that the composite
762 sample residue used in a deterministic assessment is adjusted to account for the fact that the
763 residue of interest in an acute assessment is a high end residue.

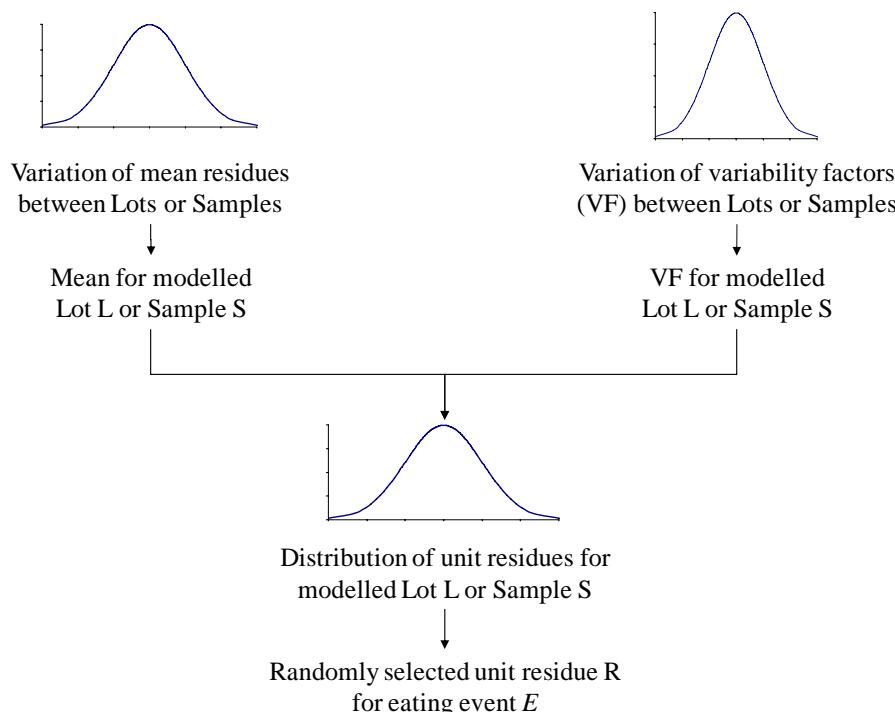
764 The PPR Panel has considered two alternative conceptual models for dealing with these two
765 levels of variation in probabilistic acute exposure assessments:

- 766 • Lot-based model: this considers that a particular commodity in the market is divided into
767 lots, from which composite samples are taken, and that residue variability can be divided
768 into variability within and between lots.
- 769 • Sample-based model: this considers that a particular commodity in the market could be
770 divided into samples of the standard size used in monitoring, taken by the same procedure
771 as is used by sampling inspectors, and that residue variability can be divided into
772 variability within and between samples.

773 Both models can be illustrated in the same diagram, although the details differ (Figure 3).
774 Each lot or sample contains units with varying residues, represented by the distribution in the
775 lower part of the figure. Both the mean and the variance of the unit residues differ between
776 lots or samples, as illustrated by the two distributions at the top of the figure. This is

777 consistent with the variation observed in measured composite residues (sample means), and
 778 the evidence from unit datasets that the variability factor is itself variable (EFSA, 2005a).

779



780
 781 **Figure 3:** Graphical representation of conceptual model for variation of positive residues
 782 between lots or samples of the same commodity and unit-to-unit variation of residues within
 783 lots or samples. The proportion of residues below the LOR is modelled separately and their
 784 residues are set to zero or the LOR (see section 4.2.7). Note that in basic probabilistic
 785 assessments, the Panel recommends using alternative fixed values rather than a distribution
 786 for the variability factor (see later).

787 An attraction of the lot-based model is that it attempts to reflect the real structure of the
 788 marketplace: commodity is traded in lots and consumers select units from lots. However, the
 789 definition of lots is not straightforward³³ and, in practice, some lots are mixed³⁴ and it cannot
 790 be assumed that each composite sample relates to a different lot.

791 Attractions of the sample-based model include that it reflects directly the structure of the
 792 sampling process, which resembles the selection of units by consumers. However, a degree of
 793 lot structure does exist in the real market, and will influence the shapes of the distributions
 794 between and within samples. Thus, in reality, both models have to cope with the partial lot

³³ The Sampling Directive 2002/63/EC defines a lot as 'A quantity of a food material delivered at one time and known, or presumed, by the sampling officer to have uniform characteristics such as origin, producer, variety, packer, type of packing, markings, consignor, etc.' It also notes that: a) Where a consignment is comprised of lots which can be identified as originating from different growers, etc., each lot should be considered separately. b) A consignment may consist of one or more lots. c) Where the size or boundary of each lot in a large consignment is not readily established, each one of a series of wagons, lorries, ships bays, etc., may be considered to be a separate lot. d) A lot may be mixed by grading or manufacturing processes, for example.

³⁴ Data analysed by the Panel for a previous opinion (EFSA 2005a) show markedly multimodal distributions of unit residues in some lots.

795 structure that exists in the marketplace, although this level of complexity is not practical in a
796 basic probabilistic assessment.

797 A potentially important advantage of the sample-based model is that it implies a defined
798 'worst case' for the maximum unit residue, namely that all the residue is contained in one unit
799 and is therefore equal to the measured residue for sample multiplied by number of units in
800 sample. In the lot-based model, there is no *a priori* value for the maximum possible unit
801 residue. However, although some samples will actually have all the residue in one unit, to
802 assume this for every sample is clearly unrealistic and may be too conservative to be useful.

803 In summary, coping with the complexity of the marketplace is challenging for both models,
804 and neither is clearly preferable on theoretical grounds alone. Therefore, the Panel is carrying
805 out simulation studies with different versions of each model to explore their performance in
806 reproducing large datasets of measured unit residues. The final results of these simulation
807 studies are not yet available, but will be incorporated into the final version of this guidance
808 document.

809 Finally, it is important to note an important difference in the conceptual model for assessment
810 of **high residue events**. This type of assessment is triggered by the reporting of a measured
811 residue above the MRL in the marketplace (see section 3). In this case, a different conceptual
812 model is required, focussed on consumers of 'the food in question', i.e., the particular lot of
813 commodity in which the reported residue was measured. We refer to this commodity as the
814 'focal commodity' (see Table 1 in section 3). These consumers all take this focal commodity
815 from the same lot, which has a single true mean residue³⁵, not a distribution of means as
816 shown in the upper left part of Figure 3. Other foods eaten by these consumers come from
817 multiple lots, so the conceptual model in Figure 3 does apply to the non-focal foods in high
818 residue event assessments. The modelling of residues for this scenario is discussed further in
819 section 4.2.4.

820 4.2.3. Modelling variation in residues between lots or samples

821 Like consumption, variation in residues may be modelled empirically, using the observed
822 measurements, or parametrically by fitting a distribution to the observed measurements.

823 Empirical modelling will only generate residue values that appear in the measured data. This
824 has the advantage that it does not generate higher values whose realism may be questionable.
825 However, as residue datasets are normally small and the number of positive values still
826 smaller, it will only generate a very small fraction of the values that actually occur, and their
827 frequencies may differ widely from the true distribution due to sampling uncertainty.
828 Bootstrapping provides an indication of the degree of sampling uncertainty, but the
829 confidence intervals will only be reliable for large datasets and, even then, not in the tails.
830 Most importantly, empirical modelling will almost always under-estimate upper-tail dietary
831 exposures, because values from the upper tail of the true distribution occur rarely and
832 therefore are unlikely to occur in residue datasets of typical size. For this reason, for acute
833 exposure, the Panel proposes to use empirical modelling only for the *optimistic model run* in
834 **basic probabilistic assessments**. This applies equally whether the data are from monitoring
835 or supervised trials. Where monitoring data are used, values below the LOR may be assumed
836 to be true zeroes in the optimistic run. When trial data are used, in the optimistic run they may
837 be combined with an estimate of the proportion of crop that is untreated (see Section 4.2.7).

838 Parametric modelling uses parametric distributions that are based on the observed data but
839 generate additional values below, between and above the observed values. This has the

³⁵ However, the true mean is uncertain, because it must be estimated from only one or a few residue measurements. See section 4.2.3 for further discussion.

840 advantage of being able to represent the full range of potential residues, but requires
841 assumptions to be made about the shape of the distribution. The limited size of residue
842 datasets makes the choice of distribution shape very uncertain, especially in the upper tail. If
843 unbounded distributions are used (e.g. lognormal), they will certainly generate a small
844 proportion of unrealistically high values, even if they fit the data well.

845 For the parametric approach, it will generally be necessary to use a combination of
846 distributions to model residues for each commodity: a binomial distribution to represent the
847 frequency of positive residues, combined with one or more distributions to represent the
848 variation of positive residues within samples or lots. Residues reported as being below the
849 LOR may be true zeroes (untreated commodity) or low positive residues. It is possible to
850 model the proportion of true zeroes and the distribution of positive values together in a single
851 statistical model that takes account of dependencies between them. However, these models
852 require specialised methods and their performance for small datasets has not yet been
853 examined, so they are not suitable for basic assessment but may be considered as an option
854 for **refined probabilistic assessment**.

855 For *pessimistic model runs* in **basic probabilistic assessment**, the Panel proposes that the
856 proportion of residues below the LOR and the distribution of positive values should be
857 modelled independently. The proportion of residues below the LOR should be modelled using
858 a binomial distribution based on the observed proportion (see Section 4.2.7). There will often
859 be too few positive values to discriminate well between alternative choices of parametric
860 distribution, so for basic assessment the Panel proposes using the lognormal distribution as a
861 default. This may often provide a reasonable fit within the range of the observed data, as
862 Boon et al. (2003b) found for 10 pesticide-commodity combinations. Furthermore, a
863 lognormal distribution is supported from a theoretical viewpoint in that residues are positive,
864 positively skewed and originate from mechanisms generating the lognormal distribution under
865 a variety of biological circumstances³⁶.

866 However, good fit to a lognormal distribution must not be taken for granted. It is essential
867 always to evaluate the goodness of fit, using visual examination of Q-Q or similar plots (e.g.,
868 Vose, 2008). Significance tests of distributional fit can be misleading, because their power
869 depends on the size of the dataset. Where poor fit is apparent, or there are too few data to
870 evaluate it, this should be taken into account when evaluating unquantified uncertainties (see
871 section 8), and alternative distributions should then be considered as an option for **refined**
872 **probabilistic assessment**. In the future, consideration could also be given to more
873 sophisticated options such as nonparametric modelling, extreme value theory and the pooling
874 of data for multiple pesticides to model a shared distribution shape³⁷.

875 Many commonly used parametric distributions, including the lognormal, extend to infinity,
876 and therefore their upper tails include values that are clearly unrealistic (e.g., concentrations
877 over 1kg/kg). Although extreme values will very rarely be sampled in probabilistic modelling,
878 when this does occur it would be misleading for decision-making. Unfortunately, there is
879 usually no good basis for choosing any specific residue value (other than the absolute
880 maximum of 1kg/kg) as the upper bound for a truncated or bounded distribution. Therefore,
881 the realism of residue values in the upper tail of the output from *pessimistic model runs* for
882 **basic probabilistic assessments** should always be checked by examining 'drill down'
883 statistics (see Section 7).

³⁶ See the discussion of R-P (Random Product) processes the Theory of Successive Random Dilutions (SRD) in Wayne R. Ott's *Environmental Statistics and Data Analysis*, Lewis Publishers, 1995.

³⁷ These approaches show promise for modelling pesticide residues but require further evaluation and are not yet available in exposure modelling software (Paulo et al. 2006, Kennedy et al. in prep.).

884 4.2.4. Modelling the mean residue in the focal commodity for a high residue event

885 This type of assessment is triggered by the reporting of a measured residue above the MRL
886 and is focussed on consumers of ‘the food in question’, that is, the particular lot of commodity
887 in which the reported residue was measured (see section 3). These consumers all take this
888 focal commodity from the same lot, so the true mean residue in the focal commodity should
889 be treated as a fixed value, although the true value is uncertain, because it must be estimated
890 from only one or a few residue measurements. How residues in individual units of commodity
891 vary around the mean value should be modelled using the approaches set out in section 4.2.9.
892 The mean value itself may be set equal to the measured residue in *optimistic model runs* for
893 **basic probabilistic assessments**. In *pessimistic model runs*, the sampling uncertainty for the
894 true mean value should be modelled assuming the underlying distribution of mean residues
895 between samples or lots is lognormal, using the methods described in the following section. In
896 **refined probabilistic assessments**, more sophisticated approaches to modelling the sampling
897 uncertainty could be considered (e.g. using information from other commodities and
898 substances to model the form and variance of the underlying distribution, see the following
899 section).

900 4.2.5. Modelling uncertainty due to the limited size of residue datasets

901 The amount of monitoring data available varies widely between commodities and substances,
902 but the number of positive residues is often very small: frequently as low as one or two
903 values. Supervised trials normally provide eight measurements, or four in the case of minor
904 crops. Such small numbers of positive measurements cause high uncertainty in evaluating the
905 shape of the full distribution and estimating its mean and variance. This is referred to as
906 sampling uncertainty, because it is caused by variation in the values obtained when samples
907 are drawn from a population.

908 The influence of sampling uncertainty can be very large when the dataset is small, but is also
909 present for large datasets, especially in the tails. Therefore, the potential magnitude of
910 sampling uncertainty and its impact on the assessment outcome must be considered.

911 In *optimistic model runs* for **basic probabilistic assessments**, sampling uncertainty may be
912 quantified by empirical bootstrapping. Bootstrapping is a computer-intensive methodology for
913 quantifying sampling uncertainty (Efron, 1993). Briefly, the assessment is repeated multiple
914 times, each time replacing the measured residues with a sample of the same size drawn at
915 random, with replacement, from the measured residues. The multiple output distributions
916 generated by the multiple runs are then used to estimate confidence intervals for the “true”
917 distribution. The number of bootstrap iterations should be sufficient to generate stable
918 confidence intervals (this should be checked by making three or more repeat calculations of
919 the estimated confidence intervals and, if needed, increasing the number of bootstrap
920 iterations). Confidence intervals obtained by bootstrapping will be very approximate when the
921 resampled dataset is small, and also in the tails of the distribution even when the dataset is
922 large. Sampling uncertainty is highest when there is only one observed value, but
923 bootstrapping will not reflect this at all. Furthermore, empirical bootstrapping is limited to
924 recombinations of the observed values, and cannot represent uncertainty about the existence
925 of values outside the observed range. This is why it is recommended here only for optimistic
926 model runs.

927 In *pessimistic model runs* for **basic probabilistic assessments**, sampling uncertainty should
928 be estimated using parametric models, that is, models based on the sampling behaviour of an
929 appropriate parametric distribution. This provides distributions for the uncertainty of the
930 parameters of the distribution, based on the sample data. For reasons explained in section
931 4.2.3, the lognormal distribution is assumed as a default for the basic assessment. The
932 logarithms of the residues are then assumed to follow a normal distribution, for which an

933 analytical solution for sampling uncertainty is available (e.g. Vose, 2008). The uncertainty of
 934 the standard deviation of the normal distribution is described by an inverse chi distribution, as
 935 follows:

$$936 \quad \sigma \sim \sqrt{\frac{(n-1)s^2}{\chi^2_{(n-1)}}} \quad \text{Equation (1)}$$

937 Where ‘~’ means ‘distributed as’, s is the standard deviation of the observed log residues, n is
 938 the sample size, and $\chi^2_{(n-1)}$ is the chi-square distribution with $n-1$ degrees of freedom.

939 The uncertainty distributions for the mean and variance are inter-dependent, so the
 940 distribution for the mean is considered after drawing a value for the variance using equation
 941 (1). This variance is then treated as known, so the uncertainty of the mean can be described by
 942 a normal distribution (rather than Student’s t distribution), as follows:

$$943 \quad \text{Mean log residue} \sim \text{Normal}(\bar{x}, \frac{\sqrt{\sigma}}{n}) \quad \text{Equation (2)}$$

944 Where \bar{x} is the mean of the observed log residues and σ is the drawn value for the standard
 945 deviation.

946 The above method can be used when there are two or more different measured values. When
 947 there is only a single positive value, the observed value is taken as the estimate of the mean,
 948 but a sample variance cannot be calculated. Ignoring variation and uncertainty for such
 949 commodities would clearly be unconservative, which is acceptable for the optimistic model
 950 run but not for the pessimistic model run. Therefore, the most relevant available information
 951 should be used to estimate a surrogate standard deviation for commodities with only one
 952 positive value, e.g. monitoring data for another commodity where there is reason to expect a
 953 similar distribution of residues, or supervised trial data for the commodity in question or
 954 another for which extrapolation is appropriate. A surrogate standard deviation may also be
 955 used when there is more than one positive measurement for the commodity in question, but
 956 they all have the same value, so the sample standard deviation is zero (which can happen by
 957 chance, especially when measured values are rounded, but is not a realistic basis for
 958 modelling).

959 In **refined probabilistic assessments**, sampling uncertainty could be modelled
 960 parametrically, and consideration may be given to distributions other than the lognormal,
 961 where there is evidence to support them, and to using more sophisticated methods for
 962 improving the estimates by using additional information from other commodities and other
 963 substances.

964 4.2.6. Using residue data from different sources to increase sample size

965 Very small datasets have very high sampling uncertainty. Although this will be quantified
 966 using the methods described in the preceding section, it is desirable to reduce the uncertainty
 967 by using information from other sources, which is referred to as extrapolation. This is also
 968 desirable for commodities that lack any positive residue measurements.

969 The most obvious sources of information for extrapolation are:

- 970 • monitoring data for the same commodity in different countries where the residues are
 971 expected to be similar;
- 972 • monitoring data for other commodities that are expected to follow a distribution
 973 similar to that for the commodity in question;

974 • supervised trial data for the commodity in question; or
975 • supervised trial data for another commodity for which similar residues are expected.

976 Before using either monitoring or supervised trials data from other commodities, their
977 relevance for extrapolation to the commodity in question should be critically assessed.
978 Extrapolation should only be considered for pairs of commodities listed in guidance document
979 SANCO 7525/VI/95, and only when it can be reasonably expected that the use and usage
980 practices of the pesticide in question are the same in both commodities. All extrapolation
981 should be fully documented and justified in the assessment report.

982 In principle, consideration could also be given to using monitoring data or supervised trials
983 for other substances in refined assessments, where there was justification to expect these to be
984 similar.

985 Clearly, extrapolation of any type introduces additional uncertainty, which must be taken into
986 account. In a **refined probabilistic assessment**, extrapolation or combining of data from
987 different sources should be done using appropriate statistical methods which quantify the
988 associated uncertainty. However, such methods are not practical for basic assessments.

989 In *optimistic model runs* for **basic probabilistic assessments**, no extrapolation is necessary.
990 The assessment may be conducted using only the residue data that are available. This will
991 underestimate dietary exposure because it will assume residues are always zero in
992 commodities that have no positive measured values and will ignore the possibility of residues
993 higher than those observed for commodities that have positive values. However, this is
994 acceptable in an optimistic model run.

995 In *pessimistic model runs* for **basic probabilistic assessments**, extrapolation should be used
996 to enable parametric modelling of residues for every commodity that has an authorised use or
997 MRL for the substance under assessment. The Panel recommends the following procedure.

998 • If there are 2 or more different monitoring values:

999 ○ As a first step, assume a lognormal distribution and model uncertainty
1000 parametrically, as described above. Inspect the simulated residues underlying the
1001 upper tail of the exposure distribution, using drill down outputs (see section 7).

1002 ○ If this reveals residues that the assessor believes are unlikely to occur even rarely,
1003 then look for data from other countries and/or commodities for which there is
1004 established extrapolation, and merge these with the monitoring data you have.
1005 Rerun the model as before, and inspect the simulated residues in the upper tail.

1006 ○ If using other country/extrapolation data still generates values the assessor
1007 believes to be unlikely to occur even rarely, rerun the model replacing the
1008 monitoring data with data from supervised trials (if there is more than one trial,
1009 use all that are relevant). If this reduces the upper confidence bound and
1010 generates more credible simulated residues, then use this in place of the upper
1011 confidence interval obtained with the monitoring data. Explain, when reporting
1012 the results, that this has been done, and discuss carefully its impact on the
1013 assessment.

1014 ○ If there are no supervised trials data for the commodity in question, substitute
1015 trials from other commodities for which extrapolation is accepted. Again, use all
1016 the supervised trials that are relevant.

1017 ○ If there are no usable supervised trials at all, then use the results obtained with
1018 only the monitoring data.

1019 ● If there are fewer than 2 different monitoring values, use supervised trial data instead. If
1020 there is more than one supervised trial, use all that are relevant. If there are no supervised
1021 trial data for the commodity in question, substitute supervised trials from other
1022 commodities for which extrapolation is accepted. Again, use all the supervised trials that
1023 are relevant. If there are no relevant supervised trial data at all, and less than two different
1024 monitoring values, use MRL itself as a fixed value but state clearly in the report that this
1025 has been done.

1026

1027 Data from supervised trials relate to treated commodity, whereas monitoring data generally
1028 include both treated and untreated commodity. Approaches for taking account of the
1029 percentage of crop that is treated are discussed in the following section.

1030 **4.2.7. Handling of untreated commodity and residues below the limit of reporting**

1031 Monitoring data based on composite samples frequently contain a high proportion of values
1032 below the Limit Of Reporting (LOR). Data from supervised trials may also contain values
1033 below the LOR.

1034 In supervised trials, all the commodity is treated, so <LOR values are likely to represent
1035 positive residues below the LOR. Monitoring data relate to the marketplace, which generally
1036 includes both treated and untreated commodity, so some of the <LOR values may be low
1037 positive residues but others will be true zeroes (untreated commodity).

1038 Various statistical methods are available for estimating values below a limit of reporting, and
1039 for modelling mixtures of positive values and true zeroes. Some of these methods were
1040 evaluated in a recent study by EFSA (2010b). It was concluded that the performance of the
1041 evaluated methods was questionable when the number or proportion of positive values was
1042 small, and on this basis it was recommended that probabilistic exposure assessment should
1043 not be conducted when there are less than 25 positive samples, or when more than 80% are
1044 censored (<LOR). In most pesticide assessments, these requirements will be met for only a
1045 few major commodities, such as apples. EFSA (2010b) suggest that, in such cases, similar
1046 food categories can be pooled together to obtain larger sample sizes, or additional data should
1047 be collected. Even when data are pooled, as described in the preceding section, there will still
1048 be many commodities that fail to meet the requirements proposed by EFSA (2010b). For
1049 many commodities the proportion of crop treated may be less than 20%, so collecting further
1050 data will not meet the proposed requirement. However, probabilistic approaches are needed
1051 for cumulative assessments, and to take account of upper tail exposures in higher tier
1052 assessments for single substances. Therefore, in the case of pesticides, the PPR Panel
1053 proposes an alternative strategy, using different assumptions in the optimistic and pessimistic
1054 model runs to take account of the uncertainty in a way that is practical for basic probabilistic
1055 assessments.

1056 For *optimistic model runs* in **basic probabilistic assessments**, the following procedures
1057 should be used:

1058 ● When monitoring data are used, values below the LOR should be treated as true zeroes.
1059 Uncertainty about both the proportion of values below the LOR and the distribution of
1060 residues in treated commodity should be quantified by empirical bootstrapping of the full
1061 set of observations, both above and below the LOR.

- 1062 Supervised trial data are used in optimistic model runs only for the focal commodity in
1063 assessments for approval, MRL-setting or authorisation (see Table 1 in section 3). Values
1064 below the LOR may be treated as true zeros, as an optimistic assumption³⁸. In addition,
1065 allowance may be made for the proportion of commodity that is expected to be untreated,
1066 by adding the appropriate proportion of untreated values after bootstrapping the
1067 supervised trial data. In the optimistic basic assessment, the proportion of commodity that
1068 is untreated can be an approximate expert judgment.

1069 For *pessimistic model runs* in **basic probabilistic assessments**, the following procedures
1070 should be used:

- 1071 When monitoring data are used, values below the LOR should be replaced with the LOR,
1072 as a conservative assumption. Uncertainty about the proportion of values below the LOR
1073 should be modelled parametrically (see below for method), and uncertainty about the
1074 distribution of residues above the LOR (ignoring those below it) should be modelled
1075 parametrically as described in section 4.2.5.
- 1076 In supervised trial data are for the focal commodity, values below the LOR should be
1077 replaced with the LOR, and it should be assumed that 100% of the commodity will be
1078 treated. The distribution of values should then be modelled parametrically as described in
1079 section 4.2.5 above.
- 1080 Where supervised trial data are used as a substitute for few or no positive values in
1081 monitoring data (see section 4.2.6), uncertainty about the proportion of values less than
1082 the LOR for monitoring should be modelled parametrically based on the available
1083 monitoring data (see below for method), with monitoring values below the LOR for
1084 monitoring being replaced by that LOR. Values above the LOR for monitoring should be
1085 simulated from the supervised trial data, by first replacing any trial values below the LOR
1086 for the trial with the trial LOR, and then modelling the distribution of positive values with
1087 uncertainty quantified parametrically (see section 4.2.5).

1088 In both the optimistic and pessimistic model runs, if any values below the LOR relate to
1089 samples from regions of origin where there is no registered use for the pesticide and
1090 commodity in question, then those values may be considered as true zeroes. However, any
1091 positive concentrations recorded from regions without registered uses may result from illegal
1092 use, and should be retained in the model.

1093 In the steps described above, uncertainty about the proportion of values less than the LOR for
1094 monitoring should be modelled parametrically assuming a binomial distribution with true
1095 proportion p . The uncertainty of p may be modelled by the Beta distribution:

$$1096 \quad p \sim \text{Beta}(r + 1, n - r + 1) \quad \text{Equation (3)}$$

1097 Where n is the sample size and r is the number of residues below the LOR³⁹.

1098 If sensitivity analysis shows that the treatment of values below the LOR has a large influence
1099 on estimated exposures, consideration could be given to more sophisticated approaches in
1100 **refined probabilistic assessments**. This might include exploring the capability of advanced
1101 modelling approaches (e.g. those discussed as possible areas for further work by EFSA,

³⁸ Values close to zero might be feasible for treated commodity in some conditions, e.g. where there is high plant metabolism and/or where there is a long period between treatment and harvest.

³⁹ This is the posterior distribution for a binomial proportion estimated from data, assuming an initial expectation (before seeing data) that the true proportion is equally likely to lie anywhere between 0 and 1 (i.e. a prior distribution that is uniform between 0 and 1; see page 234 of Vose, 2008).

1102 2010b) to address the challenges posed by the limitations of the data available for the
1103 assessment in question. Refined assessment could also make use of estimates of the
1104 proportion of commodity that is or will be treated, but this should be done more rigorously
1105 than in the optimistic basic assessment, based on the observed proportion of values below the
1106 LOR together with information on the existence of registered uses and the method, timing and
1107 extent of use in the region of origin⁴⁰. Account might also be taken of information on
1108 prevalence of the target pest or disease of the pesticide, and on factors affecting the market
1109 shares of alternative products for the same use. The use of all these types of information
1110 involves expert judgment, which should be fully documented and justified. Uncertainties
1111 affecting these judgments should be quantified using formal methods of expert elicitation (for
1112 an overview see O'Hagan et al. 2006) or considered as part of the evaluation of unquantified
1113 uncertainties (section 9).

1114 Note that using monitoring data for modelling implies an assumption that current or future
1115 levels of pesticide use are similar to those during the period to which the monitoring data
1116 relate, which might cause either over- or underestimation of exposure. Uncertainty about this
1117 should be quantified using formal expert elicitation or considered as part of the evaluation of
1118 unquantified uncertainties (section 9).

1119 4.2.8. Addressing non-random sampling in residue monitoring data

1120 The random sampling methods normally used in probabilistic modelling assume that the
1121 residue data are representative of the variation of residues in commodity available to the
1122 consumer population under assessment. Deviations from this may occur through deficiencies
1123 in sampling design or due to targeted (or selective or probability-based) sampling of particular
1124 cropping practices, cropping seasons or region of production, or in investigative sampling of
1125 suspect lots of commodity. In a database of pesticide residue concentrations, it is usually not
1126 possible to distinguish data obtained from targeted sampling, so the possible influence of
1127 targeting must be considered as part of the evaluation of unquantified uncertainties (section
1128 9). In cases where it is possible to distinguish samples that were collected in different ways or
1129 from different origins/sources, then their distributions should be compared (e.g., using
1130 probability plots). If they appear different enough to alter the assessment outcome, this could
1131 be tested by rerunning the assessment separately for subsets of the data that were collected in
1132 different ways. If the results differ significantly, one option would be to undertake a refined
1133 assessment using more sophisticated modelling methods to take account of the non-random
1134 sampling. For example, if detailed information on the nature of targeting and sampling design
1135 is available, this can be used to weight the data in an appropriate way.

1136 4.2.9. Modelling unit to unit variability of residues

1137 The residues data available for use in dietary exposure assessment generally relate to
1138 composite samples, not individual units of commodity. Therefore the measured values
1139 represent the average of a number of units, and do not reflect the full range of variation
1140 occurring in individual units, which needs to be considered for acute assessments.

1141 Deterministic acute exposure assessments, for commodities with a unit weight over 25g⁴¹, aim
1142 to deal with residue variation in a conservative manner by using a 'high residue' derived from
1143 composite sample measurements, multiplied by a fixed variability factor that is defined as the
1144 ratio between the 97.5th percentile and mean of the distribution of unit residues to represent

⁴⁰ Percentage of crop treated may be estimated well for countries that conduct detailed surveys of pesticide usage, but these are lacking in many countries. Furthermore, data on pesticide treatments for imported commodities are generally very limited.

⁴¹ If it appears possible that unit-to-unit variability of commodities with unit weight under 25g might have a significant influence on the outcome of an assessment, then this could be considered as part of the evaluation of unquantified uncertainties (section 8) and subsequently quantified if appropriate.

1145 the degree to which residues in individual units may exceed the mean residue of a composite
1146 (JMPR, 2003).

1147 As explained in more detail in section 4.2.2, the PPR Panel is considering two alternative
1148 conceptual models for dealing with these two levels of variation in probabilistic acute
1149 exposure assessments: a lot-based model and a sample-based model. Neither is clearly
1150 preferable on theoretical grounds alone, so the Panel is carrying out simulation studies with
1151 different versions of each model to explore their performance in reproducing large datasets of
1152 measured unit residues. The outcome of these studies will be taken into account in the final
1153 version of this guidance document. For the meantime, both approaches are referred to in the
1154 following discussion of methodology for modelling unit-to-unit variability.

1155 Following international discussions about the choice of default variability factors, the PPR
1156 Panel examined a large amount of residue data on single units from existing studies including
1157 both data from supervised field trials and from market surveys (EFSA, 2005a). The Panel
1158 found that the variability factor was itself variable, i.e. the degree of unit-to-unit variability
1159 differs between different studies, which seems reasonable given the existence of variation in
1160 pesticide properties, in crop characteristics, in application techniques and in the effects of
1161 harvesting, storage and transport. If this variation in the variability factor has a significant
1162 impact on exposures, then it should be considered in probabilistic modelling, as illustrated in
1163 Figure 3.

1164 However, there are additional complications that need to be considered. First, EFSA (2005a)
1165 found that the distribution of variability factors differs between supervised field trials and
1166 market surveys: this is at least partly due to the fact that market samples may contain units
1167 derived from mixed lots, which may include treated and untreated commodity and commodity
1168 with different treatment histories. This means that variability factors estimated from market
1169 samples are likely to overestimate the variability within a lot comprising exclusively of
1170 treated commodity, while variability factors from supervised trials probably underestimate the
1171 variability present in treated lots in the marketplace.

1172 A second complication is that the variances of residues in different composite samples of the
1173 same commodity are expected to correlate negatively with the mean residues of those
1174 samples. This is because a high mean residue is likely to occur in samples which, by chance,
1175 contain only units from the upper tail of the overall distribution, and therefore the variation
1176 between the units in these samples will be less than the variance of the overall distribution.
1177 Such a negative correlation has in fact been observed in samples from market surveys (Hill
1178 and Reynolds, 2002).

1179 In principle, these complications regarding the variation of variability factors could be
1180 modelled statistically, but further research would be needed to develop and implement such
1181 an approach⁴². Therefore, the Panel recommends simpler models with fixed variability factors
1182 for **basic probabilistic assessments**. More sophisticated models with variable variability
1183 factors could be considered in the future as potential options for **refined probabilistic
1184 assessments**.

1185 In some comparative calculations the Panel found that setting the variability factor to the
1186 extreme minimum value of 1 (i.e. no unit-to-unit variation) made no discernible difference to
1187 the resulting exposure distributions, at the percentiles examined in that study (EFSA, 2007a).

⁴² For example, one area of potential research is using maximum likelihood techniques to investigate mixture distributions. One software tool that uses this method has been reviewed by the US EPA's Office of Pesticide Program's FIFRA Scientific Advisory Panel. Additional information is available at the US EPA's Scientific Advisory Panel website at:
<http://www.epa.gov/scipoly/sap/meetings/2000/february>.

1188 This was surprising because, logically, multiplying residues by a factor >1 must increase
1189 residues at some percentile. A preliminary investigation by the US EPA also suggested that
1190 the variability of unit-to-unit residues within a lot appears to have little impact on
1191 probabilistic modelling of the 99.9th percentile exposures (D. Miller, personal
1192 communication). In probabilistic modelling of cumulative exposures to triazoles, it was found
1193 that including variability factors had little effect when the lot mean residues were based on
1194 monitoring data, but a marked effect on higher percentile exposures when the sample mean
1195 was set to the MRL (van Klaveren et al., 2010). Furthermore, the variability factor in general
1196 would logically be expected to have an impact on the extreme tail of the exposure
1197 distribution, perhaps at extreme percentiles (e.g., above 99.9) that were outside the range of
1198 the earlier studies. Therefore, unit-to-unit variability is omitted from *optimistic model runs* for
1199 **basic probabilistic assessments**, but included in *pessimistic model runs*.

1200 The appropriate form for the distribution of unit residues is uncertain. When the model for
1201 residue variability is sample-based, a distribution with an upper bound should be used (see
1202 below). When the model is lot-based, either distributions with or without upper bounds could
1203 be chosen, although it may be difficult to justify any specific choice of absolute upper bound.
1204 A simple choice of unbounded distribution for a lot-based model might be the lognormal
1205 distribution. However, marked deviations from the lognormal distribution have been found in
1206 the marketplace, in some cases being multimodal, partly due to some lots in trade containing
1207 mixtures of units with different treatment histories (Hill, 2000). Of 116 datasets on unit
1208 residues from market surveys examined for EFSA (2005), the majority show marked
1209 deviations from lognormality, many being very strongly bimodal with a large proportion of
1210 non-detects that are clearly separated from the distribution of positive residues (P Craig, pers.
1211 comm.)⁴³.

1212 In most of the probabilistic modelling conducted for another Opinion (EFSA, 2007a), the PPR
1213 Panel did not use a distribution of variability factors but instead set the variability factor to a
1214 fixed value of 6.82, with a lognormal distribution for unit residues. This was stated to be
1215 conservative, on the grounds that 6.82 is the maximum variability factor consistent with a
1216 lognormal distribution of unit values. In fact, although 6.82 is the highest variability factor
1217 consistent with a lognormal distribution, there is no maximum for the variance of the
1218 lognormal, so there is no absolute worst case⁴⁴.

1219 When a sample-based conceptual model is considered, unit-to-unit variability is modelled as
1220 relating to samples taken from the marketplace rather than to lots in the marketplace (see
1221 section 4.2.2 above). In this case, there is an absolute worst case for the maximum unit
1222 residue in each sample, which occurs when all of the measured residue for the sample derives
1223 from just one unit and the remaining units contain zero residues. This situation can be
1224 represented by a beta distribution, where the individual units in the sample can have residues
1225 between zero and the maximum, with the constraint that the average must equal the mean for
1226 the sample. The worst case situation where all residue is contained in a single unit in each
1227 sample corresponds to a Bernoulli model.

1228 For both the lognormal and beta models, assuming a high variance will overestimate the true
1229 proportions of high residues but underestimate the proportions of low residues. This creates
1230 an overall distribution which is conservative at high percentiles but unconservative at lower

⁴³ Even when units share a common treatment history, they may not follow a lognormal distribution. Of 30 datasets of unit residues from supervised trials examined for EFSA (2005), 19 showed deviations from lognormality at $P<0.05$ and, of these, 10 at $P<0.001$ (Shapiro-Wilks test) (Peter Craig, personal communication). Deviations from the normal distribution (without taking logarithms) were much stronger.

⁴⁴ A variability factor of 6.82 corresponds to a coefficient of variation (CV) of 6.75. For higher CVs, the variability factor decreases and falls below 1.0 for extreme lognormal distributions, where the mean exceeds the 97.5th percentile (H van der Voet, pers. comm.).

1231 percentiles. Adjustments can be made to avoid underestimation at all percentiles, for example,
1232 resetting simulated values below the sample mean with the sample mean itself (van der Voet
1233 et al. 2003). However, this may result in large overestimation of lower tail residues, which
1234 could cause large over-estimation of upper tail exposures when individual intakes are summed
1235 over multiple units of focal and background commodities.

1236 For modelling unit-to-unit variability in *pessimistic model runs* in **basic probabilistic**
1237 **assessments**, the Panel seeks a simple model with a fixed variability factor or coefficient of
1238 variation which generates distributions of residues that reliably fall above the true distribution
1239 but not to an unrealistic or extreme degree. Early simulations by the Panel suggest that
1240 assuming a lognormal distribution with variability factor of 6.82 (as in EFSA 2007a) will
1241 generate an excessive proportion of very high residues. The Bernoulli model is clearly
1242 unrealistic in that it assumes a single unit contains all the residue in every sample. It is not
1243 possible to identify, *a priori*, what combination of model assumptions would meet the criteria
1244 indicated above. Therefore, the Panel plans to conduct further simulations to evaluate the
1245 realism of distributions generated by different combinations of assumptions, as a basis for
1246 making specific recommendations in the final version of this guidance. However, the extent
1247 of these simulations will necessarily be limited by the resources available to the Panel, so it
1248 would be desirable to review the recommendations in the light of further research when
1249 available.

1250 If sensitivity analysis shows that the assumptions made for unit-to-unit variability in the basic
1251 assessment have a significant impact on the risk management decision, then more
1252 sophisticated modelling of variability factors should be considered as an option for refined
1253 probabilistic assessment.

1254 In some cases, measurements of residues in individual units may be available for the pesticide
1255 and commodity under assessment. In this situation, it may be attractive to use a variability
1256 factor derived from those measurements. However, it is not advisable to rely entirely on a
1257 single estimate of the variability, because it will not reflect the known variation of variability
1258 factors (EFSA, 2005a). Furthermore, if the data derive from supervised trial conditions, this
1259 may underestimate unit-to-unit variation in the marketplace (EFSA, 2005a), especially when
1260 treated and untreated lots are mixed. If the choice of variability factor appears critical to the
1261 outcome of the assessment and risk management decision, consideration could be given to
1262 requiring multiple studies of the variability factor conducted under a realistic range of
1263 conditions (for further guidance see comment number 35 in EFSA (2006a)).

1264 **4.2.10. Simulating the combinations of residues encountered by consumers**

1265 When modelling dietary exposure in the presence of variation within and between lots or
1266 samples of commodity, it is important to consider the way in which individual consumers
1267 select samples and units for consumption. A simple assumption might be that each unit
1268 consumed is selected at random from a different sample or lot, which is in turn selected at
1269 random from the distribution of samples or lots in the marketplace. In reality, however, a
1270 consumer who eats two units of the same commodity on the same day will often – but not
1271 always – take them from the same purchase, and therefore potentially from the same sample
1272 or lot. The effect of this behaviour on the exposure distribution depends on whether the model
1273 is based on samples or lots. In both cases, taking two units from the same lot will tend to
1274 increase the variance in exposures, as it will increase the proportion of cases in which both
1275 units come from a high residue sample/lot, and the proportion in which both come from a low
1276 residue sample/lot. However, in the sample-based model, the sum of the two residues cannot
1277 exceed N times the sample mean, where N is the size of the sample, whereas in the lot-based
1278 model the two units would be drawn independently from the distribution for unit-to-unit
1279 variability, so higher exposures will be possible.

1280 In reality the true behaviour of consumers will lie somewhere between the extremes:
1281 sometimes multiple units of the same commodity will come from the same sample or lot, and
1282 sometimes from different samples or lots. The Panel considers that modelling this realistically
1283 using data or expert judgment is sufficiently complex to be reserved for **refined probabilistic**
1284 **assessments**. In **basic probabilistic assessments**, *optimistic model runs* should assume every
1285 unit is selected at random from a different sample or lot while, in *pessimistic model runs*,
1286 units of the same commodity consumed on the same person-day should be sampled at random
1287 from a single sample or lot, i.e. based on the same simulated sample or lot mean residue. If
1288 the model is sample-based, units from the same sample should be constrained not to exceed
1289 the maximum total residue.

1290 **4.3. Processing factors**

1291 Processes such as cooking, peeling and juicing may decrease or increase the concentrations of
1292 residues in foods as eaten, compared to the levels in the raw agricultural commodities.
1293 Processing factors are used in deterministic dietary exposure assessments to take account of
1294 these changes. Regulation requires that three studies are submitted; however, the extent to
1295 which these studies represent the full range of processing practices is uncertain. Therefore, in
1296 **basic probabilistic assessments**, the Panel recommends using alternative assumptions to
1297 explore more and less conservative assumptions. *Optimistic model runs* should take the values
1298 used in deterministic assessment. *Pessimistic model runs* should take 1 or the values used in
1299 deterministic assessment, whichever is higher. If sensitivity analysis shows that these
1300 alternative assumptions have a significant impact on the risk management decision, then more
1301 detailed modelling of processing factors should be considered as an option for **refined**
1302 **probabilistic assessment**. This refined modelling might include, for example, developing
1303 distributions to represent the variability of processing effects and the associated uncertainty
1304 based on available data and/or expert judgement. Potentially relevant data includes direct
1305 measurements of processing and also other information that may assist in making expert
1306 judgements, including physico-chemical characteristics of the residual compounds. Data on
1307 water content of foods (e.g., US EPA, 1996) may assist in estimating the concentration of
1308 residues when water content is reduced during cooking or drying if this is not covered by the
1309 residue conversion factor.

1310 **4.4. Residues in prepared foods**

1311 Much prepared food is purchased as such, but some is prepared from raw commodities at
1312 home. In some situations, an individual may purchase some raw commodity and consume
1313 some of it raw and some in prepared foods, all derived from a single lot or sample of raw
1314 commodity. For person-days where this occurs, there will be a positive correlation between
1315 residues in the raw and prepared foods which may contribute to the high percentile dietary
1316 exposures. Ideally, one would model these correlations using data or expert judgments on the
1317 proportion of each food prepared at home, but this would be complex to implement and is
1318 therefore only suitable for **refined probabilistic assessments**.

1319 In *optimistic model runs* for **basic probabilistic assessments**, it may for simplicity be
1320 assumed that all prepared food is purchased ready-made. In *pessimistic model runs*, it should
1321 be assumed that all prepared food is prepared at home except for those prepared foods where
1322 this is not reasonable (e.g. ketchup). Where the same person-day includes more than one food
1323 from the same commodity, whether prepared or raw, they should all be assumed to come from
1324 the same sample or lot. This will occur sometimes though not frequently, e.g. a person who
1325 purchases oranges and consumes some raw and some after juicing. To represent this in the
1326 model, a single value should be drawn for the raw commodity (representing the mean of the
1327 single lot or sample for that consumer) and used as the starting point for sampling unit
1328 residues for portions of that commodity eaten both raw and as home-prepared food.

1329 4.5. Combining consumption and residues by Monte Carlo simulation

1330 When both consumption and residues are represented by distributions, it is necessary to
1331 combine these in a suitable way to estimate the resulting distribution of acute dietary
1332 exposures. This is generally done by Monte Carlo simulation, combining dietary records
1333 (person-days) with residue values sampled at random from the distributions representing
1334 variation in residues between and within lots.

1335 In order to produce confidence intervals showing the uncertainty that has been quantified, a
1336 two-dimensional Monte Carlo (2D MC) procedure is used (e.g., Vose, 2008). This is
1337 illustrated diagrammatically in Figure 4.

1338 The 2D MC procedure comprises an inner and outer loop: the inner loop simulates variability
1339 of exposure between person-days, and the outer loop simulates those uncertainties that are
1340 being quantified in the assessment (Figure 4). The calculation of exposure is repeated many
1341 times in the inner loop, simulating different person-days by drawing different values from the
1342 data or distributions representing those parameters for which variation is being quantified.
1343 This constitutes one iteration of the outer loop, and generates one estimate of the distribution
1344 of exposures, as illustrated in Figure 4. The outer loop is repeated many times, each time
1345 taking different distributions or resampled datasets for the parameters for which uncertainty is
1346 being quantified. Each outer loop generates one estimate of the distribution of exposures,
1347 which can be plotted together and used to derive a median estimate and confidence intervals
1348 for the distribution of exposures, as illustrated diagrammatically at the bottom of Figure 4.

1349 Variability and uncertainty are simulated in two ways: bootstrapping, where random samples
1350 are drawn from input data, or statistical modelling, where random samples are drawn from
1351 distributions derived from a statistical model of the variability and uncertainty for an input of
1352 the exposure assessment. In the approaches recommended by the Panel for **basic**
1353 **probabilistic assessment** of acute exposure, bootstrapping is used for consumption data and
1354 statistical modelling is used for the distribution of mean residues between lots or samples. In
1355 **refined probabilistic assessment**, variability and uncertainty may be quantified for
1356 additional inputs (e.g. variability factors, processing factors, unit weights). As the underlying
1357 datasets for these inputs will generally be small, their variability and uncertainty should
1358 preferably be quantified using statistical models as empirical bootstrapping will only generate
1359 values contained in the underlying data. Also, in refined assessment, consumption may be
1360 modelled parametrically rather than by empirical bootstrapping (see section 4.1).

1361 In **basic probabilistic assessments of acute exposure**, sampling uncertainty for consumption
1362 should be quantified in the outer loop by resampling the person-day records in the raw survey
1363 data. In each outer loop, a set of records equal to the number in the original survey (S) is
1364 drawn by random sampling with replacement. This generates a different sample of S
1365 consumption records for use in each inner loop.

1366 In *optimistic model runs*, empirical bootstrapping is also used to quantify sampling
1367 uncertainty for lot/sample residues, following the same procedure as for consumption. In each
1368 outer loop, a number of residues R equal to the number in the observed data is drawn at
1369 random with replacement from the observed data. In *pessimistic model runs*, uncertainty and
1370 variability for lot/sample residues is modelled parametrically, using the equations (1)-(3) in
1371 sections 4.2.5 and 4.2.7. Each outer loop samples one value for the proportion of positive
1372 residues, defining a single binomial distribution for use in one inner loop. Each outer loop
1373 also samples one mean and standard deviation to define one lognormal distribution, which is
1374 then used in the inner loop to represent the variation of positive residues. Individual residues
1375 are then simulated in the inner loop by sampling from those distributions.

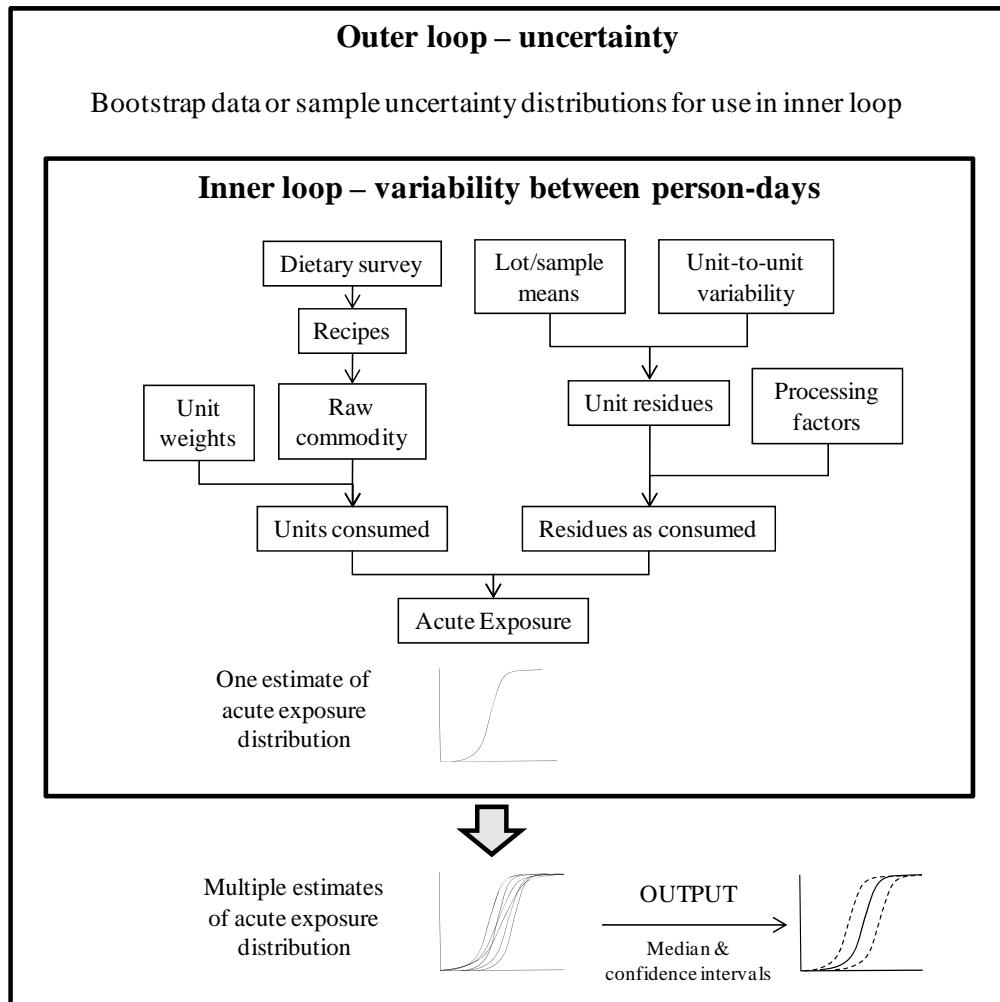
1376 In order for the inner loop to adequately explore the variability in exposure that results from
1377 the many possible combinations of consumption and residues, it is necessary in the inner loop
1378 to simulate a much larger population (P) of person-days than in the original survey. This is
1379 done by drawing the required number of records P at random with replacement from the S
1380 records selected in the outer loop⁴⁵.

1381 Sufficient inner and outer loops should be simulated to produce stable results, which do not
1382 change materially if the assessment is repeated. The numbers required may vary from
1383 assessment to assessment. Boon and Van Klaveren (2003) recommended simulating 100,000
1384 person-days, but larger simulations may be needed, especially where rarely-eaten foods are
1385 important and/or when high percentiles of the exposure distribution approach or exceed toxic
1386 reference values. Therefore the Panel recommends that, whatever number of inner and outer
1387 loops is simulated initially, the assessment should be repeated at least 3 times⁴⁶: if the output
1388 distributions and their confidence intervals are similar and they do not alter the implications
1389 for risk management, then the degree of replication may be considered sufficient. Otherwise,
1390 the number of inner and outer loops should be increased until repeated runs give stable
1391 outputs.

1392 It is important to keep in mind the limitations of methods used to quantify variability and
1393 uncertainty. Because bootstrapping is limited to the range of observed values, consumption
1394 data contributing to the upper tail of the estimated exposure distribution should be examined
1395 (see drill down in section 7), and the potential for higher consumption of those foods to occur
1396 in reality should be considered. This is especially important for less-commonly consumed
1397 foods, which may be represented by only a very small number of records in the data.
1398 Parametric modelling of residues using the lognormal distribution will sometimes generate
1399 impossibly high residues. Therefore, simulated residues contributing to the upper tail of the
1400 estimated exposure distribution should also be examined to evaluate their realism (see section
1401 7). Finally, many potential sources of variability and uncertainty are not quantified in the
1402 proposed approaches for basic probabilistic assessment, so it is essential to evaluate these
1403 subjectively in every assessment (see section 8).

⁴⁵ In some models, the required number of person-days has been obtained by replicating the consumption data rather than resampling it. The results should be similar, provided the number of person-days simulated is large enough (judged by stability of the outputs as described in the text).

⁴⁶ With different sequences of random samples (i.e. different random number seeds). Three repetitions are recommended because 3 similar results provide more assurance (compared to 2 repetitions) that the number of iterations is sufficient to produce stable results.



1404

1405 **Figure 4:** Illustration of procedure for two-dimensional Monte Carlo simulation of
1406 uncertainty and variability of acute dietary exposures. See text for details.

1407

1408 **5. Modelling chronic exposure**

1409 Chronic dietary exposures should be estimated for relevant scenarios, identified as indicated
1410 in section 2. Chronic exposure is averaged over time but varies between individuals due to
1411 differences in their dietary habits.

1412 The basic inputs required for modelling chronic dietary exposure are the same as those for
1413 acute exposure: the amounts of pesticide residue that are present in and on foods and the types
1414 and amounts of those food consumed in a person's diet. However, to model chronic exposure
1415 it is necessary to have consumption data for multiple days per person, unless estimates of
1416 within-person, between-day variation are available from another source. Again, a number of
1417 additional variables are also used. Some of these are adjustments required to allow the
1418 assessment to be conducted with the types of data that are normally available, while others
1419 allow the user to take account of factors that may modify exposure. They include:

1420 • food conversion factors, to convert composite food products as recorded in dietary
1421 surveys (i.e. as eaten) to their individual ingredients;

1422 • processing factors, to take account of changes in nature and amount of residues during the
1423 processing of raw agricultural commodities into processed commodities or ingredients;

1424 • percentage of the commodity that is treated with the pesticide under assessment, to take
1425 account that this is generally less than 100%.

1426 Variability factors and unit weights are not needed for chronic assessments. This is because
1427 short-term variability of residues within and between lots or samples is not relevant when
1428 modelling chronic exposure. Instead, chronic exposure is estimated using the average residue
1429 for each commodity. In this respect, modelling chronic exposure is simpler than acute
1430 exposure. However, modelling long-term average exposures using consumption data from
1431 short-term dietary surveys introduces significant challenges in chronic exposure assessment.

1432 The following sections discuss the possibilities for how each element of the chronic exposure
1433 model could be handled in a probabilistic assessment, and the difficulties that arise. They also
1434 explain the Panel's conclusions on which options should be used in optimistic and pessimistic
1435 runs for a basic probabilistic assessment, and which of them might be options for refined
1436 assessment. These conclusions are summarised in Table 3.

1437 It is important to note the different nature of the optimistic model run in chronic assessment,
1438 when compared to acute assessment. In the acute assessment, the optimistic run is expected to
1439 underestimate exposure, so if it raises concern it is unlikely this can be removed by
1440 refinement and it may be advisable to stop the assessment (see Figure 1 in section 2). Whereas in
1441 chronic assessment, the optimistic model run may overestimate exposure
1442 (although to a lesser extent than the pessimistic run), and its role is to indicate whether
1443 refinement should include parametric modelling of intakes rather than the simple Observed
1444 Individual Means (OIM) approach (see 5.1.2 for more detail).

1445

1446

1447 **Table 3:** Summary of recommended approaches for chronic dietary exposure assessment
 1448 (see the indicated text sections for detail).

Assessment component	Basic assessment		Options for refined assessment include:	Section no.
	Optimistic	Pessimistic		
Modelling consumption (modelled as exposure, after combination with residues)	Observed Individual Means method + bootstrap	Observed Individual Means method + bootstrap; examine commodity contributions to upper tail exposures.	If frequency and amount of exposure are uncorrelated, and exposure distribution is normal, consider BBN model. Otherwise, consider other parametric models	5.1.2
Food conversion factors (recipes)	Use available recipe databases		Quantify variability and uncertainty for foods driving exposure	5.1.3
Residue definitions	Use residue definition for risk assessment. Evaluation of unquantified uncertainties.		Consider more sophisticated methods (see 5.2.1)	5.2.1
Unmeasured residues in animal commodities	Zero	MRL	More sophisticated estimates (see 5.2.1)	5.2.1
Mean residue for each commodity	Mean of available data		Parametric models	5.2.2
Sampling uncertainty for mean residues	Empirical bootstrap of available data	Empirical bootstrap of available data		5.2.2
Treatment of residues below LOR (Level of Reporting)	Treat as true zeroes	Set <LOR to LOR		5.2.2, 5.2.4
Percent crop treated (when using supervised trials data)	Approximate estimate of % crop treated	Assume 100% of crop treated		5.2.4
Limited amounts of monitoring data	Use available data empirically	Use appropriate data from other countries, other commodities or supervised trials	Future options might include extrapolation between substances	5.2.3
No supervised trials data (as substitute for monitoring data)	If no monitoring or trials data, assume no residues.	Use appropriate trials data from other commodities	Future options might include extrapolation between substances	5.2.3
Residues for non-authorised use	Treat as for authorised uses	Treat as for authorised uses except set <LOR to zero	Treat as for authorised uses	5.2.4
Processing factors	Mean value used in deterministic assessment.	Set to 1 (no change) or use mean value from deterministic assessment if >1	Quantify uncertainty using data and/or expert judgment	5.3
Cumulative assessment	See section 6			6
Unquantified uncertainties	Optionally, evaluate using uncertainty table	Evaluate using uncertainty table	More sophisticated or quantitative evaluation	8

1449

1450

1451 **5.1. Consumption**

1452 **5.1.1. Data organisation and adjustment**

1453 Although average (habitual) consumption over longer time periods is relevant for assessing
1454 chronic dietary exposure, available consumption data are from short term surveys. As for
1455 acute assessments, survey data reporting foods as eaten need to be converted to the
1456 appropriate quantities of raw commodities and expressed relative to body weight for use in
1457 chronic exposure modelling (see 4.1.1 and 4.1.3 for more details).

1458 **5.1.2. Empirical use of consumption data and parametric modelling of chronic
1459 exposure**

1460 In chronic dietary exposure assessment, it is necessary to estimate long-term exposure using
1461 consumption data from dietary surveys that often cover only 2-4 days. This extrapolation may
1462 be done very simply in an empirical approach, referred to as the Observed Individual Means
1463 approach (OIM). This uses the observed mean consumption over the recorded days for each
1464 individual to calculate mean exposures and then treats these as estimates of long term
1465 exposures. Alternatively, the extrapolation may be done parametrically by fitting a statistical
1466 model that separates within- and between-individual variation in consumption or exposure,
1467 and uses this to estimate long-term average exposures.

1468 Due to the limited duration of dietary surveys, the OIM approach tends to show exaggerated
1469 differences between individuals due to short-term variations in diet over time that tend to
1470 average out over longer time periods. For example, if an individual happens to purchase a
1471 kilogram of pears in the survey period, his average consumption of pears in the survey may
1472 greatly overestimate his real long-term average. Therefore, the OIM approach will tend to
1473 over-estimate upper tail exposures in chronic assessments, because a short-term survey is
1474 likely to over-represent the frequency of individuals consuming a food every day. However, if
1475 the survey is small, or for rarely-eaten foods, this tendency will be counteracted by sampling
1476 uncertainty, in which case underestimation of upper tail exposures could occur⁴⁷.

1477 The OIM approach is liable to underestimate the proportion of the population that is ever
1478 exposed. This is because only a proportion of the persons who eat a commodity will happen
1479 to eat it during the short period when their diet is surveyed.

1480 Parametric approaches to estimating long-term food consumption are intended to overcome
1481 the limitations of the empirical approach. They avoid the potential biases identified above,
1482 and can estimate the frequencies of high consumption events that were not observed in the
1483 dietary survey. However, in order to produce reliable estimates using parametric methods, it is
1484 essential to take account of the complex correlations that occur between consumption of
1485 different foods. A simple option is to combine the observed consumption data for each food
1486 type with the mean residues for the same food to obtain estimated daily exposures, and then
1487 apply a parametric model to those exposures. This incorporates the correlations present in the
1488 data and avoids the need to model them explicitly, although they are subject to sampling
1489 uncertainty, especially for correlations between less-commonly consumed foods.

1490 Researchers have developed in recent years a range of statistical approaches to model dietary
1491 patterns, including accounting for correlations between foods and also the dependence of

⁴⁷ For right-skewed distributions (as are typical for pesticide exposure) the turning point between under-estimation and over-estimation is not the median, as is true for symmetrical distributions, but a higher percentile. This percentile increases when the short-term variation gets larger relative to the between-person variation, so it may occur that percentiles of interest for decision-making are under-estimated rather than over-estimated by the OIM method.

1492 consumption patterns on other variables (covariates) including age and body weight.
1493 Examples include the approaches of Nusser (1996, 1997), Slob (1993, 2006), Tooze et al.
1494 (2006), Allcroft et al. (2007), de Boer et al. (2009), Kipnis et al. (2009) and Kennedy (2010).
1495 The approaches differ in their assumptions about the distributions describing variation in
1496 frequencies and amounts of consumption or exposure, and in the degree to which they
1497 account for the effects of covariates.

1498 The relative suitability of these varied approaches for statistical modelling of chronic
1499 exposure is a subject of current research. In one recent paper, de Boer et al. (2009) compared
1500 the beta-binomial normal (BBN) method with the Iowa State University Foods (ISUF) model.
1501 They found that neither model is suitable for use when the distribution of exposures is
1502 multimodal. Although the ISUF model includes a spline transformation that will always give
1503 a normal distribution, this transformation is not compatible the assumption of additivity of
1504 between and within consumer variances (de Boer et al, 2009, page 1448). When a logarithmic
1505 or power transformation results in an approximately normal distribution of exposures, de Boer
1506 et al. (2009) prefer the BBN model over the more complex ISUF model. De Boer et al. (2009)
1507 conclude that the choice of appropriate models should be made on a case-by-case basis, and
1508 that more research is necessary to develop a method that is applicable to multimodal exposure
1509 distributions.

1510 Taking account of the limitations of the existing approaches and the significant statistical
1511 expertise required to use them correctly, the Panel recommends⁴⁸ that **basic probabilistic**
1512 **chronic exposure assessments** should use the OIM approach. Both *optimistic* and *pessimistic*
1513 *model runs* should include bootstrapping of the dietary records, to indicate the degree of
1514 sampling uncertainty affecting exposure estimates. In addition, it is essential to check the
1515 dietary records that generate the upper tail exposures for *pessimistic model runs*, to identify
1516 which foods contribute significantly to the exposure, and consider whether they might be
1517 consumed more frequently by some consumers than was found in the dietary survey. If so, the
1518 OIM approach may underestimate the upper tail residues, which should then be investigated
1519 by parametric modelling as part of a refined assessment.

1520 It is important to emphasise that the OIM approach tends to overestimate upper tail exposures,
1521 as explained earlier in this section, and therefore changes the nature of the *optimistic model*
1522 *run* in the case of chronic assessment. Although the treatment of residues in the optimistic run
1523 will tend to underestimate exposure (see following sections), this may not be sufficient to
1524 counteract the tendency to overestimation caused by the OIM approach. This must be taken
1525 into account when interpreting the results of the optimistic and pessimistic model runs for
1526 chronic assessment. Specifically, if both model runs generate exposures that raise concern, it
1527 is possible that both are overestimates and that refinement using a parametric approach in
1528 place of the OIM may remove the concern⁴⁹. If the optimistic run does not raise concern, but
1529 the pessimistic run does raise concern, this implies that refinement of the treatment of
1530 residues (e.g. non-detects, processing factors, animal commodities) may be sufficient to
1531 remove the concern without needing to move from the OIM approach to parametric
1532 modelling. Thus even though the ‘optimistic’ model run for chronic assessment is not literally
1533 optimistic, it is useful in helping the user decide between the options for refinement.

1534 Parametric modelling of consumption may be considered as an option for **refined**
1535 **probabilistic assessment** of chronic exposure. In cases where the distribution of exposures is
1536 approximately normal (after logarithmic or power transformations if needed), and there is no

⁴⁸ This recommendation should be reviewed in the light of the findings from EFSA DATEX Unit’s ETUI project on developing probabilistic tools to estimate usual intake distributions, when available (expected during 2012).

⁴⁹ This contrasts with acute assessment, where the optimistic model is expected to underestimate exposure and therefore, if it raises concern, it is unlikely that this can be removed by any refinement option (see section 2).

1537 evidence of correlation between the frequencies and daily amounts of consumption for each
1538 food⁵⁰, application of the BBN model may be considered. If these conditions are not met,
1539 other parametric solutions may be considered case-by-case, with the aid of expert statistical
1540 advice.

1541 These recommendations supersede the view expressed by the Panel in its opinion on
1542 cumulative risk assessment, where it stated that using the empirical approach for chronic
1543 assessments is “entirely inappropriate” (EFSA, 2008a, footnote 19 on page 35). The primary
1544 reason for the previous view was to avoid the tendency of empirical approach to over-estimate
1545 the upper tail of the exposure distribution. The Panel’s new recommendation recognises that
1546 adequate parametric approaches are not yet developed for all situations (especially for
1547 multimodal distributions) and require a high level of expertise, while the simplicity and
1548 conservativism of the empirical approach make it suitable for basic probabilistic assessment.
1549 However, the potential for including parametric approaches in the basic probabilistic
1550 assessment should be kept under review as new developments emerge; in particular, the
1551 outcome of the ETUI project⁵¹.

1552 In general, it is essential that users be aware of the limitations of approaches used for
1553 modelling consumption and take them into account as part of the evaluation of unquantified
1554 uncertainties (section 8).

1555 5.1.3. Food conversion factors

1556 Mean food conversion factors should be used in chronic dietary exposure assessments. In
1557 **basic probabilistic assessments**, the Panel recommends to use the same values for these
1558 parameters as are used in deterministic assessments (see section 4.1.3). **Refined probabilistic**
1559 **assessments** could use means estimated from additional data, when available from
1560 appropriate and relevant studies. Unit weights are not required for chronic assessments.

1561 5.2. Residues

1562 5.2.1. Data organisation and adjustment

1563 As previously mentioned, mean residues are relevant for modelling chronic dietary exposure,
1564 and there is no need for modelling between-lot, between-sample or between-unit variation as
1565 in acute assessments. However, the individual residue values underlying the means are
1566 required as input for modelling, to enable bootstrapping to quantify the impact of sampling
1567 uncertainty on the mean values.

1568 All considerations regarding organisation and adjustment of residue data for modelling acute
1569 exposure (section 4.2.1), residue definitions and residues in animal commodities apply
1570 similarly for modelling chronic exposure.

1571 5.2.2. Modelling of residues

1572 Modelling of variation in residues within and between lots or samples of commodity is not
1573 needed for chronic dietary exposure assessment, which should be based on mean residue
1574 levels, taking into account data both above and below the LOR. In both *optimistic* and
1575 *pessimistic model runs* for **basic probabilistic assessment** of chronic exposures, empirical
1576 bootstrapping should be used to give an indication of the sampling uncertainty of the mean
1577 values. The quantification of sampling uncertainty will be approximate, especially for smaller

⁵⁰ This can be examined by using box plots to compare daily consumption amounts for subsets of individuals who consumed the food in question on different numbers of survey days (0, 1, 2, etc.).

⁵¹ The report of a workshop conducted under this EFSA-funded project may be found at:
<http://www.efsa.europa.eu/en/supporting/pub/86e.htm>. The final report of the project is expected during 2012.

1578 datasets. However, this problem is less severe than for acute assessment because
1579 bootstrapping performs better for the mean than for distribution tails and because sample size
1580 is increased by inclusion of data both above and below the LOR. Parametric modelling of the
1581 uncertainty of mean residues could be considered as an option for **refined probabilistic**
1582 **assessment**.

1583 **5.2.3. Using residue data from different sources to increase sample size**

1584 Although mean residues are less influenced than distribution tails by sampling uncertainty due
1585 to limited data, it is still desirable to reduce the uncertainty by combining data from different
1586 sources where appropriate. This is referred to as extrapolation.

1587 In *optimistic model runs* for **basic probabilistic assessments**, no extrapolation is necessary.
1588 The assessment may be conducted using only the residue data that are available. This will
1589 tend to underestimate dietary exposure because it will assume that residues are absent in
1590 commodities that have no measured values⁵².

1591 In *pessimistic model runs* for **basic probabilistic assessments** of chronic exposure, all
1592 available data that are appropriate for extrapolation should be used to estimate the mean
1593 residue for every commodity that has an authorised use or MRL for the substance under
1594 assessment so that the assessment can take account of their potential contributions to
1595 exposure. The Panel recommends the following procedures:

- 1596 • For commodities where monitoring data are appropriate (see Table 1 in section 3), use all
1597 relevant monitoring data for that commodity, including data from other countries where
1598 appropriate. If there are no monitoring data for the commodity in question, combine all
1599 relevant monitoring data from other commodities for which extrapolation is accepted. If
1600 there are no relevant monitoring data at all, either for the commodity in question or any
1601 other commodity from which extrapolation is appropriate, use data from supervised trials
1602 and proceed as in the following bullet.
- 1603 • For commodities where supervised trial data are appropriate (see Table 1), use all
1604 available supervised trials for that commodity which are relevant to the GAP for the use
1605 under assessment. If there are no supervised trial data for the commodity in question,
1606 substitute supervised trials from other commodities for which extrapolation is accepted.
1607 Again, use all the supervised trials that are relevant. If there are no relevant trials at all,
1608 substitute the MRL for the commodity in question.

1609 Before using either monitoring or supervised trials data from other countries or commodities
1610 as described above, their relevance to the population and commodity in question should be
1611 critically assessed. Extrapolation should only be considered for pairs of commodities listed in
1612 guidance document SANCO 7525/VI/95, and only when it can be reasonably expected that
1613 the use and usage practices of the pesticide in question are the same in both commodities. All
1614 extrapolation should be fully documented and justified in the assessment report.

1615 In a **refined probabilistic assessment**, extrapolation or combining of data from different
1616 sources may be done using appropriate statistical methods which quantify the associated
1617 uncertainty.

⁵² For commodities with measured values, the sampling uncertainty of the mean residue will be higher when extrapolation is excluded, and may result in over- or underestimation, though this should tend to average out over multiple commodities.

1618 5.2.4. Handling of untreated commodity and residues below the limit of reporting

1619 Monitoring data based on composite samples frequently contain a high proportion of values
1620 below the Limit Of Reporting (LOR), some of which may represent untreated commodity.
1621 Data from supervised trials all relate to treated commodity, but may also contain values below
1622 the LOR.

1623 Statistical methods for dealing with data below the LOR were evaluated in a recent study by
1624 EFSA (2010b). As explained in section 4.2.7, pesticide residue datasets will often fail to meet
1625 the requirements proposed by EFSA (2010b), even when data for different commodities are
1626 pooled, or additional data are collected. Therefore, in the case of pesticides, the PPR Panel
1627 proposes an alternative strategy, using different assumptions in the optimistic and pessimistic
1628 model runs to take account of the uncertainty in a way that is practical for basic probabilistic
1629 assessments.

1630 For *optimistic model runs* in **basic probabilistic assessments**, the following procedures
1631 should be used:

- 1632 • Where monitoring data are used, values below the LOR should be treated as true zeroes.
- 1633 • Where supervised trial data are used, values below the LOR may be treated as true zeros,
1634 as an optimistic assumption. In addition, allowance may be made for the proportion of
1635 commodity that is expected to be untreated, by adding the appropriate proportion of zero
1636 values. In the optimistic basic assessment, the proportion of commodity that is untreated
1637 can be an approximate expert judgment.

1638 For *pessimistic model runs* in **basic probabilistic assessments**, values below the LOR should
1639 be replaced with the LOR, as a conservative assumption, before bootstrapping. This applies to
1640 both monitoring data and supervised trials data. Where supervised trials data are used, it
1641 should be assumed that 100% of the commodity will be treated, i.e. no zero values should be
1642 added.

1643 In both the optimistic and pessimistic model runs, if any values below the LOR relate to
1644 samples from regions of origin where there is no registered use for the pesticide and
1645 commodity in question, then those values may be considered as true zeroes. However, any
1646 positive concentrations recorded from regions without registered uses may result from illegal
1647 use, and should be retained.

1648 If sensitivity analysis shows that the treatment of values below the LOR has a large influence
1649 on estimated dietary exposures, consideration could be given to more sophisticated
1650 approaches in **refined probabilistic assessments**. This might include the use of advanced
1651 modelling approaches (e.g. those discussed by EFSA, 2010b) and more rigorous estimates of
1652 the proportion of commodity that is or will be treated (see section 4.2.7 for discussion of this).

1653 Note that using monitoring data for modelling implies an assumption that current or future
1654 levels of pesticide use are similar to those during the period to which the monitoring data
1655 relate, which might cause either over- or underestimation of exposure. Similarly, using
1656 supervised trials data requires explicit assumptions about pesticide usage. Uncertainty about
1657 these assumptions should be quantified using formal expert elicitation or considered as part of
1658 the evaluation of unquantified uncertainties (section 9).

1659 5.2.5. Addressing targeted sampling

1660 Considerations regarding targeted sampling as described for modelling acute dietary exposure
1661 apply similarly here (see section 4.2.8).

1662 **5.3. Processing factors**

1663 Chronic dietary exposure should be estimated using mean values for processing factors,
1664 although when the mean value is based on more than one data value the individual values will
1665 be required as input for bootstrapping to examine the sampling uncertainty of the mean.

1666 In **basic probabilistic assessments**, the Panel recommends using alternative assumptions to
1667 explore more and less conservative assumptions, as in acute exposure assessment. *Optimistic*
1668 *model runs* should take the values used in deterministic assessment, or 1, whichever is lower.
1669 *Pessimistic model runs* should take 1 or the values used in deterministic assessment,
1670 whichever is higher. If sensitivity analysis shows that these alternative assumptions have a
1671 significant impact on the risk management decision, then more detailed modelling of mean
1672 processing factors should be considered as an option for **refined probabilistic assessment**
1673 (see section 4.3 for further discussion).

1674 **5.4. Simulation of chronic exposures**

1675 Chronic dietary exposure assessments generally assume that, for any given food type, the
1676 whole population is exposed to the same mean concentration over the long term. Therefore,
1677 the population distribution of exposure can be estimated without the need for probabilistic
1678 methods by simply combining each individual's consumption with the mean concentration for
1679 each food⁵³.

1680 However, probabilistic methods are required to take account of uncertainty regarding either
1681 the consumption or concentration data. In *pessimistic model runs* for **basic probabilistic**
1682 **assessments** of chronic exposure, the Panel recommends this is done by bootstrapping the
1683 observed data. The procedure is illustrated in Figure 5. This is similar to the 2-dimensional
1684 Monte Carlo procedure used for acute exposure assessment (section 4.5 and Figure 4).
1685 However, for the basic probabilistic assessment, no sampling is required in the inner 'loop'.
1686 Instead, a single estimate of the mean concentration in each food is combined with the
1687 consumption data for each individual. In the outer loop, bootstrapping is used to quantify
1688 uncertainty for both consumption and residues. Uncertainty for consumption is quantified by
1689 resampling the person records in the raw survey data, keeping multiple days for each person
1690 together. In each outer loop, a set of records equal to the number in the original survey (S) is
1691 drawn by random sampling with replacement. This generates a different sample of S
1692 consumption records for use in each inner loop. Similarly, uncertainty in mean residues is
1693 quantified by resampling the residue data. In each outer loop, for each food, a number of
1694 residues R equal to the number in the observed data is drawn at random with replacement
1695 from the observed data, before calculating the mean.

1696 For the basic assessment, the size of the inner loop is equal to the number of person records in
1697 the consumption data. Sufficient outer loops should be simulated to produce stable results that
1698 do not change materially if the assessment is repeated. The numbers required may vary from
1699 assessment to assessment. Therefore the Panel recommends that, whatever number of inner
1700 and outer loops is simulated initially, the assessment should be repeated at least 3 times⁵⁴: if
1701 the output distributions and their confidence intervals are similar and they do not alter the
1702 implications for risk management, then the degree of replication may be considered sufficient.
1703 Otherwise, the number of outer loops should be increased until repeated runs give stable
1704 outputs.

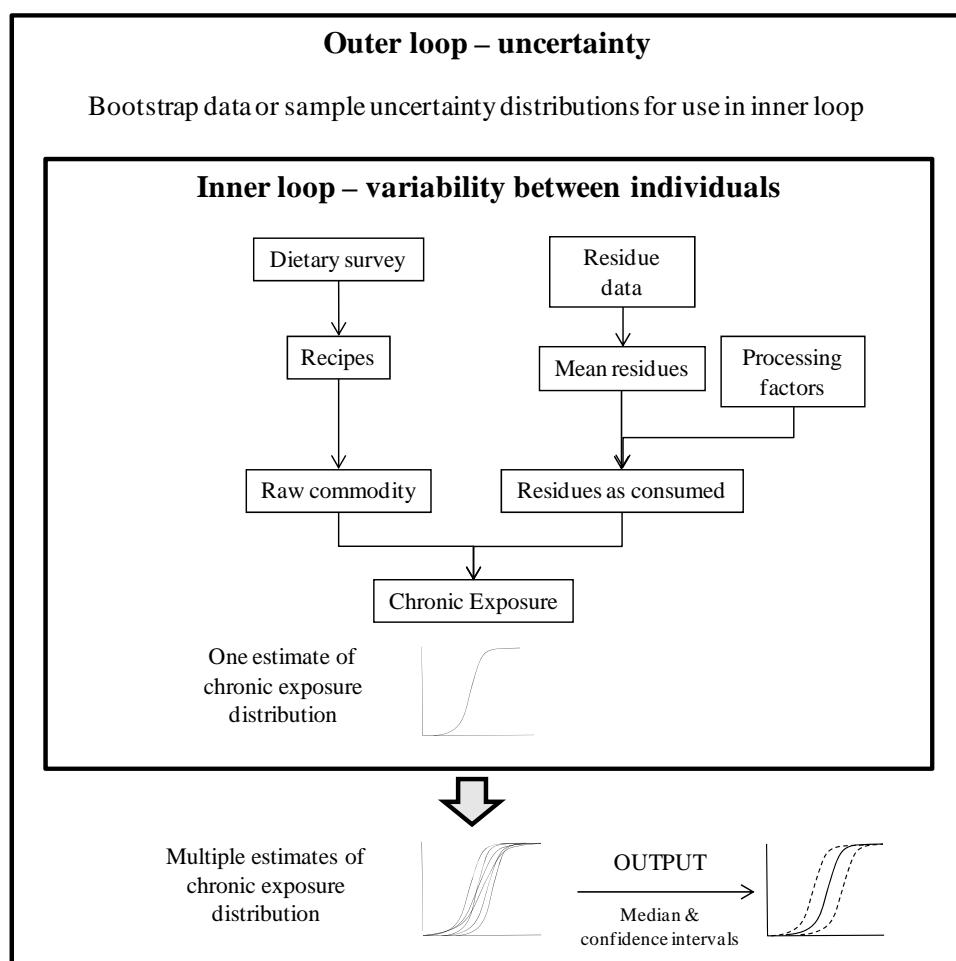
⁵³ This is referred to as the 'individual-based deterministic approach' by EFSA (2010).

⁵⁴ With different sequences of random samples (i.e. different random number seeds).

1705 In *optimistic model runs*, it is not necessary to quantify uncertainty. In this case, no outer loop
 1706 is required, and the assessment will produce a single estimate of the exposure distribution
 1707 without confidence intervals.

1708 In **refined probabilistic assessments**, parametric models may be used to quantify
 1709 uncertainties for one or more elements of the assessment (consumption, residues, processing
 1710 factors, etc.), as indicated in earlier sections. If consumption is modelled parametrically, the
 1711 number of individuals simulated in the inner loop should be large enough to obtain stable
 1712 estimates and confidence intervals at the levels of exposure that are of interest to risk
 1713 managers.

1714 It is important to keep in mind the limitations of methods used to quantify variability and
 1715 uncertainty. Because bootstrapping is limited to the range of observed values, consumption
 1716 data contributing to the upper tail of the estimated exposure distribution should be examined
 1717 (see drill down in section 7), and the potential for higher or more frequent consumption of
 1718 those foods to occur in reality should be considered. This is especially important for less-
 1719 commonly consumed foods which may be represented by only a very small number of records
 1720 in the data. Similarly, the uncertainty of mean concentrations for foods with small residue
 1721 datasets may be poorly represented by bootstrapping. These and other unquantified sources of
 1722 variability and uncertainty affecting the assessment should be evaluated subjectively (see
 1723 section 8).



1724

1725 **Figure 5:** Illustration of procedure for simulation of uncertainty and variability of chronic
 1726 dietary exposures. See text for details.

1727

1728 **6. Additional methodology for cumulative exposure assessment**

1729 Cumulative assessments address the overall risk deriving from combined exposure to multiple
1730 compounds that share the same mode of action or that have similar effects but by different
1731 modes of action (EFSA, 2008a). The Panel has previously reviewed approaches for
1732 cumulative assessments (EFSA, 2008a) and evaluated their practical application to example
1733 substances (EFSA, 2009a).

1734 The Panel has identified two aspects of cumulative assessment that impact on the
1735 methodology for probabilistic modelling: the methodology for cumulation of toxicity, and the
1736 need to quantify co-occurrence of residues for different substances in the same foods. These
1737 are addressed in the following sections.

1738 **6.1. Cumulation of toxicity**

1739 Methodology for cumulation of toxicity is relevant to this guidance on dietary exposure
1740 assessment because cumulative risk is assessed by combining the exposures of different
1741 compounds expressed as functions of their toxicities.

1742 A basic consideration in cumulative risk assessment is the identification of the Cumulative
1743 Assessment Group (CAG), defined by EFSA (2008a) as a group of chemicals that could
1744 plausibly act by a common mode of action, not all of which will necessarily do so.
1745 Methodology for assessing membership of the CAG will be addressed by the Panel in a
1746 separate opinion (EFSA, 2009b).

1747 EFSA (2008a) described the methods by which toxicity from exposures to different
1748 substances in the same CAG can be combined in a cumulative assessment. In order of
1749 increasing complexity, this can be by using a Hazard Index (HI) or adjusted Hazard Index
1750 (aHI), a Reference Points Index (RfPI), Relative Potency Factors (RPF), or physiologically
1751 based toxicokinetic and toxicodynamic modelling (PBTK and PBTD) approaches.

1752 The HI and aHI are sums of the ratios of the individual compound exposures to their
1753 respective toxicological reference values. In the case of the aHI, any reference values that are
1754 not relevant for the specific common toxic effect upon which the CAG is based are replaced
1755 by effect-specific reference values. The RfPI approach sums the exposures to each pesticide
1756 expressed as a fraction of their individual reference points for the relevant effect (e.g. NOAEL
1757 or BMD10). The use of the RPF method requires identification of a reference pesticide for the
1758 CAG, i.e. an index compound (IC), and the relative potencies of the remaining compounds to
1759 the IC. Exposures are then summed as IC equivalents. Two other approaches, the combined
1760 margin of exposure (MOE) and the cumulative risk index (CRI), are reciprocally related to
1761 the RfPI and HI, respectively (EFSA, 2008a).

1762 In the case of approaches based on RfPs, uncertainty factors to account for extrapolation in
1763 toxicology data are applied to the end result. In approaches based on reference values, the
1764 toxicological uncertainty factors are applied to the individual compounds.

1765 As discussed by EFSA (2008a), the method chosen for cumulating hazard makes little
1766 difference when comparable toxicology studies and the same uncertainty factors are used.

1767 The Panel's Opinion (EFSA, 2009a) examining the practical possibilities for assessing
1768 cumulative effects noted as a general point that the approach used for probabilistic
1769 estimations of cumulative exposures is based on the RPFs. These may be derived from either
1770 NOAELs or benchmark doses (BMD). RPFs based on BMDs are considered a scientific

1771 refinement of the hazard assessment in the basic approach. When adequate data are available
1772 to estimate a BMD, this can produce a more consistent basis for comparing relative potencies
1773 as it identifies a dose that produces a defined level of response (EFSA, 2009c). The use of the
1774 NOAEL is limited to one of the dose levels used in the study and is independent of the
1775 magnitude of any response above the NOAEL.

1776 When determining the RPF, EFSA (2008a) emphasised the need, where possible, to obtain the
1777 toxicological information from the same species under similar experimental circumstances. If
1778 different uncertainty factors have been used, EFSA (2008a) suggested that such differences
1779 should be corrected prior to calculation of the RPFs.

1780 The selection of the IC should be based on consideration of the toxicological data, which
1781 should be well defined for the common mechanism effect. Responses for common toxicity
1782 consistent with that of the CAG and the IC dose-response should be well characterised and
1783 with adequate dose-spacing between NOAEL and LOAEL (EFSA, 2009a). When selecting
1784 the IC, substances with weaker toxicity data should be avoided, as uncertainty in the data for
1785 the IC translates into uncertainty for all the individual RPFs in the CAG and hence for the
1786 combined exposure.

1787 The assessment report should document clearly the choice of toxicological endpoint used to
1788 cumulate toxicity, the species, study design, including any differences e.g. duration of
1789 treatment, target tissue for determining common biological response, and differences in
1790 uncertainty factors used to derive reference values, or the methods to establish reference
1791 points (e.g. BMD10, BMDL10, NOAEL). The impact of all these factors on the assessment
1792 should be considered as part of the evaluation of unquantified uncertainties (section 8).

1793 Where the reference points are accompanied by confidence intervals (e.g. for the BMD), it
1794 would be desirable in principle to incorporate them quantitatively in the probabilistic
1795 assessment, so that they are reflected in the confidence intervals for the assessment output⁵⁵.
1796 Confidence intervals are not available for other reference points (e.g. NOAELs), and risk
1797 assessment currently is often based on the reference points rather than their confidence
1798 intervals. However, use of the BMDL has been recommended for calculating Margins of
1799 Exposure (EFSA, 2005b). Further consideration should be given to modelling the uncertainty
1800 of toxic reference points quantitatively in future. In the meantime, it should be considered
1801 subjectively (see section 8).

1802 Where RPFs are used, an implicit assumption is that the dose response curves are parallel and
1803 that the relative potencies are applicable over the whole of the dose range. This assumption is
1804 not necessarily valid (Moser 1995) and is therefore a source of uncertainty. Whether this
1805 introduces more or less conservatism in the assessment will vary from case to case (EFSA,
1806 2008a). The use of NOAELs may represent varying response levels for different compounds,
1807 depending on dose spacing in the toxicological studies, which is another source of uncertainty
1808 that should also be discussed.

1809 Another potentially important source of uncertainty that should be considered is the selection
1810 of substances to include in the CAG. The impact of this may be examined by repeating the
1811 assessment with and without substances whose membership of the CAG is in question (EFSA
1812 2009b).

1813 Physiologically based modelling, i.e., PBTK and PBTD either separately or in combination,
1814 could be considered as options for refined assessment (EFSA, 2008a). Such approaches are
1815 resource intensive, but may allow estimation of more relevant endpoints. In addition, these

⁵⁵ A possible approach for this is described by Van der Voet and Slob (2007).

1816 techniques are can be used to explore possible types of combined action other than dose
1817 addition.

1818 **6.2. Co-occurrence of residues**

1819 In cumulative acute dietary exposure assessments, it is necessary to take account of any
1820 correlations that may exist between the concentrations of different members of the CAG in
1821 the same food sample. Correlations could be negative, e.g., if using one member of the CAG
1822 makes it less likely that the grower will use another member of the CAG on the same crop,
1823 but could also be positive. In order to determine whether such correlations exist and, if they
1824 exist, take account of them, it is necessary to have data where the different CAG members are
1825 measured in the same samples. These issues are not relevant when assessing cumulative
1826 chronic dietary exposure, because this depends on the mean residues of each substance in
1827 each commodity, and not on the particular combinations of residues present in individual
1828 samples or units of commodity.

1829 In some residue datasets, the same substances are measured in every sample and the data are
1830 available as a complete matrix. In this situation, RPFs can be applied to combine all the
1831 substances into a single measure of cumulative potency for each sample, and the cumulative
1832 acute assessment can then be generated by applying probabilistic modelling in the same way
1833 as for a single substance assessment.

1834 Difficulties arise when the substances analysed differ between samples, so that the matrix of
1835 samples by substances is incomplete and contains a mixture of positives, non-detects and
1836 missing values.

1837 The EU 7th Framework project ACROPOLIS (www.acropolis-eu.com) is researching various
1838 approaches to addressing incomplete residue matrices, for example by using additional
1839 information on agricultural use of pesticide combinations. Other researchers are also
1840 developing models for this problem (e.g. Crépet and Tressou, 2011). However, these are
1841 specialised approaches that require further development and evaluation before being
1842 considered for routine use.

1843 The Panel therefore proposes a simpler solution for **basic probabilistic assessment** of acute
1844 exposure, which captures the correlations present in the available data and replaces missing
1845 values in a way that should over-estimate the degree of positive correlation. This avoids the
1846 need to estimate or assume the level of correlation, but is conservative in the sense that it will
1847 over-estimate exposure and risk in pessimistic model runs. An unconservative alternative is
1848 provided for optimistic model runs. The proposed procedure is as follows:

- 1849 • When you have a complete matrix for a particular commodity, first substitute values
1850 below LOR for each substance separately (replace them with 0 in the *optimistic model*
1851 *run* and the LOR in the *pessimistic model run*), then apply RPFs and model the combined
1852 'residue' as for a single substance.
- 1853 • When you have an incomplete matrix for a particular commodity:
 - 1854 ○ For the *optimistic model runs*, substitute missing values and values below the LOR
1855 with zero for all substances, then apply RPFs and model the combined 'residue' as for
1856 a single substance.
 - 1857 ○ For *pessimistic model runs*:
 - 1858 1. Set all values below the LOR to the relevant LOR.

1859 2. Count the total number of missing values for each substance. Apply the methods
1860 recommended in section 4.2 for pessimistic model runs in single substance
1861 assessments to model the distribution of values of each substance for the
1862 commodity in question⁵⁶. Use the distribution for each substance to generate as
1863 many imputed values as there are missing values for that substance. Order the
1864 generated values for each substance from high to low.

1865 3. Order all the samples in the data matrix for this commodity from high to low,
1866 according to their cumulative potency based on the measured data (including
1867 values set to the LOR in step 1 above, but excluding the missing values).

1868 4. Consider the sample with the highest cumulative potency. Fill any missing values
1869 with the highest imputed values for the relevant substances (for the same
1870 commodity).

1871 5. Proceed to the next sample. Fill any missing values with the highest remaining
1872 imputed values.

1873 6. Repeat step 5 until you reach the end of the samples for the commodity in
1874 question. Then recalculate the cumulative potency for each sample including the
1875 measured and imputed values, and use the cumulative potencies in probabilistic
1876 acute exposure modelling as if they were sample/lot concentrations for a single
1877 substance.

1878 7. Repeat steps 1-6 for other commodities relevant to the assessment.

1879 A worked example of steps 1-7 is provided in Appendix.

1880 These methods are necessary only for acute assessments. The approach for pessimistic model
1881 runs will apply a conservatively high correlation to imputation of missing values, while
1882 retaining the observed correlation for measured values. Note that steps 1-7 relate to
1883 concentrations for samples or lots, not for individual units. In the pessimistic model runs,
1884 unit-to-unit variation should then be modelled as for single-substance assessment: this is also
1885 conservative, because it implies perfect positive correlation of unit-to-unit variability of the
1886 different substances within samples or lots, whereas in practice the correlation could be
1887 weaker or even negative⁵⁷.

1888 7. Types and format of model outputs

1889 A wide variety of graphical and tabular outputs can be generated by probabilistic dietary
1890 exposure modelling. Common types are listed in Table 4, together with comments on the
1891 different kinds of information they provide and types of interpretation they are useful for. In
1892 all cases, care is required in the detailed design, labelling and explanation of each form of
1893 output in order to facilitate correct interpretation.

⁵⁶ The distribution for each substance will be a mixture of values below the LOR (set to the LOR as this is a pessimistic model run) combined with a lognormal distribution of positive values. The proportion of values <LOR should be the same as that found in the measured data for the commodity in question, and the lognormal distribution should be fitted to the positive values in the measured data.

⁵⁷ It is not known how conservative the approaches described in this section will be in practice, so this methodology should be reviewed when more research and experience are available.

Table 4: Common types of output from probabilistic dietary exposure modelling. Note that graphical and tabular summaries of input data are also useful (see section 9 on checklist of issues for reporting and peer review). Examples of some of these outputs may be found in de Boer et al. (2011).

Type of output	Contribution to interpretation of results
Exposure distribution:	
• Probability density function	Readily interpretable presentation of distribution shape, good for detecting presence of multiple peaks. Usual format does not show uncertainty, although this is possible.
• Cumulative density function with confidence intervals	Shows percent of population or person-days <i>below</i> any given level of exposure. Confidence intervals show quantified uncertainty. Convenient format for reading off (approximate) percentiles of the distribution.
• Exceedance function (complementary cumulative density functions) with confidence intervals	Shows percent of consumers or person-days <i>above</i> any given level of exposure. Shows quantified uncertainty. Can be useful for reading off (approximate) numerical results.
• Tables of selected distribution statistics	E.g., average and standard deviation, plus confidence intervals. Usually of less interest than percentiles.
• Exposure at specified percentiles	Selected percentiles of exposure distribution, plus confidence intervals.
• Percent of population exceeding/below a specified exposure*	Estimates of percent population or person-days above or below specified levels, e.g., ARfD or ADI, plus confidence intervals.
Contributions of different commodities to exposure	Pie charts or tables showing percentage contribution of different commodities to exposure, either aggregated over the whole population or for a specified segment (e.g., those above a specified percentile or reference value). Confidence intervals can be shown in tables but not pie charts.
Summary statistics for estimated consumption	E.g., % consumers/consumption days and mean amounts. Useful aid to understanding exposure results and to check realism of simulation.
“Drill down” of upper tail exposure estimates*	Table of information underlying individual upper tail exposures, e.g., foods contributing to the exposure, amounts consumed, residue levels, etc. Essential for assessing realism of results in upper tail and also for assessing the possibility of still higher exposures.
Sensitivity analysis	Various forms, ranging from simply presenting results of different model runs to show the impact alternative assumptions (e.g., for treatment of values below the LOR), to figures or tables showing the contribution of different inputs to variation and uncertainty in the output.

*The Panel recommends that estimates of the proportion of the population exceeding exposures of concern (see Table 5 and Figure 6) should be included in every assessment, together with drill-down information for pessimistic basic model runs and for refined assessments. Other types of output listed in this table considered as optional.

1898 All of the formats summarised in Table 4 can contribute to communicating the results of a
1899 probabilistic assessment. Some focus on communicating different aspects of the exposure
1900 distribution while others (especially the “drill-down”) focus on the essential purpose of
1901 evaluating the credibility or realism of estimated exposures (especially in the upper tail) and
1902 assist in determining what specific mitigation or other regulatory measures might be
1903 appropriate.

1904 In presenting results the aim should be to show what the available data and modelling can say
1905 about the incidence of different levels of exposure relative to the relevant toxic reference
1906 values, together with a clear and balanced indication of the limitations and uncertainties
1907 associated with the results. The Panel identified the following key issues and requirements:

- 1908 1. Reporting results for only one or a few percentiles of the exposure distribution gives an
1909 incomplete picture and, in effect, presupposes that those percentiles are of particular
1910 interest (e.g., to risk managers). It also implies risk management judgements about the
1911 level of protection that is required (e.g., limiting attention to the 97.5th percentile would
1912 imply that exposures occurring less frequently than 1 in 40 are of no concern). Results
1913 should be reported such that the complete estimated exposure distribution can be assessed,
1914 so far as is feasible given the underlying data and modelling methodology.
- 1915 2. Exposure is of interest (to risk managers and others) primarily in terms of its relation to
1916 toxic thresholds. Assessment outputs should therefore include (but need not be limited to)
1917 expression of exposure in relation to the relevant toxic reference value, e.g., as a
1918 percentage of the ARfD or ADI, or as a Margin of Exposure (MoE)⁵⁸.
- 1919 3. When the results indicate potential for a proportion of exposures to exceed the relevant
1920 toxic reference value, it is important to characterise the amount by which the reference
1921 value may be exceeded, as this is critical for interpretation of the potential toxicological
1922 consequences and hence the risk management implications. Therefore, results should not
1923 be limited to estimates of the proportion of exposure exceeding the reference value, but
1924 should also estimate the proportions of exposure at different multiples of the reference
1925 value (e.g., 2x, 5x, 10x, or other multiples selected according to their potential
1926 toxicological significance). This provides an appropriate basis for toxicologists and risk
1927 managers to consider whether the requirements of Article 4.2 of Directive 1107/2009 that
1928 pesticide residues ‘shall not have any harmful effects’ are met.
- 1929 4. It is essential to take account of uncertainty, with regard to the potential both for
1930 underestimation and overestimation of exposure. Those uncertainties that have been
1931 quantified by the assessment should be characterised by presenting confidence intervals
1932 with each estimate of exposure. In addition, any uncertainties explored by repeating the
1933 assessment with alternative assumptions (e.g., pessimistic and optimistic model runs)
1934 should be characterised by presenting results for the alternative models side by side.
- 1935 5. It is equally essential to take account of uncertainties that have not been quantified. These
1936 should always be evaluated systematically (see section 8) and presented alongside the
1937 quantitative results.
- 1938 6. It is also equally important (and indeed part of the assessment of unquantified
1939 uncertainties) to evaluate the credibility of the simulated exposures, especially in the upper
1940 tail of the distribution, e.g., by making use of “drill down” information. Results that are
1941 based on clearly unrealistic values or combinations of values (e.g., consumption or
1942 residues exceeding maximum feasible values, if these can be defined) may occur when

⁵⁸ Margin of Exposure is the ratio of the relevant toxicological endpoint (before application of any uncertainty factors) to an estimated exposure. Though not currently used in pesticide assessments, it is increasingly used in risk assessments relating to environmental contaminants in the diet (e.g., EFSA, 2005b).

1943 using parametric models that extrapolate beyond the range of the observed data. In
1944 addition, it is useful to examine the input data underlying the highest exposures, and check
1945 for potential data errors (e.g. misreporting of consumption, or decimal place errors).
1946 Individual results that clearly exceed credible limits, or can be shown to derive from
1947 invalid inputs, may be omitted from the primary results presented to risk managers,
1948 provided that they are reported and their omission is justified in accompanying documents
1949 so that they are open to peer review.

1950 7. Similarly, it is important to evaluate the potential for exposures higher than those
1951 simulated by the model. This is essential for models based on resampling observed data, as
1952 these are necessarily limited to the range of the observations, but it is also relevant for
1953 parametric models (to assess whether the tails may be too light). If these considerations
1954 indicate the potential for higher exposures, this should be clearly indicated immediately
1955 adjacent to the quantitative results.

1956 8. A probabilistic model cannot estimate the frequency of exposures lower than the reciprocal
1957 of the size of population simulated by the model. For example, if the model simulates
1958 100,000 person-days, it cannot generate estimated proportions lower than 1 per 100,000
1959 (i.e. 10^{-5} , or 0.001%). In assessments where the results show credible exposures occurring
1960 at the limiting frequency of the model, the model should be rerun with a larger population.
1961 If this is not done, it is important to make clear, alongside the quantitative results, that
1962 higher exposures might occur at frequencies below the limiting frequency of the model.

1963 To meet these requirements, the Panel recommends the use of a specific tabular and graphical
1964 format as illustrated in Table 5 and Figure 6 (adapted as appropriate for chronic or acute
1965 assessments). It is recommended that both the tabular and graphical forms are included, to
1966 facilitate interpretation and understanding of the results by the reader.

1967 It is suggested that frequencies of exposures could be expressed as percentages for
1968 assessments of high residue events, and as numbers per million for other types of assessment
1969 (approval, authorisation, MRL-setting and annual review of monitoring data, see section 3),
1970 unless risk managers prefer a different format. Percentages are suggested for high residue
1971 events because the number of people potentially exposed to a single lot of commodity will be
1972 more limited than for the wider populations considered for the other types of assessment.

1973 In cases where the upper tail of estimated exposures exceeds a toxic reference value, the main
1974 results should always be accompanied by “drill-down” information to support a discussion of
1975 the credibility of those exposures, the validity of the underlying input data, and the potential
1976 for higher exposures to occur.

1977 The Panel recommends that these formats (Table 5 and Figure 6, plus drill-down information
1978 and evaluation of unquantified uncertainties) be included in every **basic and refined**
1979 **probabilistic assessment** of dietary exposure to pesticides for regulatory purposes, to provide
1980 a consistent basis for interpretation and decision-making. These may be accompanied by other
1981 formats (e.g., others from Table 4) where these are considered to provide useful additional
1982 information.

1983 The tabular and graphical results should always be accompanied by a narrative conclusion.
1984 Where the results together with full consideration of the associated uncertainties lead to a
1985 conclusion that exposures above the toxic reference value are scientifically not credible for
1986 the pesticide use scenario under assessment, this should be stated. In all other cases it should
1987 be stated that exposures above the toxic reference value are probable or possible (according to
1988 the evidence), and the reader should be referred to the tables and figures for information on
1989 the frequency of such exposures and associated uncertainties. To aid understanding, it may be

1990 helpful to describe selected results from the tables or figures in narrative form. Interpretation
1991 of the results for decision-making is discussed in Section 10 (see below).

1992

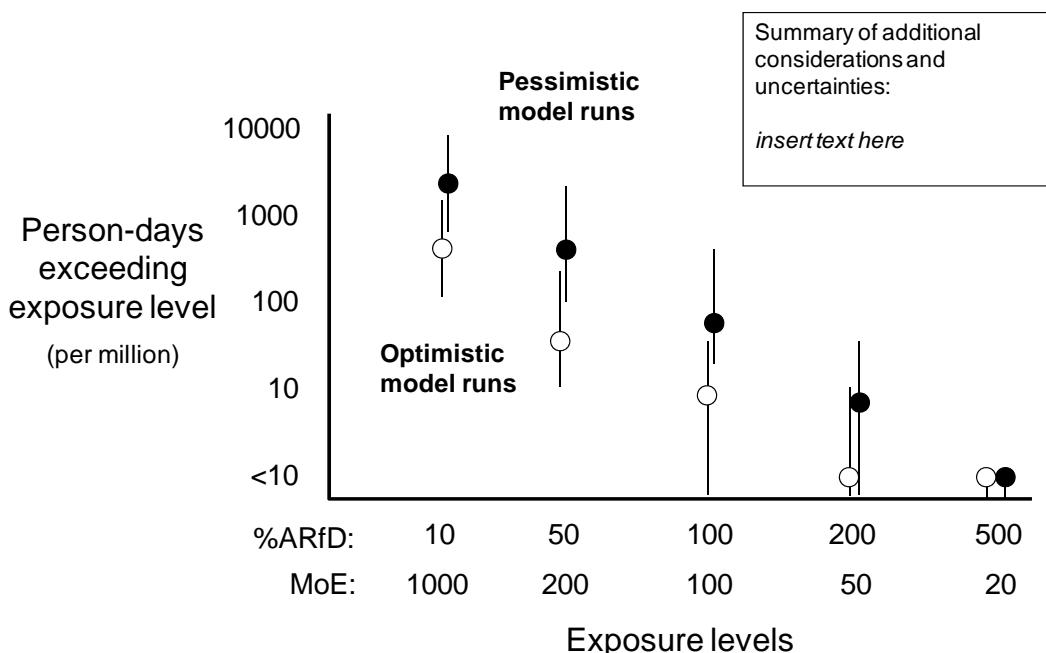
1993 **Table 5:** Tabular format recommended by the PPR Panel for summarising results of
 1994 probabilistic dietary exposure assessments. Results for optimistic and pessimistic model runs
 1995 are shown side by side, and the right hand column is used to summarise any additional
 1996 considerations or uncertainties that should be taken into account. The population or
 1997 subpopulation to which the assessment relates should be specified in the table title. The
 1998 number of individuals simulated should also be stated, together with the limiting frequency
 1999 that this implies. The example is for acute assessment and shows the frequency of exposures
 2000 at different multiples of the ARfD, expressed as the number of exceedances per million
 2001 person-days⁵⁹. These fictional results are supposed to have been generated by a simulation of
 2002 100,000 individuals, so the minimum frequency of exceedances that can be estimated is 10
 2003 per million. The same table format should be used for chronic assessment, but showing the
 2004 frequency of exposures at different multiples of the ADI, expressed as the number of
 2005 exceedances per million individuals. In assessments of high residue events (see section 3), the
 2006 frequency of exceedances may be expressed as a percentage of consumption-days.

Exposure levels		Number of person-days per million exceeding exposure level		Additional considerations & uncertainties				
% of ARfD	MoE*	Optimistic model run	Pessimistic model run					
1	10000	2000 (500 – 7000)	5000 (1000 – 17,000)	<i>Indicate overall direction and magnitude of additional uncertainties, e.g., by inserting summary text from bottom row of uncertainty table (see Section 8).</i>				
10	1000	500 (200 – 1200)	1500 (300 – 4000)					
50	200	50 (10 – 500)	400 (100 – 1300)					
100**	100	10 (<10 – 50)	60 (20 – 300)					
200	50	<10 (<10 – 10)	10 (<10 – 40)					
500	20	<10 (<10 - <10)	<10 (<10 – <10)					
<10. = lower than limiting frequency of model								
parentheses = approximate 95% confidence intervals for sampling uncertainties								
* Margin of Exposure assuming that the ARfD has been established with an uncertainty factor of 100 (if a different uncertainty factor has been used, this should be stated). For acute dietary exposure assessment this is the ratio of the exposure estimate to the toxicological reference point on which the ARfD is based.								
** typical basis for MRL setting								

2007

⁵⁹ If the acute assessment is restricted to consumption-days only, then the results should be expressed in consumption-days rather than person-days.

2008



2009

2010 **Figure 6:** Graphical format recommended by the PPR Panel for summarising results of 2011 probabilistic dietary exposure assessments⁶⁰. Results for pessimistic and optimistic 2012 model runs are shown side-by-side. The population or subpopulation to which the 2013 assessment relates should be specified in the figure title. The number of individuals simulated 2014 should also be stated, together with the limiting frequency that this implies. The example is for acute 2015 assessment and shows the frequency of exposures at different multiples of the ARfD, 2016 expressed as the number of exceedances per million person-days on a logarithmic scale⁶¹. 2017 These fictional results are supposed to have been generated by a simulation of 100,000 2018 individuals, so the minimum frequency of exceedances that can be estimated is 10 per million. 2019 The same figure format should be used for chronic assessment, but showing the frequency of 2020 exposures at different multiples of the ADI, expressed as the number of exceedances per 2021 million individuals. In assessments of high residue events (see section 3), the frequency of 2022 exceedances may be expressed as a percentage of consumption-days. Vertical bars represent 2023 approximate 95% confidence intervals representing sampling uncertainty. MoE = Margin of 2024 Exposure assuming a safety factor of 100 (if a different factor is appropriate, this should be 2025 used).

2026 8. Evaluation of uncertainties

2027 Methods for evaluation of uncertainties in exposure assessment have been considered in detail 2028 by EFSA's Scientific Committee which recommended a tiered approach starting with simple 2029 subjective evaluation of uncertainty and progressing to deterministic or probabilistic 2030 modelling when appropriate (EFSA, 2006b).

2031 Consistent with EFSA (2006b), the PPR Panel's recommended approaches for basic 2032 probabilistic modelling include methods for quantitative evaluation of some of key

⁶⁰ From a technical viewpoint, and to show the full distribution, a cumulative distribution (with confidence intervals) plotted on a suitable scale would be preferable, provided it is well understood by the audience.

⁶¹ If the acute assessment is restricted to consumption-days only, then the results should be expressed in consumption-days rather than person-days.

2033 uncertainties affecting pesticide exposure assessment. These include: (i) the use of parametric
2034 models and bootstrapping to quantify sampling uncertainty; (ii) optimistic and pessimistic
2035 model runs exploring alternative assumptions for the treatment of residues below the LOR,
2036 processing factors, empirical vs. parametric modelling of residues, and variability factors, and
2037 (iii) sensitivity analysis to examine the relative impact of different uncertainties.

2038 However, exposure assessment is affected by many other sources of uncertainty, e.g., the
2039 relevance of the available residue monitoring data to the pesticide usage patterns at the time
2040 of the assessment, or the relevance of the standard acute and chronic time scales (one day or
2041 life time) to the time course of effects used for establishing the toxicological reference values.
2042 It is essential always to take appropriate account (in proportion to their potential importance)
2043 of all unquantified uncertainties that the assessor can identify (EFSA, 2006b). The PPR Panel
2044 therefore recommends that, in every probabilistic assessment, assessors should systematically
2045 examine all parts of the assessment for unquantified uncertainties and evaluate them using the
2046 tabular approach as recommended by EFSA (2006b) and illustrated in Table 6. This
2047 evaluation should initially be done for the pessimistic model run in the basic assessment, and
2048 then revised for each refined assessment (if done); a separate evaluation may optionally be
2049 done for the optimistic model run.

2050 In order to facilitate development of an overall conclusion taking account of both the
2051 quantitative results and the unquantified uncertainties, it is recommended to define a
2052 quantitative meaning for the symbols to be used in Table 6. For example, a single – or +
2053 symbol could be defined as representing potential to alter the estimated exposures by a factor
2054 up to 2 (decrease for – and increase for +), two symbols might represent a factor up to 5 and
2055 three symbols, a factor up to 10. Smaller or larger factors could be chosen, depending on the
2056 scale of the uncertainties to be expressed. Of course, subjective evaluation is highly
2057 approximate, and should be interpreted accordingly. Alternatively, the symbols can be
2058 interpreted more qualitatively (e.g. low, medium, high), although this is less transparent
2059 (because such terms will be interpreted differently by different people) and will make it less
2060 easy for the assessor to form an overall conclusion that combines the quantified and
2061 unquantified uncertainties.

2062 In cases where the unquantified uncertainties appear substantial enough to alter the risk
2063 management decision, consideration may be given either to assessing them in more detail
2064 (e.g., by rerunning the model with alternative assumptions or treating them probabilistically)
2065 or to seeking additional data to reduce the uncertainty. For example, if the relevance of a 1
2066 day timescale for acute assessment was considered doubtful, the potential importance of this
2067 could be explored by redoing the assessment with alternative timescales.

2068 Examples of the types of uncertainties that may affect probabilistic exposure assessments are
2069 presented using similar tabular formats in earlier opinions of the EFSA PPR Panel (EFSA,
2070 2007a, 2008a). Most of the uncertainties encountered in a probabilistic exposure assessment
2071 also affect deterministic assessments. However, they are not considered explicitly in basic
2072 deterministic assessments because the standard conservative assumptions are assumed to
2073 provide an appropriate level of protection. In probabilistic assessments, however, it is
2074 necessary to consider the uncertainties explicitly, because some of the conservative
2075 assumptions of deterministic assessments have been replaced with more realistic distributions.

2076 **Table 6:** Tabular approach for evaluation and expression of uncertainties affecting
2077 exposure and risk assessments (adapted from EFSA, 2006b). The +/- symbols indicate
2078 whether each source of uncertainty has the potential to increase (+) or decrease (-) the
2079 assessment outcome. The number of symbols provides a subjective evaluation of the
2080 magnitude of the effect (e.g., +, ++ and +++ might indicate uncertainties that could increase
2081 the true exposure by x2, x5 and x10 respectively). If the effect is uncertain, or could vary over
2082 a range, lower and upper evaluations are given (e.g., - / ++ or + / ++). Finally, the combined

2083 impact of all the uncertainties is evaluated subjectively. More detail on the rationale for these
 2084 evaluations (especially for the more important uncertainties and the overall uncertainty)
 2085 should be provided as separate text accompanying the table.

Source of uncertainty	Magnitude and direction of influence on estimated exposures
Concise description of source of uncertainty (e.g., under-reporting of consumption of some commodities in dietary surveys)	Symbols to show evaluation of influence (e.g.: +/++)
Insert one row for each source of uncertainty affecting the assessment	
Overall evaluation of uncertainty affecting the assessment outcome Add narrative text here, describing the assessor's subjective evaluation of the overall degree of uncertainty affecting the assessment outcome, taking account of all the uncertainties identified above.	Evaluation of overall uncertainty (e.g., - - - /+)

2086

2087

2088 9. Checklist of key issues for report-writing and peer reviewers

2089 This section summarises key issues that assessors should address when producing reports on
 2090 probabilistic dietary exposure assessments, and which specialists evaluating or peer-reviewing
 2091 those reports should check for.

2092 *Purpose and scope of assessment*

2093 1. The purpose of the assessment, the scientific and/or regulatory questions it addresses, its
 2094 focus (pesticide uses and commodities) and scope (acute or chronic exposure, population
 2095 of interest).

2096 *Input data*

2097 2. Short descriptions of all the data used as inputs for the assessment (including consumption
 2098 and residue data, food conversion factors, unit weights, processing factors, etc.),
 2099 justification of their relevance to the assessment, and references to detailed information on
 2100 how the data were collected and where they can be found.

2101 3. Summary statistics (mean, standard deviation, range, sample size) for each set of input
 2102 data, presented separately for each commodity. In addition, histograms should be provided
 2103 for commodities which contribute significantly to the overall exposure, to allow
 2104 examination of distribution shapes,

2105 4. A description of how composite food as eaten is converted to individual ingredients.

2106 5. Table listing the RACs relevant for the assessment, showing which are modelled using
 2107 residue data from monitoring programmes, which are modelled using data from supervised
 2108 field trials, and which are modelled by extrapolation from other RACs.

2109 *Distributional assumptions*

2110 6. List of all parametric distributions used in the assessment, identifying the data on which
 2111 they are based and how they were estimated. Graphical and statistical assessment of
 2112 appropriateness and goodness of fit for each parametric distribution used.

2113 *Model structure*

2114 7. Description of the model structure, including distributions and equations, sufficient for it
2115 to be reproduced by others, or reference to a published source where this information can
2116 be found.

2117 8. Justification of appropriateness of the model for the purposes of the assessment, or
2118 reference to a published source where its suitability for this purpose is documented (e.g.,
2119 validation studies, see section 11).

2120 9. Size of population modelled and demonstration that this is sufficient to produce stable
2121 outputs including at tail percentiles relevant for decision-making.

2122 10. Number of bootstrap iterations performed, and demonstration that this is sufficient to
2123 produce stable confidence intervals at tail percentiles relevant for decision-making.

2124 *Software*

2125 11. Identity (including version numbers) and description of software used, or reference to
2126 published sources where this information can be found.

2127 12. A list of all software settings used in the assessment, sufficient for it to be reproduced.

2128 *Refined probabilistic assessments*

2129 13. Full description of any refinements of the assessment beyond the basic probabilistic
2130 approaches specified in this guidance document, sufficient for them to be exactly
2131 reproduced by others, together with full scientific and statistical justification of their
2132 appropriateness.

2133 *Outputs*

2134 14. Outputs in the form of Table 5, Figure 6, drill down information (for evaluating the
2135 realism of estimated exposures in the region relevant for decision-making), Table 6
2136 (evaluation of unquantified uncertainties) and a narrative summary conclusion should be
2137 provided for every assessment.

2138 15. Tables and graphs showing contribution of different food items to the total exposure and to
2139 exposures above the relevant toxicological reference value (ARfD or ADI).

2140 16. Comparison of means, medians and quartiles for measured and simulated consumption and
2141 residue levels (as a check on the quality of the simulation).

2142 17. Optionally, other outputs such as those listed in Table 4, if these contribute to
2143 understanding of the assessment and its results.

2144 *Uncertainties*

2145 18. List of uncertainties quantified by bootstrapping, parametric modelling and sensitivity
2146 analysis (including rerunning model with alternative assumptions).

2147 19. Results and interpretation of any sensitivity analyses.

2148 20. An evaluation of unquantified uncertainties in the form of Table 6 should be provided for
2149 every assessment, including assessment of their potential overall impact on the estimated
2150 exposures.

2151 *Justification of exceptions and deviations*

2152 21. Justification for any exceptions and deviations from the recommendations in this guidance
2153 document, and evaluation of their impact on the assessment outcome.

2154 **10. Interpretation of results and options for risk managers**

2155 As stated earlier the aim in presenting the results should be to show what the available data
2156 and modelling can say about the incidence of different levels of dietary exposure relative to
2157 the relevant toxic reference values, together with a clear and balanced indication of the
2158 limitations and uncertainties associated with the results. The aim of the Panel's
2159 recommendations for both the conduct of the assessment and presentation of the results is to
2160 provide a sound basis for consideration by risk managers.

2161 As probabilistic assessments provide new types of information, the following comments may
2162 be helpful support to decision-making:

2163 • Table 5 and Figure 6 are designed to provide the key information relevant for decision-
2164 making: estimates of the frequency of exposures exceeding toxic reference values, and
2165 the quantified and unquantified uncertainty associated with these estimates.

2166 • In generating these outputs, the assessor will examine the realism of the results and
2167 highlight and discuss any that are clearly beyond what is scientifically credible.

2168 • The degree of uncertainty associated with the assessment is indicated by the difference
2169 between the results for optimistic and pessimistic model runs, the confidence intervals
2170 for quantified uncertainties, and the subjective evaluation of unquantified uncertainties
2171 (evaluated in Table 6 and summarised in the right hand columns of Table 5). These
2172 should be considered together when forming overall conclusions. If the unquantified
2173 uncertainties are minor or negative, then it is very likely that the true exposure
2174 distribution lies below the upper confidence interval for the pessimistic run, and probably
2175 above the lower confidence interval for the optimistic run. If the unquantified
2176 uncertainties are large and positive, this indicates the potential for exposures above the
2177 upper confidence interval for the pessimistic run.

2178 • If the estimated exposures extend above the toxic reference values, toxicologists may
2179 assist in considering the toxicological implications of those exposures: what types of
2180 effects may occur, and at what levels of exposure are they to be expected?

2181 • Possible considerations for risk managers include: the estimated degree and frequency of
2182 exceedances of toxic reference values (if any), the nature and frequency of adverse
2183 effects expected (if any), and the degree of uncertainty in these estimates.

2184 • In cases where risk managers wish to reduce exposures, it may be helpful to examine
2185 assessment outputs showing which pesticide/commodity combinations contribute most to
2186 the overall exposures, as this may help in identifying options for exposure reduction.

2187 • In cases where risk managers wish to reduce uncertainty, it may be helpful to examine
2188 outputs showing which pesticide/commodity combinations contribute most to overall
2189 uncertainty, as this may help in identifying priorities for additional data collection.

2190 Good communication between the authors of the probabilistic assessment and the risk
2191 managers is important to facilitate interpretation of the results, especially considering that
2192 these approaches are relatively new and can be complex. In cases where risk managers wish
2193 to consider requesting refined probabilistic assessment and/or new data collection, they may

2194 benefit from advice on the feasibility and potential usefulness of these options for the case in
2195 hand.

2196 **11. Validation**

2197 Before accepting the results of probabilistic modelling, it is essential to consider how well the
2198 modelled dietary exposures predict the actual exposures for the scenario assessed.

2199 In a previous Opinion, the PPR Panel compared acute exposures estimated with the Monte
2200 Carlo Risk Assessment (MCRA) model (version 5.1) with measured one-day exposures from
2201 duplicate diet studies conducted by Boon et al. (2003a) and López et al. (2003). Although
2202 these duplicate diet studies did not provide complete distributions of exposures, the results
2203 showed that the measured exposure at the 99th percentile was a factor of 10 or more below
2204 the modelled exposure based on residue data from monitoring, which in turn was lower than
2205 the modelled exposure using residue data from supervised field trials.

2206 Based on these results the Panel concluded that there is some support for thinking that
2207 probabilistic modelling using concentrations from monitoring programs may tend to over-
2208 estimate true exposures (EFSA, 2007a). However, the Panel noted that the comparisons were
2209 done for infants, and there are factors that might make the difference between measured and
2210 modelled exposure smaller for other age groups. In addition, the comparisons were limited to
2211 6 pesticides in one country and it is uncertain how representative they are of other pesticides
2212 and other countries.

2213 Respondents can only be asked to collect duplicate diets for a couple of days and
2214 consequently for practical reasons duplicate diets are not suitable to validate chronic exposure
2215 assessment. Some chronic exposure models have been compared with biomarkers rather than
2216 direct measurement of consumption or exposure. Biomarkers have been used as a measure of
2217 exposure to pesticides, but include exposure also via other routes than food only, and
2218 therefore these studies may not be suitable for validation.

2219 Slob et al. (2010) have used a computer simulation of actual exposures to evaluate the
2220 performance of exposure models. The simulation model generates distributions of exposure to
2221 a chemical via two foods. The simulated exposure distribution was compared with the
2222 exposure distributions estimated using the BBN or the ISUF model. Given the practical
2223 difficulties of measuring actual exposures empirically, simulation models of this type may
2224 provide useful tools for evaluating and improving the currently available dietary exposure
2225 models.

2226 **12. Software quality requirements**

2227 The PPR Panel does not endorse any particular software for dietary exposure modelling, but
2228 offers the following criteria for consideration by users when deciding which software to use.
2229

- 2230 1. The software should be able to carry out exposure assessments following the approaches
2231 recommended in this document, including the alternative assumptions and modelling
2232 methods used to explore key uncertainties.
- 2233 2. Software should generate (or enable the user to generate) graphical and tabular outputs of
2234 the types discussed in section 6, including in particular outputs in the format of Tables 3
2235 and Figure 3.
- 2236 3. The software should include an openly available reference manual describing the statistical
2237 models used in order to be transparent and in order to enable third parties to reproduce the
2238 results.

2239 4. The software should preferably permit both short-term and long-term exposure
2240 assessment.

2241 5. The software should include methods for quantifying uncertainty.

2242 6. Simulations should be performed within reasonable time.

2243 7. Any data which are incorporated within the software (e.g. food conversion factors) should
2244 be documented and justified.

2245 8. Software should preferably be freely available or at least available without substantial
2246 monetary or non-monetary barriers.

2247 9. The possibility for pesticide industry, regulatory authorities and other stakeholders to use
2248 the same model and data, e.g., by running on the internet or by provision of downloadable
2249 models and datasets.

2250 **CONCLUSIONS**

2251 **Future developments**

2252 The approaches recommended in this document take account of the current state of the art
2253 including practical methods for addressing uncertainties affecting the data and models used in
2254 probabilistic dietary exposure assessment. They include sensitivity analysis to help identify
2255 key areas of uncertainty, so that these can be considered in refined assessment where
2256 appropriate.

2257 The approaches recommended in this document can in principle be applied immediately by
2258 users with relevant data and modelling expertise. It is anticipated that those aspects that are
2259 not currently implemented in ready-to-use software are likely to be added in the near future.

2260 Users would benefit from easier arrangements for access to the necessary data, and especially
2261 so if relevant data from consumption surveys and residues would be made available in a
2262 central database in consistent form. Users would also benefit from organised provision of
2263 training in the principles and conduct of probabilistic assessment.

2264 Further work could be undertaken to further evaluate and refine the approaches for
2265 probabilistic exposure assessment, and for addressing the key uncertainties identified in this
2266 document. Such work could provide approaches for use in refined assessments, and/or for
2267 possible future revisions of this guidance document. Areas that might benefit from further
2268 work include:

- 2269 1. Additional case studies to demonstrate and evaluate the approaches recommended in
2270 this document.
- 2271 2. Improved approaches for modelling variation of residues between lots or samples,
2272 especially in the upper tails.
- 2273 3. Improved understanding of the nature and importance of variation of unit residues
2274 within lots or samples, including the mixing of treated and untreated commodity, and
2275 modelling strategies to take account of this in acute exposure assessments.
- 2276 4. Options for taking account of uncertainty arising from parameters for which only very
2277 few data are available, including processing factors.

2278 5. Further improvement and evaluation of methods for modelling habitual consumption
2279 or exposure for chronic exposure assessments, including methods suitable for
2280 assessments involving multiple food types.

2281 6. Modelling of repeated acute exposures and/or exposures over time periods
2282 intermediate between acute and chronic, if required by risk managers.

2283 7. Validation studies based on either duplicate diet studies, biomarker studies, or
2284 simulation studies.

2285

2286 REFERENCES

2287 Allcroft DJ, Glasbey CA, Paulo MJ, 2007. A latent Gaussian model for multivariate
2288 consumption data. *Food Quality and Preference*, 18: 508-516.

2289 Boon PE, Van der Voet H and Van Klaveren JD, 2003a. Validation of a probabilistic model
2290 of dietary exposure to selected pesticides in Dutch infants. *Food Additives and*
2291 *Contaminants* 20 Suppl 1: 36-49.

2292 Boon PE, Van der Voet H and Van Klaveren JD, 2003b. Dietary exposure to pesticides -
2293 relevant variables and probabilistic models. RIKILT report 2003-008. Wageningen.

2294 Boon PE and Van Klaveren JD, 2003. Guidelines regarding probabilistic exposure assessment
2295 in the safety evaluation of pesticides in the EU Market. Study on Probabilistic Assessment
2296 Consumer Training. Rikilt Institute of Food Safety, B1-3330/SANCO/2002584.

2297 Bosgra S, Van der Voet H, Boon PE, and Slob W, 2009. An integrated probabilistic
2298 framework for cumulative risk assessment of common mechanism chemicals in food: An
2299 example with organophosphorus pesticides. *Regulatory Toxicology and Pharmacology*
2300 (54) 124-133.

2301 Breuninger MI, Schachtel GA, Lührmann PM, Hartmann B, Neuhäuser-Berthold M, 2003.
2302 Complex correlation structure in consumption rates of major food groups: implications for
2303 the assessment of radiation exposure. *Public Health Nutrition*: 6, 87-94.

2304 Codex Committee on Pesticide Residues, 2002. The Probabilistic approach to acute dietary
2305 exposure analysis and its applicability at the international level (Annex). Thirty-fourth
2306 Session, The Hague, 13-18 May 2002.

2307 Crépet A and Tressou J, 2011. Bayesian nonparametric model for clustering individual co-
2308 exposure to pesticides found in the French diet. *Bayesian Analysis*, 6:127-146.

2309 Cullen AC and Frey HC, 1999. The use of probabilistic techniques in exposure assessment: A
2310 handbook for dealing with variability and uncertainty in models and inputs. New York,
2311 NY, Plenum Press.

2312 de Boer, WJ, Van der Voet H, 2011. MCRA 7.1 Reference Manual. Report Dec 2011.
2313 Biometris and RIVM, available at <https://mcra.rivm.nl>

2314 de Boer WJ, Van der Voet H, Bokkers BGH, Bakker MI, Boon PE, 2009. A comparison
2315 of two models for estimating usual intake addressing zero consumptions and non-
2316 normality. *Food Additives and Contaminants*. 26: 1433-1449.

2317 EC (European Commission, Health & Consumer Protection Directorate-General), 2008.
2318 Guidance Document Guidelines on comparability, extrapolation, group tolerances and data
2319 requirements for setting MRLs, SANCO 7525/VI/95 - rev.8, 1 February 2008.

2320 Efron, B and Tibshirani, R, 1993. An Introduction to the Bootstrap. Boca Raton, FL:
2321 Chapman & Hall/CRC.

2322 EFSA (European Food Safety Authority), 2005a. Opinion of the Scientific Panel on Plant
2323 health, Plant protection products and their Residues on a request from Commission related
2324 to the appropriate variability factor(s) to be used for acute dietary exposure assessment of
2325 pesticides in fruit and vegetables. *The EFSA Journal*, 177, 1-61.

2326 EFSA (European Food Safety Authority), 2005b. Opinion of the Scientific Committee on a
2327 request from EFSA related to A Harmonised Approach for Risk Assessment of Substances
2328 Which are both Genotoxic and Carcinogenic. *The EFSA Journal*, 282, 1-31.

2329 EFSA (European Food Safety Authority), 2006a. Opinion of the Scientific Panel on Plant
2330 health, Plant protection products and their Residues on a request from the Commission
2331 related to the revision of Annexes II and III to Council Directive 91/414/EEC concerning

2332 the placing of plant protection products on the market – Residues. The EFSA Journal, 364,
2333 1-27.

2334 EFSA (European Food Safety Authority), 2006b. Guidance of the Scientific Committee on a
2335 request from EFSA related to Uncertainties in Dietary Exposure Assessment. The EFSA
2336 Journal, 438, 1-54.

2337 EFSA (European Food Safety Authority), 2007a. Opinion of the Scientific Panel on Plant
2338 protection products and their Residues on a request from the Commission on acute dietary
2339 intake assessment of pesticide residues in fruit and vegetables. The EFSA Journal, 538, 1-
2340 88.

2341 EFSA (European Food Safety Authority), 2007b. Reasoned opinion on the potential acute and
2342 chronic risk to consumers' health arising from temporary MRLs.

2343 EFSA (European Food Safety Authority), 2008a. Opinion of the Scientific Panel on Plant
2344 Protection products and their Residues to evaluate the suitability of existing methodologies
2345 and, if appropriate, the identification of new approaches to assess cumulative and
2346 synergistic risks from pesticides to human health with a view to set MRLs for those
2347 pesticides in the frame of Regulation (EC) 396/2005. The EFSA Journal, 704, 1-84.

2348 EFSA (European Food Safety Authority), 2008b. Mandate of the PPR Panel to develop an
2349 opinion on approaches to evaluating the toxicological relevance of metabolites and
2350 degradates of pesticide active substances in dietary risk assessment.

2351 EFSA (European Food Safety Authority), 2009a. Scientific Opinion on risk assessment for a
2352 selected group of pesticides from the triazole group to test possible methodologies to
2353 assess cumulative effects from exposure throughout food from these pesticides on human
2354 health on request of EFSA. EFSA Journal, 7 (9): 1167 (104pp.).

2355 EFSA (European Food Safety Authority), 2009b. Mandate of the PPR Panel to develop an
2356 opinion on identification of pesticides to be included in cumulative assessment groups on
2357 the basis of their toxicological profile. EFSA Question Number [EFSA-Q-2009-00860](#).

2358 EFSA (European Food Safety Authority), 2009c. Use of the benchmark dose approach in risk
2359 assessment. Guidance of the Scientific Committee. The EFSA Journal, 1150, 1-72.

2360 EFSA (European Food Safety Authority), 2010a. 2008 Annual Report on Pesticide Residues
2361 according to Article 32 of Regulation (EC) No 396/2005. EFSA Journal 2010; 8(7):1646
2362 [442 pp.].

2363 EFSA (European Food Safety Authority), 2010b. Management of left-censored data in dietary
2364 exposure assessment of chemical substances. EFSA Journal 2010; 8(3):1557.

2365 FOAM 2009 (second edition) Food and Agriculture Organization of the United Nations,
2366 Submission and evaluation of pesticide residue data for the estimation of maximum residue
2367 levels in food and feed.

2368 Hill A R, 2000. Residue variability and sampling – practical problems and consequences for
2369 residues monitoring. Food Additives and Contaminants, 17, 539-546.

2370 Hill AR, Reynolds SL, 2002. Unit-to-unit variability of pesticide residues in fruit and
2371 vegetables. Food Addit Contam. 19:733-47.

2372 IPCS/WHO (International Program of Chemical Safety/World Health Organization), 2008.
2373 Uncertainty and data quality in exposure assessment. Harmonisation Project Document
2374 No. 6. WHO, Geneva.

2375 ISEA (International Society for Exposure Analysis), 2005. Zartarian V, Bahadorf T and
2376 McKone T, 2005. Adoption of an Official ISEA Glossary. J. Expos. Anal. & Environ.
2377 Epid. 15 (1-5).

2378 IUPAC (International Union of Pure and Applied Chemistry), 2006. Stephenson, Gerald R,
 2379 Ferris I G, Holland P T and Nordberg M, 2006. Glossary of terms relating to pesticides,
 2380 (IUPAC Recommendations, 2006), Pure Appl. Chem., Vol. 78, No. 11, pp. 2075–2154.

2381 JMPR, 2003. Pesticide residues in food 2003. Joint FAO/WHO Meeting on Pesticide
 2382 Residues, <http://www.fao.org/ag/AGPP/Pesticid/JMPR/Download/2003.pdf>

2383 Kennedy MC, 2010. Bayesian modelling of long-term dietary intakes from multiple sources.
 2384 Food and Chemical Toxicology. 48, 250–263.

2385 Kennedy MC and Hart A, 2009. Bayesian modelling of measurement errors and pesticide
 2386 concentrations in dietary risk assessments. Risk Analysis, 29, 1427 – 1442.

2387 Kipnis V, Midthune D, Buckman DW, Dodd KW, Guenther PM, Krebs-Smith SM, Subar
 2388 AF, Tooze JA, Carroll RJ, Freedman LS (2009). Modeling data with excess zeros and
 2389 measurement error: Application to evaluating relationships between episodically
 2390 consumed foods and health outcomes. Biometrics., 65: 1003-1010.

2391 López A, Rueda C, Armentia A, Rodriguez M, Cuervo and Ocio L A, 2003. Validation and
 2392 sensitivity analysis of a probabilistic model for dietary intake assessment to pesticide
 2393 residues with a Basque Country duplicate diet study. Food Additives and Contaminants 20
 2394 Suppl 1: 87-101.

2395 Moser VC, 1995. Comparisons of the acute effects of cholinesterase inhibitors using a
 2396 neurobehavioral screening battery in rats. Neurotoxicology and Teratology, 17, 617-625.

2397 Nusser SM, Carriquiry AL, Dodd KW, Fuller WA (1996). A semiparametric
 2398 transformation approach to estimating usual daily intake distributions. J Am Stat Ass.
 2399 91: 1440-1449.

2400 Nusser SM, Fuller WA, Guenther PM, 1997. Estimating usual dietary intake distributions:
 2401 adjusting for measurement error and nonnormality in 24-hour food intake data. In:
 2402 Lyberg L, Biemer P, Collins M, DeLeeuw E, Dippo C, Schwartz N, Trewin D
 2403 (editors). Survey Measurement and Process Quality. New York (NY), Wiley. p. 689-
 2404 709.

2405 OECD (Organization for Economic Co-operation and Development), 2009. Guidance
 2406 document on definition of residue (as revised in 2009). OECD Series on Pesticides, No 31:
 2407 Series on testing and assessment No 64.

2408 OECD (Organization for Economic Co-operation and Development), 2011. OECD MRL
 2409 Calculator: Statistical White Paper. Series on Pesticides, No. 57. ENV/JM/MONO(2011)3.

2410 O'Hagan A, Buck, CE, Daneshkhah A, Eiser JE, Garthwaite PH, Jenkinson DJ, Oakley JE
 2411 and Rakow T, 2006. *Uncertain Judgements: Eliciting Expert Probabilities*. John Wiley
 2412 and Sons.

2413 Ott WR, 1995. Environmental Statistics and Data Analysis. Lewis Publishers.

2414 Paulo MJ, Van der Voet H, Wood JC, Marion GR, Van Klaveren JD, 2006. Analysis of
 2415 multivariate extreme intakes of food chemicals. Food and Chemical Toxicology, 44: 994-
 2416 1005

2417 Pieters MN, Ossendorp BC, Bakker M I and Slob W, 2005. Probabilistic modelling of dietary
 2418 intake of substances. The risk management question governs the method. RIVM report
 2419 320011001/2005.

2420 Renwick AG, Barlow SM, Hertz-Pannier I, Boobis AR, Dybing E, Edler L, Eisenbrand G,
 2421 Grieg JB, Kleiner J, Lambe J, Muller DJG, Smith MR, Tritscher A, Tuijtelaars S, Van den
 2422 Brandt PA, Walker R, Kroes R, Risk characterization of chemicals in food and diet. Food
 2423 Chem. Toxicol. 2003;41:1211-1271

2424 SANCO, 2009. Method validation and quality control procedures for pesticide residues
2425 analysis in food and feed. Document No. SANCO/10684/2009.

2426 Slob W, 1993. Modeling long-term exposure of the whole population to chemicals in
2427 food. Risk Anal. 13: 525-530.

2428 Slob W, 2006. Probabilistic dietary exposure assessment taking into account variability in
2429 both amount and frequency of consumption. Food Chem Toxicol. 44: 933-951.
2430 Corrigendum on in 44:1952.

2431 Slob W, de Boer WJ and Van der Voet H, 2010. Can current dietary exposure models handle
2432 aggregated intake from different foods? A simulation study for the case of two foods. Food
2433 Chem. Toxicology,48, 178-186.

2434 Tooze JA, Midthune D, Dodd KW, Krebs-Smith SM, Subar AF, Carroll RJ and Kipnis V,
2435 2006. A New Statistical Method for Estimating the Distribution of Usual Intake of
2436 Episodically Consumed Foods, Journal of the American Dietetics Association, 106, 1575-
2437 87.

2438 U.S. EPA (United States Environmental Protection Agency), 1996, online. Residue Chemistry
2439 Test Guidelines: OPPTS 860.1520 Processed Food/Feed. EPA 712-C-96-184. August.
2440 Available at <http://www.deepwater.org/tech-users/860-1520.pdf>.

2441 U.S. EPA (United States Environmental Protection Agency), 1997, online. Risk Assessment
2442 Forum. Guiding Principles for Monte Carlo Analysis. EPA/630/R-97/001. Available at
2443 <http://www.epa.gov/raf/publications/pdfs/montecar.pdf>

2444 Van der Voet H, Boon PE and van Klaveren JD, 2003. Validation of Monte Carlo models for
2445 estimating pesticide intake of Dutch infants. Report 2003.002, RIKILT. Available at
2446 <http://www.rikilt.wur.nl/NL/publicaties/Rapporten> and
2447 <http://montecarlo.tchpc.tcd.ie/reports/pdf/RIKILT%20WP4%20report.pdf>. Appendix 3.
2448 Unit variability in probabilistic models for pesticide exposure assessment

2449 Van der Voet H, Van der Heijden GWAM, Bos PMJ, Bosgra S, Boon PE, Muri SD and
2450 Brüschiweiler BJ, 2009. A model for probabilistic health impact assessment of exposure to
2451 food chemicals. Food and Chemical Toxicology, 47, 2926-2940.

2452 Van der Voet H, and Slob W, 2007. Integration of probabilistic exposure assessment and
2453 probabilistic hazard characterization. Risk Anal. 27: 351-371.

2454 van Klaveren JD and Boon P, 2009. Probabilistic risk assessment of dietary exposure to single
2455 and multiple pesticide residues or contaminants: Summary of the work performed within
2456 SAFE FOOD project. Food and Chemical Toxicology, 47, 2879-2882

2457 van Klaveren JD, Van Donkersgoed G, Van der Voet H, Stephenson C and Boon PE, 2010.
2458 Scientific / Technical Report submitted to EFSA. Cumulative Exposure Assessment of
2459 Triazole Pesticides. RIKILT – Institute of Food Safety, Wageningen University and
2460 Research Centre.

2461 Vose D, 2008. Risk Analysis: A Quantitative Guide. Third edition. John Wiley and Sons.

2462 WHO (World Health Organization), 1997a. Guidelines for predicting dietary intake of
2463 pesticide residues (revised).

2464 WHO (World Health Organisation), 1997b. Food consumption and exposure assessment of
2465 chemicals

2466

2467 **APPENDIX**

 2468 **WORKED EXAMPLE OF APPROACH FOR REPLACEMENT OF MISSING RESIDUE VALUES FOR**
 2469 **CUMULATIVE EXPOSURE ASSESSMENT**

2470 This worked example shows how to replace missing residue values for use in the pessimistic
 2471 cumulative exposure, using the approach described in Section 6.2. The example shows a case
 2472 where the RPF method is used. If this is not possible e.g. because of lack of RPF's it will also
 2473 be possible to use the HI or aHI (EFSA (2008a). In these cases the RPF in the tables are
 2474 substituted with ARfDs and the CR is calculated by dividing the concentrations with the
 2475 ARfD.

2476

2477 The first table below shows hypothetical results of analysis of four different samples (S1, S2,
 2478 S3 and S4) of a commodity for four different pesticides (P1, P2, P3 and P4). Each sample was
 2479 analysed for only some of the pesticides. The results are given in mg/kg.

2480

	S1	S2	S3	S4	RPF
P1	0.1	0.5	0.35	0.9	1
P2	n.a	n.a	0.6	0.2	3
P3	<LOR	0.8	0.65	n.a	0.5
P4	0.7	n.a	n.a	n.a	2

2481 n.a = not analysed

2482 <LOR: Below reporting limit

2483

2484 *Step 1. Set all values below the LOR to the LOR.*

2485 There is one value < LOR. The LOR is 0.05 mg/kg for P3, so this value is assigned for P3 in
 2486 S1.

2487

	S1	Sample 2	Sample 3	Sample 4	RPF
P1	0.1	0.5	0.35	0.9	1
P2	n.a	n.a	0.6	0.2	3
P3	0.05	0.8	0.65	n.a	0.5
P4	0.7	n.a	n.a	n.a	2

2488

2489

2490 *Step 2.*

- 2491 *Count the total number of missing values for each substance.*
- 2492 *Apply the methods recommended in section 4.2 for pessimistic model runs in single substance assessments to model the distribution of values of each substance for the commodity in question.*
- 2493 *Use the distribution for each substance to generate as many imputed values as there are missing values for that substance.*
- 2494 *Order the generated values for each substance from high to low.*

2495

2496 The imputed values generated from the distributions are shown in the table below (the
 2497 working for this is not presented here). Since P2 has two missing values, two values are
 2498 generated for this pesticide. The procedure is repeated for P3 (1 missing value) and P4 (3
 2499 missing values).

2500

	S1	S2	S3	S4	RPF	Generated values
P1	0.1	0.5	0.35	0.9	1	None
P2	n.a	n.a	0.6	0.2	3	0.4, 0.2

P3	0.05	0.8	0.7	n.a	0.5	0.45
P4	0.7	n.a	n.a	n.a	2	0.7, 0.5, 0.3

2504

2505

2506 *Step 3. Order all the samples in the data matrix for this commodity from high to low,*
 2507 *according to their RP based on the measured data (including values set to the LOR in step 1*
 2508 *above).*

2509

2510 Cumulative potency (CR) = RPF1xC1 + RPF2xC2 + RPF3xC3 etc.

2511

	S1	S2	S3	S4	RPF	Generated values
P1	0.1	0.5	0.35	0.9	1	None
P2	n.a	n.a	0.6	0.2	3	0.4, 0.2
P3	0.05	0.8	0.7	n.a	0.5	0.45
P4	0.4	n.a	n.a	n.a	2	0.7, 0.5, 0.3
CR	0.925	0.9	2.5	1.5		
Order of CR	3	4	1	2		

2512

2513 RP for Sample1 = 1x0.1 + 0.5x0.05 + 2x0.4 = 0.1+0.025+0.8=0.925

2514 RP for Sample2 = 1x0.5 + 0.5x0.8 = 0.9

2515 RP for Sample3 = 1x0.35 + 3x0.6 + 0.5x0.7= 2.5

2516 RP for Sample4 = 1x0.9 + 3x0.2 = 1.5

2517

2518 *Step 4. Consider the sample with the highest RP. Fill any missing values with the highest*
 2519 *imputed values for the relevant substances.*

2520

2521 S3 has the highest RP and one value is missing, for P4. Replace this with the highest value
 2522 measured from distribution for P4, i.e. 0.7 mg/kg.

2523

	S1	S2	S3	S4	RPF	Generated values
P1	0.1	0.5	0.35	0.9	1	None
P2	n.a	n.a	0.6	0.2	3	0.4, 0.2
P3	0.05	0.8	0.7	n.a	0.5	0.45
P4	0.4	n.a	0.7	n.a	2	(0.7), 0.5, 0.3
CR	0.925	0.9	2.5	1.5		
Order of CR	3	4	1	2		

2524

2525 *Step 5. Proceed to the next sample. Fill any missing values with the highest remaining*
 2526 *imputed values.*

2527 S4 has the second highest RP with missing values for P3 and P4.

2528

	S1	S2	S3	S4	RPF	Generated values
P1	0.1	0.5	0.35	0.9	1	None
P2	n.a	n.a	0.6	0.2	3	0.4, 0.2
P3	0.05	0.8	0.7	0.45	0.5	(0.45)
P4	0.4	n.a	0.7	0.5	2	(0.7), (0.5), 0.3
CR	0.925	0.9	2.5	1.5		
Order of CR	3	4	1	2		

2529

2530 *Step 6.*

2531 a) Repeat step 5 until you reach the end of the samples for the commodity in question.

2532 b) Then recalculate the RP for each sample including the measured and imputed values

2533 c) Use the CPs in probabilistic acute exposure modelling as if they were sample/lot
 2534 concentrations for a single substance.
 2535

	S1	S2	S3	S4	RPF	Generated values
P1	0.1	0.5	0.35	0.9	1	<i>None</i>
P2	0.4	0.2	0.6	0.2	3	<i>0.4, 0.2 – all used</i>
P3	0.05	0.8	0.7	0.45	0.5	<i>0.45 – used</i>
P4	0.4	0.3	0.7	0.5	2	<i>0.7, 0.5, 0.3 – all used</i>
CR	0.925	0.9	1.6	1.5		
Order of CR	3	4	1	2		
CR recalculated	2.1	2.1	3.9	2.7		

2536 RP for Sample1 = 1x0.1+**3x0.4+0.5x0.05**+2x0.4 = 0.925 + 1.2 = 2.125
 2537 RP for Sample2 = 1x0.1+**3x0.2+0.5x0.8+2x0.3** = 0.9 + 0.6 + 0.6 = 2.1
 2538 RP for Sample3 = 1x0.35+ 3x0.6+0.5x0.7+**2x0.7**= 3.9
 2539 RP for Sample4 = 1x0.9+3x0.2+**0.5x0.45+2x0.5** = 1.5 + 0.225 + 1 = 2.725
 2540
 2541
 2542 Step 7. Repeat steps 1-6 for other commodities relevant to the assessment.

2543 **GLOSSARY AND ABBREVIATIONS**

2544 **Acute exposure**

2545 A contact between an agent and a target occurring over a short time, generally less than a day.
2546 (Other terms, such as “short-term exposure” and “single dose” are also used (ISEA, 2005)

2547 **Acute reference dose (ARfD)**

2548 Estimate of the amount of a substance in food and/or drinking water, normally expressed on a
2549 body weight basis, that can be ingested in a period of 24 h or less without appreciable health
2550 risk to the consumer on the basis of all known facts at the time of the evaluation (JMPR).

2551 **Acute toxicity**

2552 Adverse effects of finite duration occurring within a short time (up to 14 d) after
2553 administration of a single dose (or exposure to a given concentration) of a test substance or
2554 after multiple doses (exposures), usually within 24 h of a starting point (which may be
2555 exposure to the toxicant, or loss of reserve capacity, or development change, etc. (IUPAC,
2556 2006)

2557 **Bayesian**

2558 The Bayesian or subjective view is that the probability of an event is the degree of belief that
2559 a person has, given some state of knowledge, that the event will occur. In the classical or
2560 frequentist view, the probability of an event is the frequency with which an event occurs
2561 given a long sequence of identical and independent trials. In exposure assessment situations,
2562 directly representative and complete data sets are rarely available; inferences in these
2563 situations are inherently subjective. The decision as to the appropriateness of either approach
2564 (Bayesian or Classical) is based on the available data and the extent of subjectivity deemed
2565 appropriate (U.S EPA, 1997)

2566 **Benchmark dose**

2567 **BMD**

2568 A dose or concentration that produces a predetermined change in response rate of an adverse
2569 effect (called the benchmark response or BMR) compared to background (EFSA, 2008a).

2570 **Bimodal distribution**

2571 A continuous probability distribution with two different modes. These appear as distinct
2572 peaks (local maxima) in the probability density function.

2573 **Bootstrapping**

2574 Random resampling technique. (Efron 1993, U.S EPA 1997)

2575 **Censored data**

2576 See Left-censored data.

2577 **Chronic exposure**

2578 A continuous or intermittent long-term contact between an agent and a target. (Other terms,
2579 such as “long-term exposure,” are also used.) (ISEA, 2005)

2580 **Chronic effect**

2581 Consequence that develops slowly and/or has a long lasting course: may be applied to an
2582 effect that develops rapidly and is long-lasting (IUPAC, 2006).

2583 **Chronic toxicity**

2584 1. Adverse effects following chronic exposure. 2. Effects that persist over a long period of
2585 time whether or not they occur immediately upon exposure or are delayed (IUPAC, 2006).

2586 **Conversion factor:**

2587 **Food conversion factor:** Multiplicative factor used to convert food products as eaten and
2588 recorded in dietary surveys to the corresponding raw agricultural commodities, or these
2589 commodities in the forms for which monitoring data are available. **Residue conversion**
2590 **factor:** multiplicative factor applied to monitoring data in order to take into account the
2591 exposure to metabolites that are not measured during the monitoring; used when the residue
2592 definition for monitoring and risk assessment differ, but address the same toxicological end-
2593 point.

2594 **Composite sample**

2595 A sample formed by combining multiple units of the same commodity for analysis. Formally
2596 referred to as “laboratory sample” in Directive 96-23 on Official Control of Pesticide
2597 Residues (defined there as “The sample sent to, or received by, the laboratory. A
2598 representative quantity of material removed from the bulk.”)

2599 **Consumption**

2600 Food consumption data reflects what either individuals or groups consume in terms of solid
2601 foods, beverages, including drinking water, and supplements. Food consumption can be
2602 estimated through food consumption surveys at an individual (Individual dietary surveys) or
2603 household level (Household budget surveys) or approximated through food supply data
2604 derived from food balance sheets.

2605 **Cumulative Assessment Group (CAG)**

2606 A group of chemicals that could plausibly act by a common mode of action, not all of which
2607 will necessarily do so. Membership of a CAG can usually be refined (reduced) by application
2608 of successively higher tiers of assessment (EFSA, 2008a).

2609 **Cumulative exposure assessment**

2610 An exposure assessment which considers potential human health risks from all pathways of
2611 dietary and nondietary exposures to more than one pesticide acting through a common
2612 mechanism of toxicity. When limited to multichemical assessment through one pathway (e.g.,
2613 dietary), this may be called a cumulative dietary exposure assessment.

2614 **Exposure**

2615 Contact between an agent and a target. Contact takes place at an exposure surface over an
2616 exposure period. (ISEA, 2005)

2617 **Exposure Assessment**

2618 The qualitative and /or quantitative evaluation of the likely intake of biological, chemical or
2619 physical agents via food as well as exposure from other sources if relevant (WHO, 1995)

2620 **Empirical modelling**

2621 Modelling based on empirical observations rather than on mathematically-described
2622 relationships of the system modeled.

2623 **Focal commodity**

2624 A commodity for which an MRL is to be set or for which a high residue event has been
2625 monitored, and which is therefore the focus of an exposure assessment.

2626 **GAP, Good Agricultural Practice**

2627 GAP means the nationally recommended, authorised or registered safe use of plant protection
2628 products under actual conditions at any stage of production, being storage, transport,
2629 distribution and processing of food and feed. It also implies the application, in conformity
2630 with Directive 91/414/EEC, of the principles of integrated pest control in a given climate
2631 zone, as well as using the minimum quantity of pesticides and setting MRLs/temporary MRLs
2632 at the lowest level which allows the desired effect to be obtained (MRL Regulation).

2633 **Highest residue (HR)**

2634 The HR is the highest residue level (expressed as mg/kg) in a composite sample of the edible
2635 portion of a food commodity when a pesticide has been used according to maximum GAP
2636 conditions. The HR is estimated as the highest of the residue values (one from each trial) from
2637 supervised trials conducted according to maximum GAP conditions, and includes residue
2638 components defined by the JMPR for estimation of dietary intake.

2639 **Import tolerance**

2640 Defined by Regulation 396/2005 as an MRL set for imported products to meet the needs of
2641 international trade where:
2642 — the use of the active substance in a plant protection product on a given product is not
2643 authorised in the Community for reasons other than public health reasons for the specific
2644 product and specific use; or
2645 — a different level is appropriate because the existing Community MRL was set for reasons
2646 other than public health reasons for the specific product and specific use.

2647 **Index compound (IC)**

2648 Under the RPF approach, one member of the CAG is selected as the index compound which
2649 is used as the point of reference for standardizing the potency of other members of the CAG.

2650 **Observed Individual Means approach (OIM)**

2651 An approach for estimating longer term exposures by taking each individual's observed mean
2652 consumption over the duration of a dietary survey.

2653 **Left-censored data**

2654 Low measured levels of pesticide residues for which an accurate value is not available,
2655 because these levels have been reported as being below a Limit of Reporting (LOR).

2656 **Limit of reporting (LOR)**

2657 A lower limit of residue concentration below which measured levels are not reported.

2658 **Maximum residue limit (MRL)**

2659 Maximum concentration of a residue that is legally permitted or recognized as acceptable in,
2660 or on, a food, agricultural commodity, or animal feedstuff as set by Codex or a national
2661 regulatory authority (IUPAC, 2006).

2662 **Monte Carlo analysis**

2663 Monte Carlo analysis is a computer-based method of analysis that uses statistical sampling
2664 techniques in obtaining a probabilistic approximation to the solution of a mathematical
2665 equation or model. (U.S EPA, 1997)

2666 **Margin of exposure (MOE)**

2667 Ratio of a toxicological reference dose to estimated exposure.

2668 **Monitoring data**

2669 In this document, 'monitoring data' refers to data on pesticide residues in food occurring as a
2670 result of commercial use, obtained by analysis of samples taken at relevant points in the food
2671 chain from producer to marketplace. In other contexts, residues may be monitored in other
2672 media, e.g. soil, water, air, etc..

2673 **Pesticide residue**

2674 Substance which remains in or on food commodity, soil, air, or water following use of a
2675 pesticide. For regulatory purposes, it includes the parent compound and any specified

2676 derivates such as degradation and conversion products, metabolites, and impurities considered
2677 to be of toxicological significance (44, FAO) (IUPAC, 2006).

2678 **Percent crop treated**

2679 Percentage of a raw agricultural commodity, in the marketplace that is relevant to an exposure
2680 assessment, that has been treated with the pesticide under assessment.

2681 **Processing factor**

2682 Residue level of a specific pesticide in the processed products divided by the residues level in
2683 the starting commodity, usually raw agricultural commodity (RAC). Processing factor =
2684 residue level (mg kg^{-1}) in processed product/residue level (mg kg^{-1}) in RAC (16)

2685 *Note: Alternative terms sometimes used for processing factor are “concentration factor”
2686 when residue levels increase and “reduction factor” (inverse of processing factor) when
2687 residue levels decrease (IUPAC, 2006).*

2688 **Processed food**

2689 Product resulting from the application of physical, chemical, or biological processes, or
2690 combinations of these (e.g., canning), to a primary food commodity, and intended for sale to
2691 the consumer, for use as an ingredient in the manufacture of a food product or for further
2692 processing. (IUPAC, 2006).

2693 **Random Variable**

2694 A random variable is a quantity which can take on any number of values but whose exact
2695 value cannot be known before a direct observation is made. For example, the outcome of the
2696 toss 8 of a pair of dice is a random variable, as is the height or weight of a person selected at
2697 random from the New York City phone book. (U.S EPA, 1997).

2698 **Raw agricultural commodity (RAC)**

2699 Part of a crop used as a food or feed commodity directly from the harvested crop without
2700 processing (IUPAC, 2006).

2701 **Relative Potency Factor (RPF)**

2702 The ratio of the toxic potency (usually expressed as the RfP) of a given chemical to that of an
2703 index chemical in the Cumulative Assessment Group (CAG). Relative potency factors are
2704 used to convert exposures of all chemicals in the CAG into their exposure equivalents of the
2705 index chemical (EFSA, 2008a).

2706 **Resample**

2707 Drawing repeated samples; in the context of this document, drawing samples of the same size
2708 randomly with replacement from a single original dataset.

2709 **Uncertainty**

2710 Uncertainty refers to lack of knowledge about specific factors, parameters, or models. For
2711 example, we may be uncertain about the mean concentration of a specific pollutant at a
2712 contaminated site or we may be uncertain about a specific measure of uptake (e.g., 95th
2713 percentile fish consumption rate among all adult males in the United States). Uncertainty
2714 includes parameter uncertainty (measurement errors, sampling errors, systematic errors),
2715 model uncertainty (uncertainty due to necessary simplification of real-world processes, mis-
2716 specification of the model structure, model misuse, use of inappropriate surrogate variables),
2717 and scenario uncertainty (descriptive errors, aggregation errors, errors in professional
2718 judgment, incomplete analysis) (U.S EPA, 1997).

2719 **Variability**

2720 Variability refers to observed differences attributable to true heterogeneity or diversity in a
2721 population or exposure parameter. Sources of variability are the result of natural random

2722 processes and stem from environmental, lifestyle, and genetic differences among humans.
2723 Examples include human physiological variation (e.g., natural variation in bodyweight,
2724 height, breathing rates, drinking water intake rates), weather variability, variation in soil types
2725 and differences in contaminant concentrations in the environment. Variability is usually not
2726 reducible by further measurement or study (but can be better characterized)(U.S EPA, 1997).

2727 **Variability factor**

2728 The ratio between the 97.5th percentile and mean of a distribution of unit residues.

2729 **Supervised trial**

2730 Scientific studies for estimating maximum residue limits in which pesticides are applied to
2731 crops or animals according to specified conditions intended to reflect commercial practice
2732 after which harvested crops or tissues of slaughtered animals are analyzed for pesticide
2733 residues. Usually specified conditions are those which approximate existing or proposed good
2734 agricultural practice (EFSA 2008a, IUPAC 2006).

2735 **Supervised trials median residue (STMR)**

2736 The median of the residue value (one from each trial) from supervised trials conducted
2737 according to maximum good agricultural practice. (IUPAC, 2006).

2738 **Unit weight**

2739 In the EU, to quantify the potential acute exposure to pesticide residues typical unit weights of
2740 the single food commodities are necessary for those commodities weighting more than 25 g
2741 but lower than 250 g. According to WHO, the unit weight refers to weight of the edible
2742 portion of a single unit commodity expressed as mean or median value (EFSA, 2007).