

XII International Congress of Toxicology Barcelona 19-23 July 2010

Pesticide risk assessment at the European Food Safety Authority
New developments

Luc Mohimont, EFSA PPR Unit

Evaluation of the toxicological relevance of pesticide metabolites and degradates in the absence of animal testing data

Structure of the presentation

- Regulatory framework
- Introductive consideration
- PPR Panel activities and research funded by EFSA

Regulatory framework

EU Regulation (Dir. 91/414/EEC & Reg. (EC) 1107/2009) concerning the placing on the market of plant protection products sets out uniform principles for the evaluation and decision-making regarding plant protection products.

- ➤ The likely risk to human, animals and the environment need to be addressed.
- Assessment of the risk for the consumer is a major part of this process.
- This requires the identification of the <u>relevant</u> metabolites and degradates of the active substances present in food commodities and an assessment of the associated risk.

Sources of metabolites and degradates.

- Plant metabolism
- Animal metabolism
- Microbial activity in soil
- Abiotic processes, including processing of food commodities

Investigation through a range of regulatory studies

Pesticide use results in the dietary exposure to a wide range of different chemicals.

Toxicological data

- Active substances: full toxicological dossier, allowing establishment of toxicological reference values
- Metabolites and degradates: very limited in the majority of cases
- Need consider a priori that not only the toxicological potency but also the nature of toxicological effects may differ
- Need to minimise the use of animals in toxicological testing
- Potential difficulties in synthesising technical material
- Cost
- Overall limitation in research capacities

OECD guidance document on the Definition of Residue (Series on Pesticides, No. 31; Series on Testing and Assessment, No. 63)

For each pesticide, 2 residue definitions

- > Residue definition for monitoring, indicator compound concept
- Residue definition for risk assessment, reflecting the actual toxicological burden
- Gives general principles for the identification of metabolites relevant for risk assessment combining toxicological and exposure considerations
- Implementation difficult, inconsistencies when comparing evaluations of different advisory bodies.
- Which tools available for this?

PPR Panel mandate

EFSA asked the PPR Panel in October 2008 to address the toxicological relevance of metabolites and degradates of active substances of plant protection products

- Including a review and evaluation of alternative toxicological tools
- With a view to develop in a later step a guidance document based on an appropriate combination of the relevant tools.

PPR Panel program of work

- 1. Outsourcing of exploratory activities 2009/2010
- Applicability of the Thresholds of Toxicological Concern concepts.
- Applicability of computational methods (Q)SAR Analysis and expert systems
- Impact of metabolic processes on the toxicological properties of active substances
- 2. Opinion 2010/2011: Scientific opinion on approaches to evaluating the toxicological relevance of metabolites and degradates of pesticide active substances in dietary risk assessment
- 3. Guidance document on the establishment of the residue definition for risk assessment in food commodities – 2011/2012

- Survey amongst regulatory and advisory bodies: TTC is not widely used but there is no *a priori* reason why it could not be used.
- ➤ Selection of the scheme of Kroes (2004) as a sound basis for pesticide metabolite assessment.
- 1st Step (0.15 μg/person/day)*: Compounds with genotoxicity alerts or data.
- 2th Step (18 μg/person/day): OP structure
- 3th Step (90 μg/person/day): Substances meeting the criteria for Cramer Class III classification.
- 4th Step (540 µg/person/day): Substances meeting the criteria for Cramer Class II classification.
- 5th Step (1800 µg/person/day): Substances meeting the criteria for Cramer Class I classification.
 - * After exclusion of the COC compounds

- ➤ Validation of the scheme of Kroes against the ADI of 100 pesticide active substances, wide range of endpoints and chemical classes. Slight changes appropriate for pesticide.
- 1st Step (0.15 μg/person/day)* : Compounds with genotoxicity alert or data.
- 2th Step (18 µg/person/day): Extension of OP structure to a broader neurotoxicity category.
- 3th Step (90 µg/person/day): Substances meeting the criteria for Cramer Class III classification.
- 4th Step (540 μg/person/day): Substances meeting the criteria for Cramer Class II classification.
- 5th Step (1800 µg/person/day): Substances meeting the criteria for Cramer Class I classification.
 - * After exclusion of the COC compounds
- Adequate protection following adjustment of the neurotoxicity threshold.

- Case studies performed for 15 pesticides
- The TTC scheme was able to derive from the 79 metabolites identified a reduced set of 16 compounds that required further consideration (63 metabolites were below their respective TTC)

- > Issues:
- (Q)SAR predictions did not correlate well with the toxicology profile of pesticide active substances
- Uncertainties in exposure predictions
- How to deal with acute exposure in the TTC concept?

- Survey on how QSAR analysis is used by national regulatory bodies and international advisory organisations
- 38 respondents including government authorities and industry
- Majority of respondents do not currently apply QSAR analysis on a routine basis.
- Lack of in-house expertise
- In case of use, mainly for priority setting and filling data gaps in urgent situations
- Respondents generally support wider use and request further guidance and training

- Extensive review of QSAR potentially useful in dietary risk assessment, focussing on toxicological end points and ADME properties.
- Availability of models variable (many for genotoxicity and carcinogenicity very few for organ toxicity).
- Each model described for their descriptors, applicability domain, availability, implementation in software tools, associated documentation regarding the model development and validation process.

- Development of a framework for assessing the usefulness of QSAR models as support to dietary risk assessment in regulatory context summarized in a checklist of questions:
- Clarity of the endpoint to be predicted
- Relevance of the endpoint to the regulatory purpose
- Availability of the training set for statistically based models
- Documentation on the method supporting the model development
- Performance of the model
- Reliability of predictions for analogues
- Information on the applicability domain (physicochemical, structural and mechanistic data)

- Research investigations on the potential use of (Q)SARs as filter to efficiently identify genotoxic and carcinogenic compounds in the TTC scheme
- Several data sets were used: pesticides, DSSTox Carcinogenic Potency Database, dataset of classified mutagen according to the EU classification process.
- Interesting results were obtained with combination of models to identify classified mutagens with good sensitivity and possible optimisation of the predictions.

- General recommendations:
- Need to investigate applicability (predictivity & scope) of different software tools on an endpoint by endpoint basis
- Need to explore the advantages of combining multiple tools
- Need of policy decisions on how much information is needed to use the models in regulatory decisions
- Need of criteria regarding model acceptability (e.g., minimum sensitivity....)
- Need of guidance on how to interpret the outputs of models
- Need of training.

Outcome of the project on the impact of metabolic processes on the toxicological properties of active substances (AGES – Austrian Agency for Health and Food Safety).

- Exhaustive review of metabolic transformations for 11 classes of pesticides including 56 active substances.
- About 140 specific chemical changes identified but no trend observed in terms of 'toxification' or 'detoxification'
- Low amount of data for individual changes
- Lack of toxicological data for metabolites
- No robust information found in public literature.

Outcome of the project on the impact of metabolic processes on the toxicological properties of active substances (AGES – Austrian Agency for Health and Food Safety).

- Development of criteria to evaluate when and how toxicological data on active substances cover mammalian metabolites.
- Possible criteria:
 - the measured amounts of metabolites
 - notion of metabolic pathways
 - assessment of systemic exposure.
- Possible areas of improvement in the planning and/or use of ADME studies to provide useful information.

Conclusion:

Useful information has been gathered and is currently evaluated by the PPR Panel