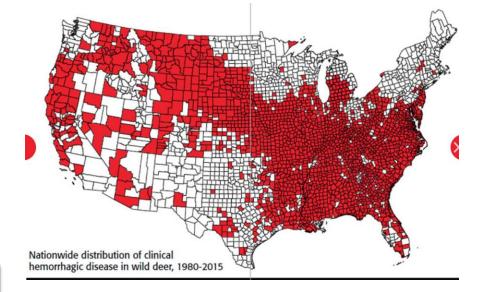
Epizootic Haemorrhagic Disease (EHD): An emerging risk in Europe

IGNACIO GARCÍA BOCANEGRA

Full Professor DVM, PhD, Dip ECZM (Wildlife Population Health) Department of Animal Health . University of Córdoba (Spain)

nacho.garcia@uco.es

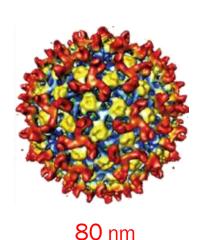

Epizootic Haemorrhagic Disease

Infectious noncontagious disease caused by viruses belonging to the genus *Orbivirus*, which affects to wild and domestic ruminant species and is mainly transmitted by biting midges of the genus *Culicoides*.

First discovered in 1955 in New Jersey (USA)

White-tailed deer (*Odocoileus virginianus*)

for Animal Health


Founded as OIE

Etiology

Family Sedoreoviridae

Genus Orbivirus

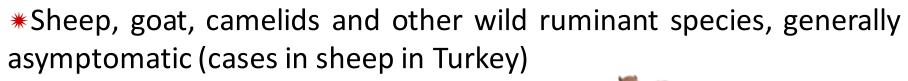
- Epizootic haemorrhagic disease (EHDV)
- Bluetongue virus (BTV)
- African horse sickness virus (AHSV)

<u>7 serotypes (EHDV-1, 2 and 4-8) and other 3 putative or unknown serotypes identified to date</u>

Variable pathogenic potential. E.g. Ibaraki virus (EHDV-2) casuses high mortality (10%) in cattle in Japan

No or limited cross-reaction between serotypes

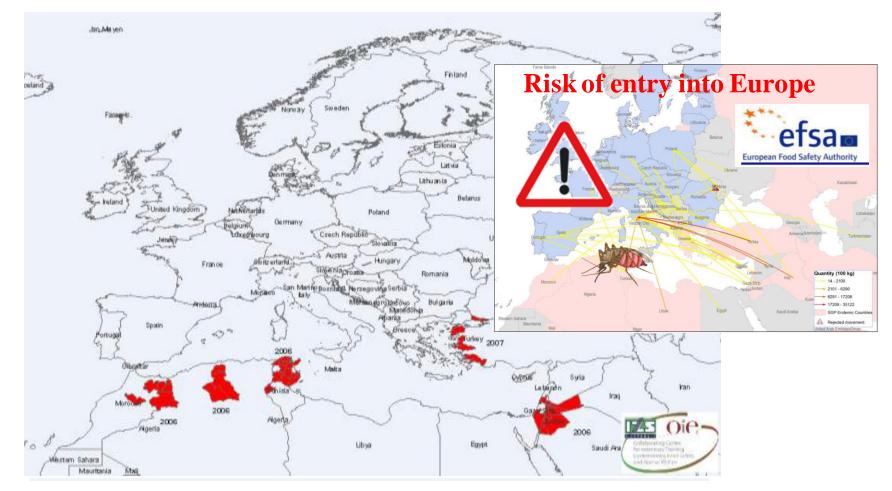
Economic and animal health concern


World Organisation for Animal Health Founded as OIE

Category of listed disease D+E (Commission Implementing Regulation (EU) 2018/1882)

Reservoirs

***Host reservoirs:**


- *Cattle (usually asymptomatic)
- *****Wild ruminants (usually asymptomatic). Mortality in:
- ✓ White-tailed deer (Odocoileus virginianus) in EEUU sinze 1955
- ✓ Barbary deer (*Cervus elaphus Barbarus*) in Tunisia (2021-2022)
- ✓ Red deer (*Cervus elaphus*) in Spain (2022-2023)

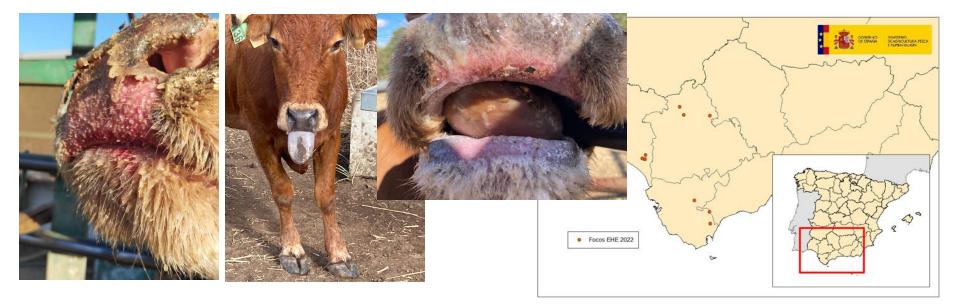
Spatio-temporal distribution before 2022

EHDV circulation in America, Australia, Asia and Africa

Outbreaks of EHDV-1, 6 and 7 in Mediterranean basin countries since 2006:

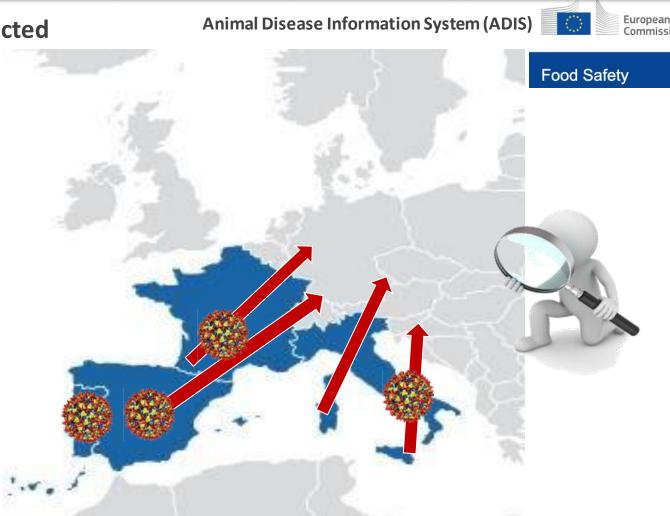
Morocco, Algeria, Tunisia, Jordan and Turkey

EFSA, 2009


EHDV in Europe (2022)

The first cases detected in Sardinia on October 2022, and few days later, in Sicily.

The virus (EHDV-8) is the same to the isolated in Tunisia in 2021. This serotype had not been detected since its appearance in Australia in 1982



Firsts outbreaks in Spain on 18/11/22

More than 3000 outbreaks of EHDV to date. The epidemy is still ongoing

- Four countries affected
- ✓ France
 ✓ Italy
 ✓ Portugal
 ✓ Spain

How was the virus introduced into Europe?

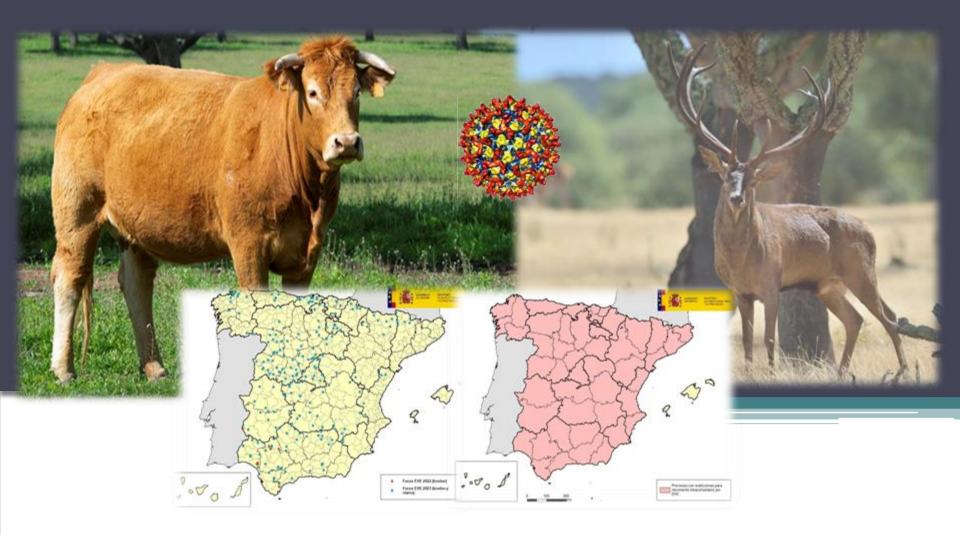
- Movement of infected animals
- Infected vectors?

How was the virus introduced into Europe?

Movement of infected animals

Infected vectors?

Firsts BTV outbreaks


Could be EHDV circulating in Morocco?

Firsts EHDV outbreaks

EHDV circulation in Spain

Absence of information in livestock in Spain

Veterinary Record

798 wild ruminates analyzed during the period 2006-2012

SURVEILLANCE

Serosurveillance of orbiviruses in wild cervids from Spain

Antonio J. Arenas-Montes, Antonio Arenas, Ignacio García-Bocanegra, Departamento de Sanidad Animal, Facultad de Veterinaria, Universidad de Córdoba, Agri-food Excellence International Campus, 14071 Córdoba, Spain e-mail: v32armoa@uco.es Peter Mertens, Carrie Batten, Kyriaki Nomikou, The Pirbright Institute, Ash Road, Pirbright, Woking, Surrey GU24 0NF doi: 10.1136/vr.f2932

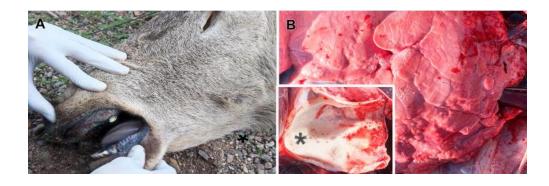
Absence of detection of antibodies in the animals analyzed during the period 2006-2012

EHDV in Spain in 2022

Firsts outbreaks in Spain on 18/11/22

BADAJOZ	1	
CÁDIZ	2	
HUELVA	4	
MÁLAGA	1	
SEVILLA	3	
Total general	11	

11 outbreaks in southwestern Spain:10 in Andalusia and 1 in Extremadura

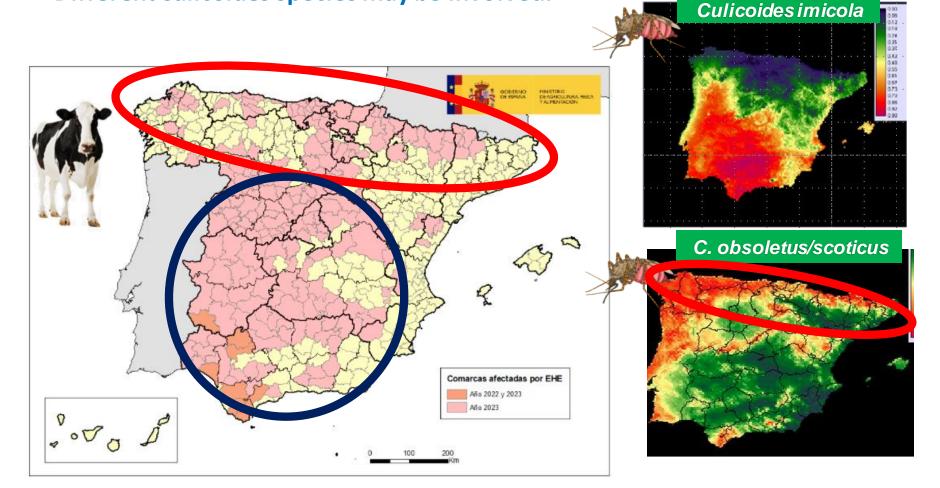

Mortality cases detected in red deer (Cervus elaphus) in Andalusia

Passive and active surveillance in wildlife

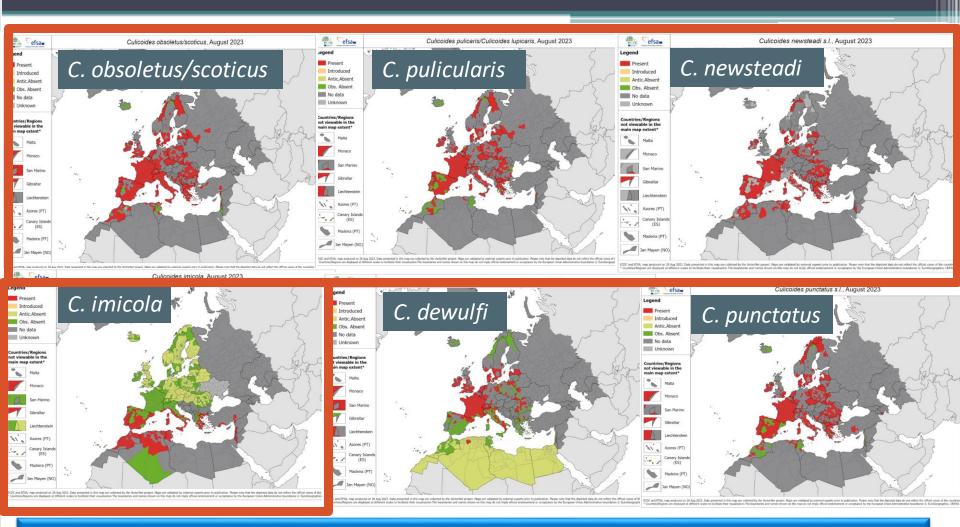
Two fatal red deer cases were confirmed, finding >99% nucleotide identity with EHDV-8 sequences from Tunisia and Italy

Antibodies in wild ruminants sampled between november 2022 and February 2023

Mouflon



Ruiz-Fons et al. under review


EHDV in Spain in 2023

The circulation of the virus drastically increased in 2023

- > 225 affected livestock regions to date (23 outbreaks in wild ruminants).
- Widespread spatial distribution. Is the virus here to stay?
- > Different *Culicoides* species may be involved.

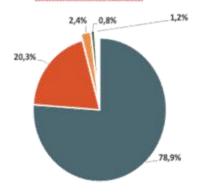
Risk of further expansion within EU Member States

EHDV-8 has been detected in *C. imicola, C. obsoletus/scoticus, C. newsteadi, C. pulicaris* ss in Sardinia

Cuellar et al., 2020; EFSA, 2023; Quaglia et al., 2023

Surveillance in cattle

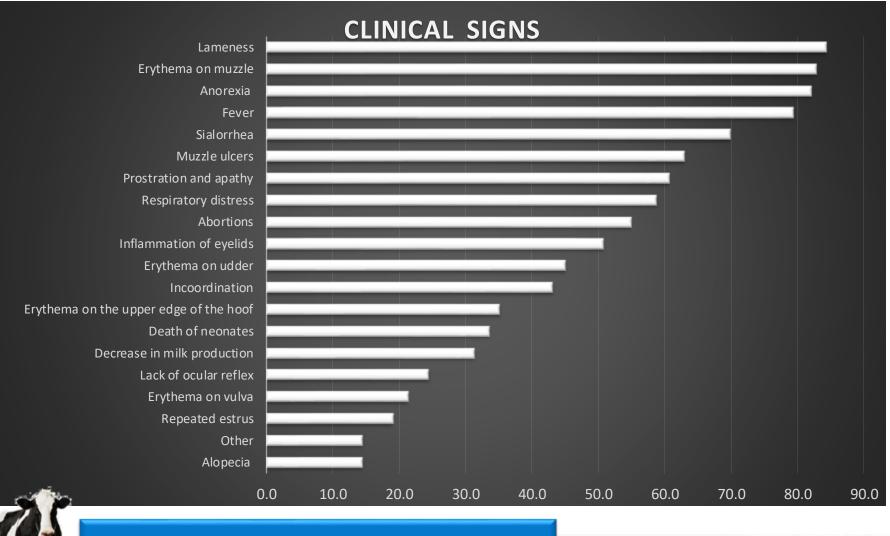
Variable morbidity, mortality and fatality rates depending on:


- > Age (> 24 months old)
- > Sex (Males)
- Breed (non-rustic)
- Production system (extensive)

d 4,8%

95,2%

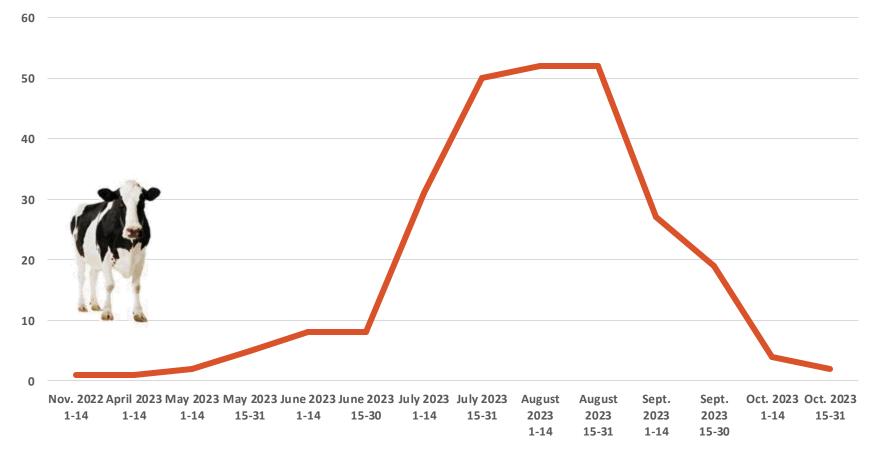
Age of affected animals


Other affected species

Mostly adults Mostly young (< 1 year)</p>
No Deer (on the farm or in the region) Sheep Goats Other

Main clinical signs and lesions by EHDV

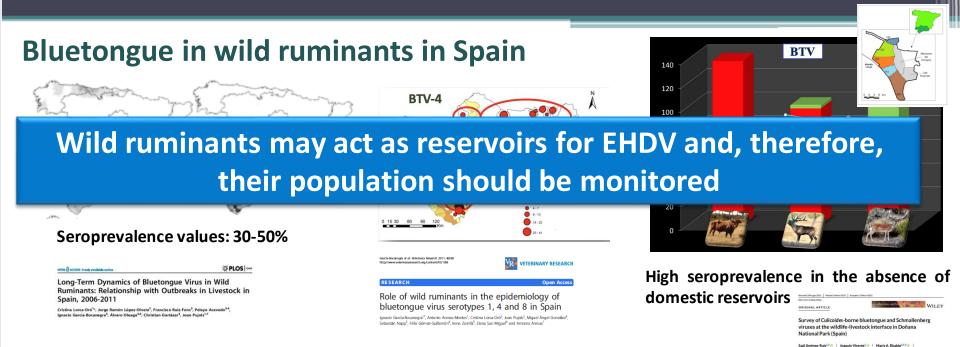
Clinical pattern different to that observed in other serotypes or in BTV


Clinical signs and lesions observed in adult animals

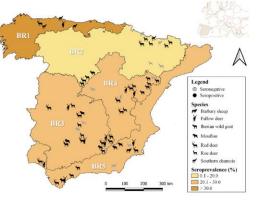
Reproductive disorders and lesions observed in fetuses

Spatial evolution

Most cases were observed between July and September


Surveillance in wild ruminants

- > Clinical disease and mortality in European red deer in Europe.
- Virus detection in other wild ruminant species: fallow deer, roe deer,...
- Integrated wildlife monitoring is required to assess the spread and impact of EHDV-8 in these species.



Survey of Culicoides-borne virus in wild ruminants in Spain

Schmallenberg virus in wild ruminants in Spain

ariable	Category	No. positives/ overall [†]	Seroprevalence (95%Cl)	p-value
oecies	Barbary sheep	8/36	22.2 (11.7-38.1)	< 0.001"
	Fallow deer	99/217	45.6 (39.1-52.3)	
	Iberian wild goat	49/246	19.9 (15.4-25.4)	
	Mouflon	33/118	28.0 (20.7-36.7)	
	Red deer	97/307	31.6 (26.7-37.0)	
	Roe deer	34/194	17.5 (12.8-23.5)	
	Southern chamois	10/98	10.2 (5.6-17.8)	
ioregion	BR1	31/96	32.3 (23.8-42.2)	0.015
	BR2	48/256	18.8 (14.4-24.0)	
	BR3	108/362	29.8 (25.4-34.7)	
	BR4	75/255	29.4 (24.2-35.3)	
	BR5	68/247	27.5 (22.3-33.4)	
sar	2010	0/20	0.0 (0.0-16.1)	< 0.001
	2011	0/44	0.0 (0.0-8.0)	
	2012	60/189	31.8 (25.5-38.7)	
	2013	42/99	42.4 (33.2-52.3)	
	2014	66/175	37.7 (30.9-45.1)	
	2015	119/511	23.3 (19.8-27.1)	
	2016	43/174	24.7 (18.9-31.6)	

elavo Acevedo¹ David Cano-Terriza^{2,3} David González-Barrio^{6,7}

Seroprevalence: 27%

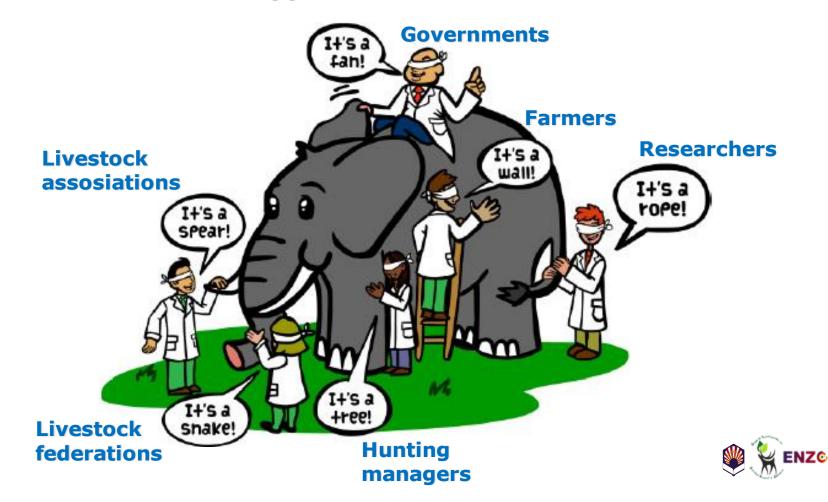
Wispread and endemic circulation in wild ruminants in Spain

Nervous signs

Loss of flight reflex

Main remarks regarding EHD

- The virus has <u>spread rapidly</u> in some European countries in 2023 causing significant losses in the sector. Like BTV or SBV, EHDV could spread to other countries and <u>become endemic</u> (overwintering) in Europe.
- Information about EHDV-8 is still scare. Additional studies on the epidemiology, pathogenesis and effectiveness of control measures are needed to stablish the real impact of this EID in Europe.
- > The introduction risk of other serotypes (EHDV-6) should also be analyzed.
- Control strategies for EHDV are limited (no commercial vaccines available) and its effectiveness is often unclear.
- Integrated <u>livestock, wildlife and vector population monitoring</u> are required.



Active actions on EHD

- Systematic epidemiological data (climatic, environmental, ecological and demographic data) to develop effective control strategies.
- Development of <u>early warning systems</u> to help decision-makers understand where or when virus/serotypes will emerge or spread to new territories.
- Development of efficient <u>control programmes</u> by monitoring the density and distribution of <u>hosts</u>, <u>competent vectors</u> and <u>serotypes</u>.
- Adaptability of the regulations (e.g. make animal movement more flexible) to each context and scenario.
- Effective communication strategies on regional, national and European levels with the direct involvement of the livestock sector.

<u>Multidisciplinary and active collaboration</u> among stakeholders is needed to address comprehensively the monitoring and control of VBD with a One Health approach.

Thank you very much for your attention!!

IGNACIO GARCÍA BOCANEGRA

Full Professor DVM, PhD, Dip ECZM (Wildlife Population Health) Department of Animal Health . University of Córdoba (Spain)

nacho.garcia@uco.es

