

Grouping and read-across (human health)
ECHA perspectives from REACH and CLP

EFSA Workshop on read-across: role and guidance in chemical risk assessment

27 March 2025

George Cartlidge European Chemicals Agency



## EU's chemicals legislation

**ECHA EFSA** DG EMPL DG ENV DG GROW OSHA **EMA** European Commission services EEA toys products control legislation Food contact EU agencies Specific chemicals cosmetics detergents materials legislation environmental protection worker safety legislation pharmaceuticals legislation **Industrial** carcinogens, mutagens Waste Water Pesticides **Biocides Emissions** and reprotoxic substances CLP - hazard classification REACH - Hazard and risk assessment

Implements UN GHS

4/1/2025 2

ECHA



# Key elements of current system - REACH and Classification, Labelling and Packaging (CLP)

#### Substances of concern are identified based on their classification

- Defined hazard classes with clear corresponding criteria to allow consistent classification (implementing GHS)
- Based on adverse effects (e.g. effects on reproduction, endocrine disruption)
- Require derivation of safety levels / thresholds

#### Quality data for decision making

 reliable, comparable and re-usable, allowing mutual acceptance of data (MAD) between different EU legislations and at international level

#### Reverse of burden of proof

- Authorities are not required to intervene by default
- Separation of duties (avoid duplication of work by authorities and industry)

#### Standard information requirements

- Predictability and legal certainty for both industry and authorities
- Feasibility from workload and enforcement perspective



# Read-across workflows commonly start with the problem formulation

- Need to identify the target substance data gap
- Takes account of the regulatory context (e.g. prioritisation for further actions, grouping, filling regulatory data gaps, hazard identification, classification, risk assessment).
- The level of tolerable uncertainty may differ according to context.
  - e.g. Regulatory requirements may indicate conditions for assessing uncertainties

ECHA.EUROPA.EU 4/1/2025

# REACH



## **REACH Information Requirements**

- Substance identity and composition information
- The minimum "Standard information requirements (SIR)"
  - tiered according to supply tonnage 1-10, 10-100, 100-1000 & >1000 (the standard testing regime)
- Use of relevant and internationally recognised Test Methods/GLP
- Animal testing as last resort obligation to consider alternative methods
- Non-animal methods e.g. Skin/Eye irritation, Skin sens., in vitro muta.
- Acute and repeated dose toxicity, Reproductive Toxicity,
- If triggered Carcinogenicity, Mutagenicity (in vivo), other

! Level of required information set by reference to Test Methods (and guidance)

!! Set of reliable information – adequate to serve different purposes



## **REACH Adaptations**

- "General rules" allow adaptation of SIR
- In vitro/QSAR
  - For higher tier information requirements (e.g. RDT) no in vitro or QSAR methods currently accepted to fully replace the standard animal test
  - Can contribute to weight of evidence or support read-across
- Weight of Evidence approaches from different lines of information
- Grouping and read-across
  - Registrants responsible for read-across hypothesis and generating supporting data (whether standard TG data or non-standard data)
  - e.g. Registrants to provide TK data if needed to support the hypothesis even if not a standard information requirement

! REACH Registrants are responsible for the grouping and read-across hypothesis and generating any needed supporting information



## REACH Annex XI – Grouping and read-across

#### **Group or category:**

substances whose physico-chemical and (eco)toxicological properties are likely to be similar or follow a regular pattern as a result of structural similarity

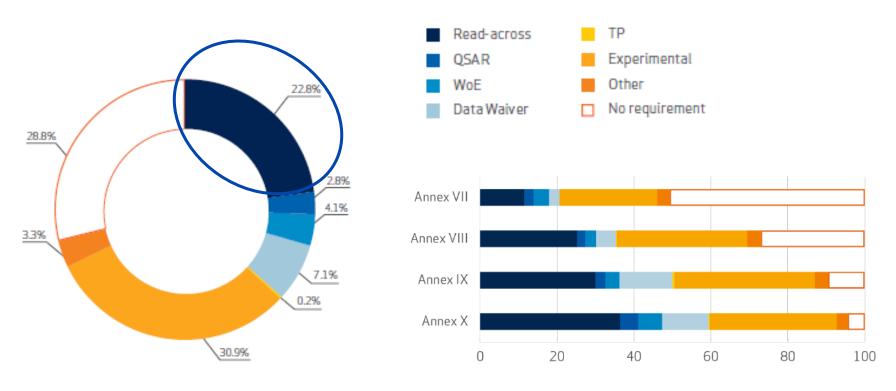
- Read-across: properties or effects of substances in the group may be predicted from data for reference substance(s) within the group
- → Similarities may be based on:
  - Common functional group\*
  - > Common precursors/breakdown products resulting in structurally similar chemicals\*
  - Constant pattern in changing of potency
    - ! Under REACH Read-across of positive and negative results possible
    - !! Under BPR Annex VI [...]\* "indicating the presence of dangerous properties"



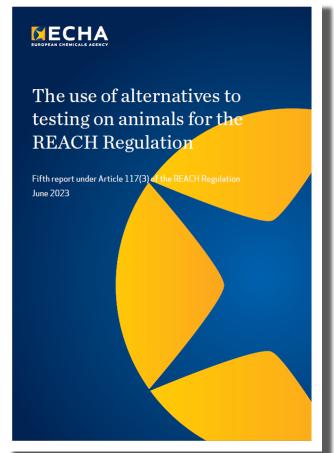
## REACH Annex XI, Grouping and read-across

#### **Requirements on the results:**

- → Adequacy for the purpose of classification and labelling and/or risk assessment
- Adequate and reliable coverage of the key parameters of
- → Exposure duration comparable to/longer than
- corresponding study that is normally done for a particular information requirement


- → Adequate & reliable documentation
  - robust study summary for each source study
  - explanation why properties of registered substance may be predicted from other substances
  - supporting information to scientifically justify

In principle, the result of read-across should be adequate to be used in the same way as the result of the standard test.




## Read-across: most commonly used adaptation

~75% of dossiers contain read-across for at least one endpoint



➤ Read-across is the most frequently used option of alternatives to fulfil a standard information requirement: used in about 25% of cases





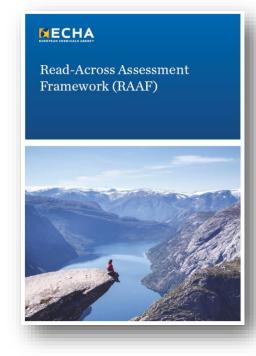
## Issues with regulatory acceptance

→ Read-across adaptations often fail to comply with legal requirements when examined under REACH compliance check procedure and are inadequate to ensure the safe use of chemicals

#### → Issues include:

- poor documentation
- insufficient substance identification (source and target)
- > shortcomings in hypothesis / justification of the prediction
- lack of or low quality of supporting data
- > lack of data to support predictions based on toxicokinetics
- insufficient quality of the source studies

Overall: justification and provided evidence not adequate


An analysis of reasons for rejections of read-across in ECHA decisions was performed by

Ball et al. (2016) Toward Good Read-Across Practice (GRAP) Guidance, ALTEX 33: 149-166 10.14573/altex.1601251



## ECHA Read-Across Assessment Framework

- Assessment of a read-across cannot currently be standardized and automatized in every detail
- Sets out different types of read-across derived from general principles of structural-similarity based read-across
- Structures the scientific analysis of read-across commonly observed REACH in registration dossiers;
- Characterises confidence of the assessor;
- Does not replace expert judgement; has to be applied flexibly
  - Not designed to assess Weight of Evidence or explain how the outcome translates into regulatory (legal) processes
  - Other Guidance and advice for building and reporting read-across is available





### ECHA Read-Across Assessment Framework

Type and amount of information needed depends on the read-across hypothesis and the information requirement to be read across

## The RAAF defines two general read-across hypotheses:

- 1. (Bio)transformation into a common toxicant
  - Toxicokinetic information may support the approach
- 2. Different compounds have the same type of effects
  - Toxicodynamic information may support the approach



## **ECHA RAAF Assessment Elements**

#### Examples (human health)

#### → Common AE's

#### Analogue approach

| AE A.1 | Identity and characterisation of the source substance                        |  |  |  |
|--------|------------------------------------------------------------------------------|--|--|--|
| AE A.2 | Link of structural similarities and differences with the proposed prediction |  |  |  |
| AE A.3 | Reliability and adequacy of the source study                                 |  |  |  |
| AEA.4  | Bias that influences the prediction                                          |  |  |  |

#### Category approach

| AE C.1 | Substance characterisation                                                                   |  |
|--------|----------------------------------------------------------------------------------------------|--|
| AE C.2 | Structural similarity and differences within the category                                    |  |
| AE C.3 | Link of structural similarities and structural differences with the proposed regular pattern |  |
| AE C.4 | Consistency of effects in the data matrix                                                    |  |
| AE C.5 | Reliability and adequacy of the source study(ies)                                            |  |
| AE C.6 | Bias that influences the prediction                                                          |  |

## → Scenario-specific AE's (e.g.category scenarios 3/5 and 4/6)

| SCENARIO 3 | SCENARIO 5 | ASSESSMENT ELEMENT TITLE                                       |
|------------|------------|----------------------------------------------------------------|
| AE 3.1     | AE 5.1     | Formation of common (identical) compound(s)                    |
| AE 3.2     | AE 5.2     | The biological target(s) for the common compound(s)            |
| AE 3.3     | AE 5.3     | Exposure of the biological target(s) to the common compound(s) |
| AE 3.4     | AE 5.4     | The impact of parent compounds                                 |
| AE 3.5     | AE 5.5     | Formation and impact of non-common compounds                   |

| SCENARIO 4 | SCENARIO 6 | ASSESSMENT ELEMENT TITLE                                                     |
|------------|------------|------------------------------------------------------------------------------|
| AE 4.1     | AE 6.1     | Compounds the test organism is exposed to                                    |
| AE 4.2     | AE 6.2     | Common underlying mechanism, qualitative aspects                             |
| AE 4.3     | AE 6.3     | Common underlying mechanism, quantitative aspects                            |
| AE 4.4     | AE 6.4     | Exposure to other compounds than those linked to the prediction              |
| AE 4.5     | AE 6.5     | Occurrence of other effects than covered by the hypothesis and justification |



## ECHA RAAF assessment – What's the problem?

| Assessment element                                   | Examples of typical issues identified                                                                       |
|------------------------------------------------------|-------------------------------------------------------------------------------------------------------------|
| Formation common compound                            | No information provided, not rapid/complete metabolism                                                      |
| Common underlying mechanisms                         | Cannot assess – no data on target, different effects in different types of studies                          |
| Consistency effects in matrix                        | Cannot assess – no data on target, different effects in different types of studies, clear different effects |
| Impact parent compound                               | Not complete/rapid metabolism, no data on parent compound                                                   |
| Formation/impact non-common compounds (NCC)          | No info identity of NCC., no tox data on NCC                                                                |
| Occurrence of other effects than predicted           | Cannot assess – no data on target, different effects in different types of studies, clear different effects |
| Structural similarity/differences in category        | No info on applicability domain of the category, missing info on ID and composition of substances           |
| Substance characterisation (source/category members) | Missing information on identification and composition                                                       |

ECHA.EUROPA.EU



## Testing strategies under REACH

- Registrants may have a promising read-across but lack reliable higher tier source data (e.g. OECD 414); proposals are needed to generate such higher tier studies
- They may propose to test another substance to use as source for readacross to their substance; ECHA may accept the future read-across as plausible subject to later assessment after data generation.
- Some selected highlights of a recent systematic analysis:
  - About 50% of TP relying on read-across were accepted
  - Bridging data increased odds of success
  - Apparent success rate was higher for group versus analogue approaches so might be encouraged (where grouping possible)
  - Reading across from UVCBs to a mono-constituent substance might be discouraged

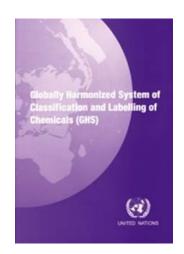
ECHA.EUROPA.EU

<sup>\*</sup>A Systematic Analysis of Read-Across Adaptations in Testing Proposal Evaluations by the European Chemicals Agency.



## REACH - Testing strategies - Sector approaches

- Every grouping and read-across can have unique aspects
  - (e.g multiple registrants, data availability/data requirements, allowable compositional differences, chemistries and chemical classes, (de-)toxifying metabolisms, positive vs. negative read-across, many MoA, logistical issues, availability of expertise or CROs)
- Consortia management for groups can present business/logistical challenges
- As a general advice:
  - Be realistic in the data gap analysis create a data matrix
  - ECHA would normally expect a complete set of Annex VII/VIII information
  - the (Annex VIII) OECD TG 422 provides screening level information on both reproductive and repeated dose toxicity and may provide useful supporting ('bridging') information
  - Generate TK data if needed to support hypothesis
- 'Rule of thumb' For a category of mainly Annex IX/X substances, experience shows that a proportion of 30-50% higher tier studies with data from the registered substances is needed to support the read across hypothesis
  - Deviations from these percentages possible with proper justification (e.g. taking account of adaptation possibilities, allowance for large groups, worst case, very similar compositions)


# CLP



## The CLP\* Regulation (EC) No 1272/2008

- GHS

  Globally Harmonized System of Classification and Labeling of Chemicals
- EU Legal framework for classification & labelling of chemicals
- Hazard classes based on building blocks from United Nations' Globally Harmonised System (GHS).
- CLP is a cornerstone of chemicals management in Europe
  - Rules are clear, simple to apply, sufficiently protective
- CLP assesses the Hazard arising from intrinsic properties of a substance or mixture



! Core element for one-substance-one-assessment



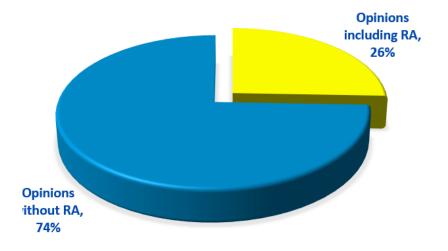
### Harmonised Classification and Labelling (CLH)

- Industry have to (self-)classify according to CLP criteria
- The CLH process leads to harmonised entries in Annex VI CLP
  - Industry cannot deviate from this entry
  - Usually, the read-across is of hazardous property from a source to a target substance
- There are already 'group entries' in Annex VI to CLP
  - Risk Assessment Committee (RAC) has given opinions on groups using read-across
- Recently revised CLP further encourages the use of groups in the case of harmonising classifications (Article 37 (8))
  - ECHA is developing a Practical Guide on 'Grouping and read-across under CLP'

ECHA.EUROPA.EU



#### Types of read-across assessed under CLH – some general examples


- Ion dissociation
- Common hydrolysis compounds
- Simple salts (e.g. Na. Ca, K etc.)
- Conjugated base and acid







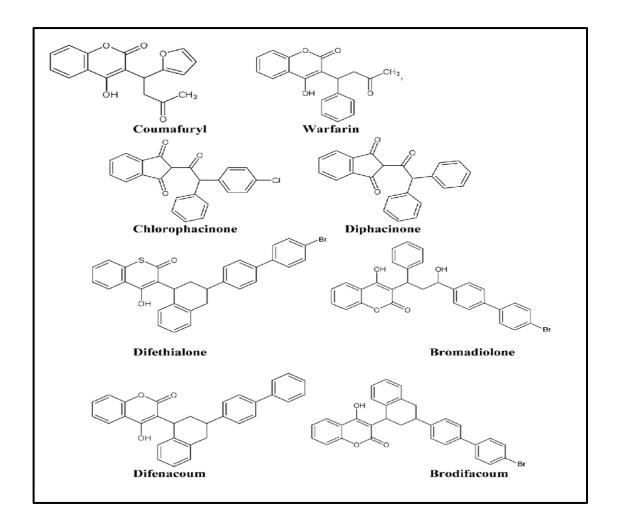
- Very similar structures
- Isomers



Read-across in RAC opinions 2017-2021



#### Grouping and read-across under CLP


- all available information bearing on the determination of hazard is considered this includes application of the category approach (grouping, read-across)
- In principle, possibility to use NAM data
- However, with current methods and knowledge they cannot yet be used alone for prediction of the "higher" hazard classes:
  - NAM results would need to be comparable with the classification criteria;
  - In addition to toxicodynamics, information on toxicokinetics and/or underlying mechanisms is very valuable – NAMS of sufficient reliability which support the basis of prediction may play a role here
  - Experience of assessing read-across based on some NAM methods/techniques (e.g. omics) is more limited as few are currently presented
  - There are new hazard classes to consider (e.g. ED HH)

ECHA.EUROPA.EU



## CLH - examples of MoA based read-across

- Coumarin derivatives like warfarin
- Different chemical structures;
  - some more 'similar' than others
- Similar Mode of Action to wafarin
  - inhibition of vitamin K epoxide reductase
  - Structural fragment (binds to enzyme)
  - Human data on warfarin and MoA shows adverse effects not readily detected in standard animal test
- Responsible for teratogenicity and classified accordingly




23



## ECHA Report "Key Areas of Regulatory Challenge"

- Mapping of research needs to address urgent regulatory challenges on a range of endpoints and issues.
- In respect of read-across, further developments should consider at least the following elements:
  - the relevance of the biological model (NAM) used to generate NAM information to 'bridge' the information from the source to the target substance and vice versa;
  - the threshold of similarity for the target and source substance, in particular when aiming at grouping multiple substances (conditional to hazard mechanism);
  - the toxicological relevance of the NAM information in the context of regulatory endpoint of interest





## ECHA activities to support NAM

#### Lower tier endpoints

- OECD QSAR Assessment Framework (QAF) implementation project
- Further development of the OECD QSAR Toolbox
- Assessment of the prediction's reliability for selected endpoints (acute oral toxicity, aquatic toxicity, bioaccumulation)

#### Higher tier endpoints

- Better utilisation of omics to support read-across and grouping
- Inclusion of omics in Test Guidelines studies to generate molecular/ mechanistic data
- Introduction of in vitro toxicokinetic measurements

#### Sharing data and knowledge

- IUCLID
- Making data available for research and development purposes
- Assessment of REACH data for regulatory purposes, through Scientific publications
- Framework Contracts to develop knowledge





# Framework contract on the development of NAM based tools and data for hazard identification and characterisation

#### → 3 specific contracts are running

- → OECD guidance on Sampling for omics measurements
- → Use of omics data to substantiate grouping and read across
- → Use of toxicokinetics information in a regulatory context

#### → 1 specific contract just initiated

→ omics to enhance fish toxicity testing





## Concluding remarks

- Grouping and read-across is a well-established technique to assess hazards and use fewer animals than testing substances individually.
- Regulatory requirements set the conditions for acceptable use of non-standard information. The regulatory requirements may differ but the fundamental scientific principles of assessing read-across and associated uncertainties are broadly similar;
- NAMs show promise to reduce uncertainties; a need for examples to explore different techniques, and to develop criteria and more detailed advice is recognised
- Further research needs to support regulatory read-across with NAM have been identified to guide research undertaken in collaboration with a range of stakeholders (regulators, academia, industry). ECHA is also supporting NAM developments.
- In dialogue with stakeholders, many activities aim at further developing criteria for use of NAMs which also informs how they might be applied at regulatory and policy levels.
- NB. Third workshop to discuss the roadmap to phase out animal testing for chemical safety assessments at ECHA June 2025 (see <a href="https://echa.europa.eu/events/2025">https://echa.europa.eu/events/2025</a>)

ECHA.EUROPA.EU

## Thank you

George.cartlidge@echa.europa.eu

Credits to my ECHA colleagues: Andrea Richarz, Jonas Nygren, Virve Sihvola

#### Connect with us



echa.europa.eu/podcasts



in European Chemicals Agency



@onehealth\_eu



©EU\_ECHA



@EUECHA



**EUchemicals** 



@echa.europa.eu



echa.europa.eu/subscribe

## Information slides



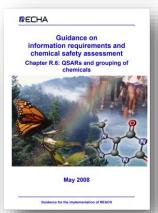
## Guidance on grouping and read-across

https://echa.europa.eu/support/registration/how-to-avoid-unnecessary-testing-on-animals

- → Illustrative example of a grouping of substances and read-across approach
  - Part 1: An Introductory Note
  - Part 2: An illustrative example






 Practical guide on how to use alternatives to animal testing to fulfil the information requirements for REACH registration

https://echa.europa.eu/guidance-documents/guidance-on-information-requirements-and-chemical-safety-assessment



- → Chapter R.6 QSARs and grouping of chemicals
  - including: Appendix R.6-1 for nanoforms
- → Endpoint specific guidance (Chapters R.7a, b, c)





ABC



## New approach methodologies workshop: Towards an animal-free regulatory system for industrial chemicals

- → held on 31 May 1 June 2023 | ECHA, Helsinki
- → on ECHA website:
  - recorded presentations
  - video interviews
  - workshop report

https://echa.europa.eu/-/newapproach-methodologiesworkshop-towards-an-animalfree-regulatory-system-forindustrial-chemicals



