

EMERGING
RISK
IDENTIFICATION
SYSTEM
Enhancing Food Safety in New Zealand

Cadmium in flaxseed products

Nicola King

Senior Scientist, Institute of Environmental Science
and Research (ESR) <https://www.esr.cri.nz/>

Project lead, Emerging Risk Identification System
(ERIS) <https://www.nzfssrc.org.nz/resources/eris>

Supported by: Kate Thomas (New Zealand Food
Safety), Abhishek Gautam (ESR)

New Zealand
**FOOD SAFETY SCIENCE
& RESEARCH CENTRE**

E/S/R
Science for Communities
He Pūtaiao, He Tāngata

ERIS funders:

**MINISTRY OF BUSINESS,
INNOVATION & EMPLOYMENT**
HĪKINA WHAKATUTUKI

Ministry for Primary Industries
Manatū Ahu Matua

mia
Meat Industry Association

 PIANZ

 Fonterra

Dairy for life

 Westland Milk Products
Hokitika · New Zealand

 United Fresh
New Zealand Incorporated

 Horticulture
New Zealand
Ahumāra Kai Aotearoa

 Zespri
KIWIFRUIT

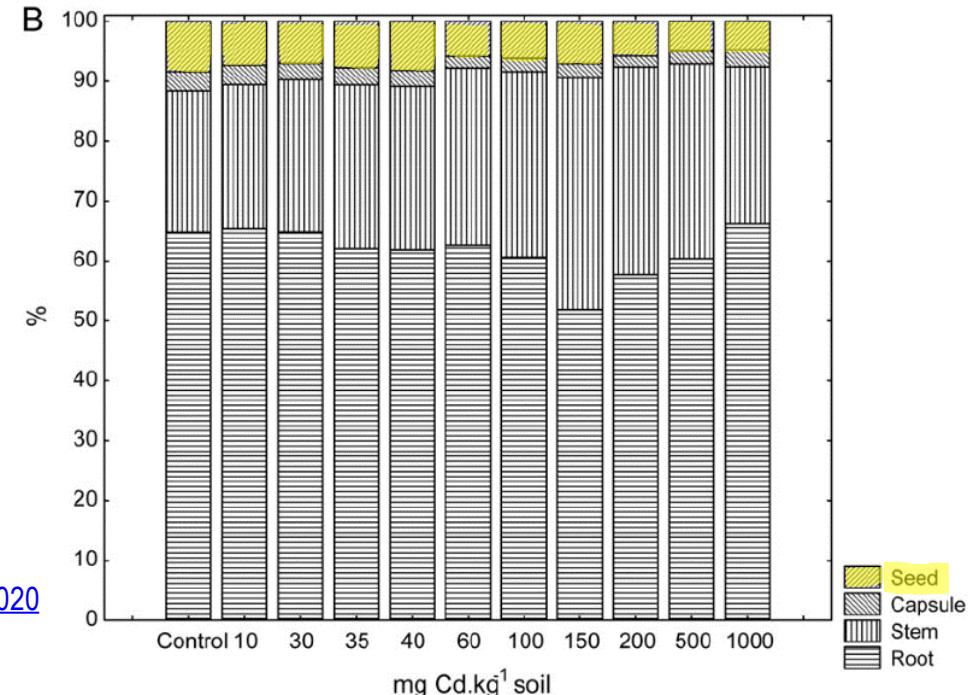
 AsureQuality
Kaitiaki Kai

The food: Flaxseed/linseed

Image: Cloutier (2016) <https://doi.org/10.1016/B978-0-08-100596-5.00031-7>

Linum usitatissimum (family Linaceae)

Varieties used for different purposes: Edible seeds and oils, textiles, animal feed, industrial oils.


“Superfood” – digestible proteins, lignans, essential fatty acids

Consumer demand for functional foods: Demand for flaxseed products expected to increase


Cd readily taken up by plants, even at low soil concentrations

Cultivar dependent

Graph: Bjelková et al (2011)
<https://doi.org/10.1016/j.indcrop.2011.01.020>

The hazard: Cadmium (Cd)

Free ion Cd²⁺ but often bound to inorganic or organic substances

No known biological function
Long biological half-life (10+ years)
Bioconcentration

Cadmium poisoning (acute): Lungs, GI

Chronic exposure (main endpoints):

- Affects kidney function (renal tubular dysfunction)
- Weakened bones (lower bone mineral density)

Other adverse health effects (animals, humans):

Cancer, liver function, cardiovascular, endocrine, iron deficiency, hyperuricemia (elevated uric acid), neurological, reproductive, haematology, gastrointestinal, immune/skin, oxidative stress...

Schaefer et al. (2022) <https://doi.org/10.1016/j.yrph.2022.105243>

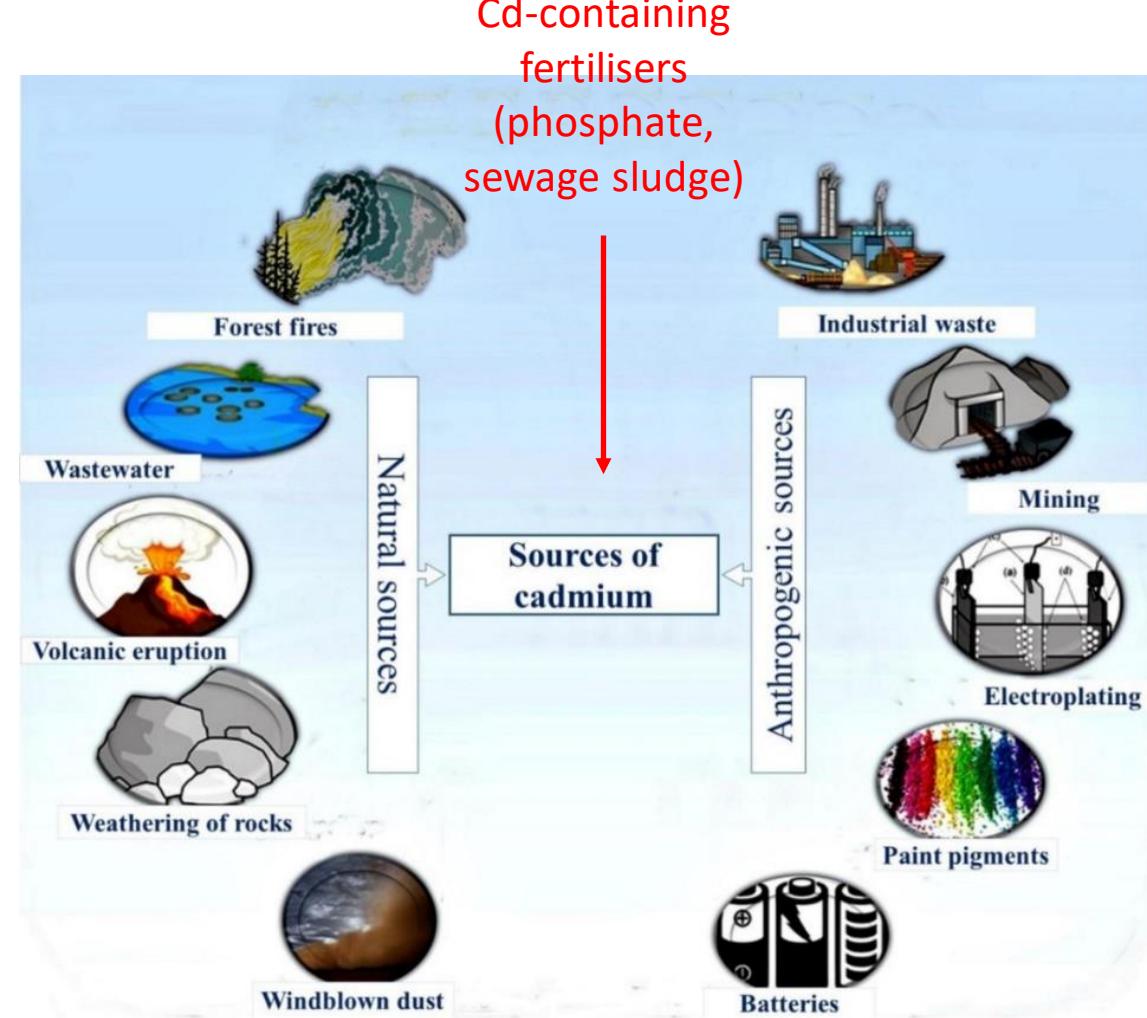
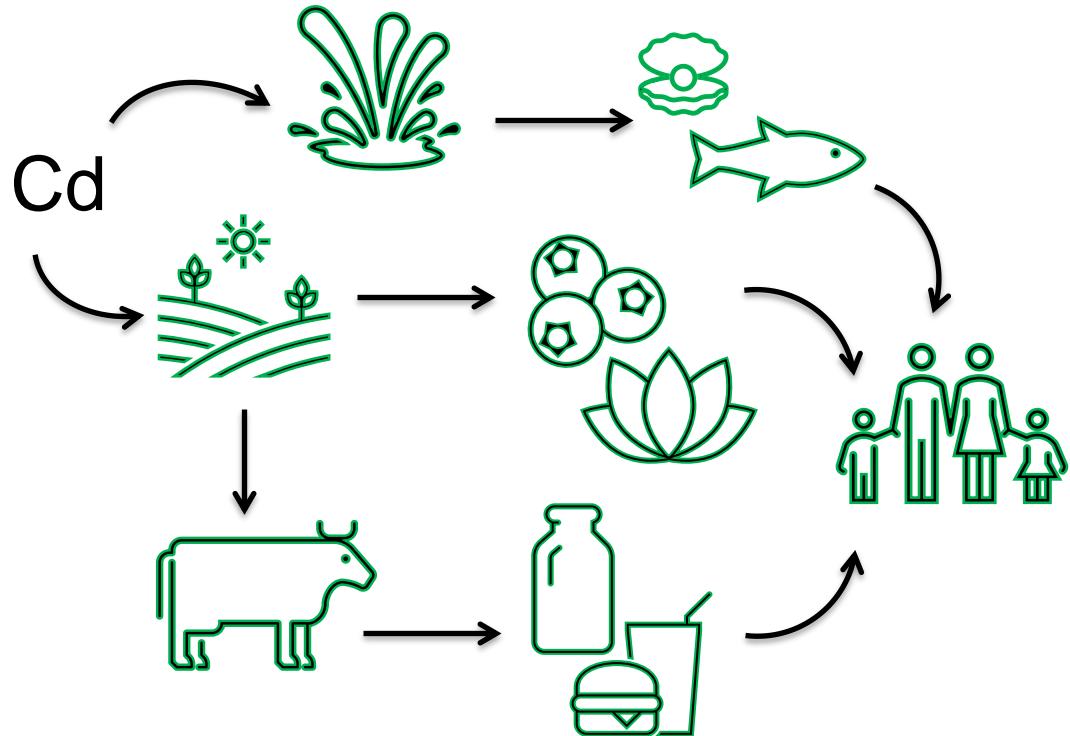



Image: Zulfiqar et al. (2022) <https://doi.org/10.3389/fpls.2022.773815>

Foodborne exposure: Cadmium

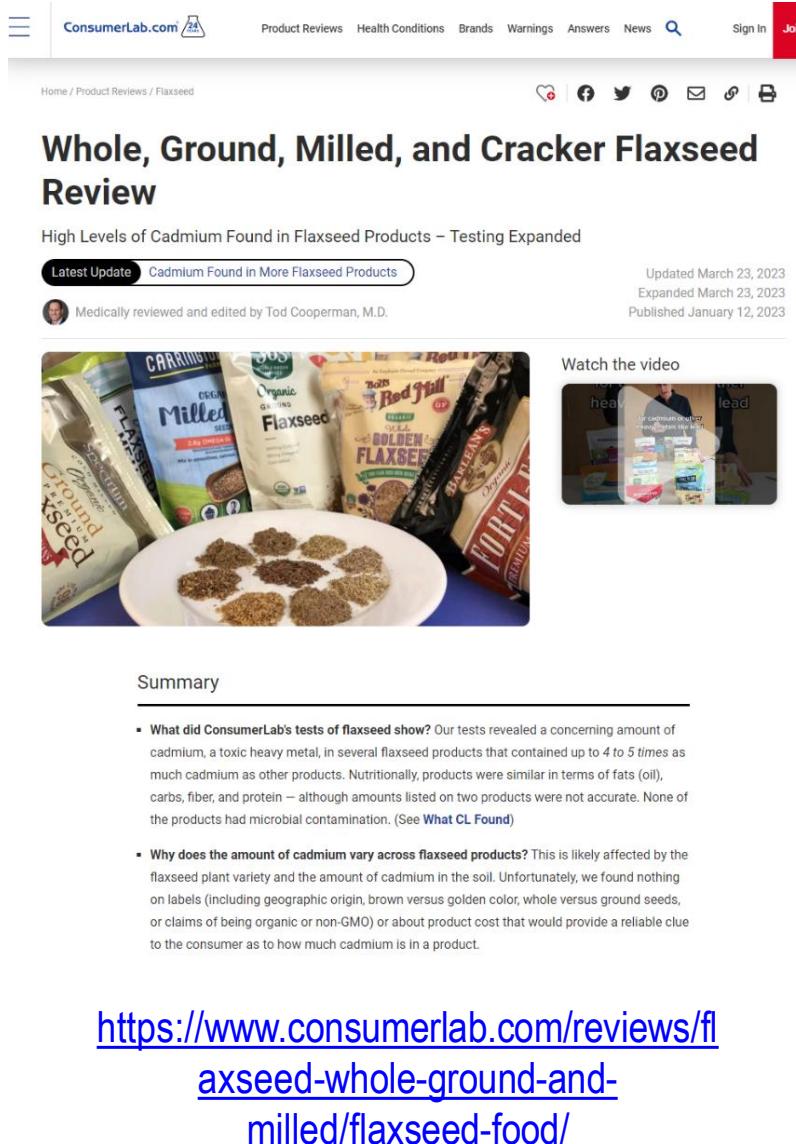
European assessments:

- High cadmium: Algal formulations, cocoa-based products, crustaceans, edible offal, fungi, oilseeds, seaweeds, water molluscs
- Main dietary contributors: Cereals and cereal-based products, vegetables, nuts/pulses, starchy roots (potatoes), meat and meat products
- Tolerable Weekly Intake (TWI) for cadmium of 2.5 µg/kg bw can be exceeded

EFSA (2009) Cadmium in food - Scientific opinion of the Panel on Contaminants in the Food Chain

<https://doi.org/10.2903/j.efsa.2009.980>

EFSA (2012) Cadmium dietary exposure in the European population <https://doi.org/10.2903/j.efsa.2012.2551>


Assessment from 44 national studies worldwide:

- Main dietary contributors: Cereals and cereal-based products, vegetables, and fish and seafood
- Provisional Tolerable Monthly Intake (PTMI) for cadmium of 25 µg/kg bw can be exceeded

JECFA (2021 meeting) Safety evaluation of certain contaminants in food: prepared by the ninety-first meeting of the Joint FAO/WHO Expert Committee on Food Additives

<https://www.who.int/publications/item/9789240060760>

First signal: Independent testing

ConsumerLab.com

Product Reviews Health Conditions Brands Warnings Answers News Sign In Join

Home / Product Reviews / Flaxseed

Whole, Ground, Milled, and Cracker Flaxseed Review

High Levels of Cadmium Found in Flaxseed Products – Testing Expanded

Latest Update Cadmium Found in More Flaxseed Products

Updated March 23, 2023
Expanded March 23, 2023
Published January 12, 2023

Medically reviewed and edited by Tod Cooperman, M.D.

Watch the video

Summary

- What did ConsumerLab's tests of flaxseed show? Our tests revealed a concerning amount of cadmium, a toxic heavy metal, in several flaxseed products that contained up to 4 to 5 times as much cadmium as other products. Nutritionally, products were similar in terms of fats (oil), carbs, fiber, and protein – although amounts listed on two products were not accurate. None of the products had microbial contamination. (See [What CL Found](#))
- Why does the amount of cadmium vary across flaxseed products? This is likely affected by the flaxseed plant variety and the amount of cadmium in the soil. Unfortunately, we found nothing on labels (including geographic origin, brown versus golden color, whole versus ground seeds, or claims of being organic or non-GMO) or about product cost that would provide a reliable clue to the consumer as to how much cadmium is in a product.

<https://www.consumerlab.com/reviews/flaxseed-whole-ground-and-milled/flaxseed-food/>

Full details not available without subscription.

Available information:

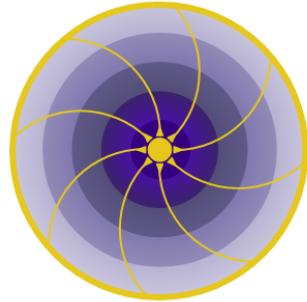
- Tested 16 products from retail (7 whole, 8 ground/meal/milled, 1 cracker product)
- One-third were “high in cadmium”
- Cd concentration in some products higher than others (“up to six times”)

(also looked at arsenic, lead, “microbes”, nutrition labelling)

Further investigations

Cd concentration (mg/kg)	Supporting information
0.50 ww	Limit for Cd in “Linseed and sunflower seed” Commission Regulation (EC) No 1881/2006 of 19 December 2006 setting maximum levels for certain contaminants in foodstuffs (introduced August 2021)
1.1 (ww?)	RASFF alert (2021) Linseed (“Cereals and bakery products”), Belgium (company’s own check)
Range 0.27 - 1.3 dw Mean 0.62 dw	Seeds, Finland: 24 samples from experimental farm, 61 samples from commercial fields. Moisture content of the seed 5-13% Method: Atomic absorption spectroscopy (uncertainty $\pm 18\%$) Kymäläinen & Sjöberg (2006) https://doi.org/10.2137/145960606777245533
Range <LD to 0.79 (all but one sample <0.50) (ww/dw not stated)	Flour, Brazil: 6 samples from retail Method: (1) Ultrasound-assisted supramolecular solvent-based dispersive liquid–liquid microextraction (SM-DLLME) + thermospray flame furnace atomic absorption spectrometry (TS-FF-AAS); (2) microwave-assisted digestion + TS-FF-AAS Lemes & Tarley (2021) https://doi.org/10.1016/j.foodchem.2021.129695

Further investigations


Commodity	Cadmium concentration (mg/kg, mostly 'as is')	
	Mean	Max
Caraway seed	0.04	0.16
Cardamom seed	0.06	0.06
Cotton seed	0.12	0.12
Cumin seed	0.05	0.16
Dill seed	0.06	0.06
Linseed	0.26	1.30
Poppy seed	0.52	7.21
Rape seed	0.04	0.59
Soya bean (immature seeds)	0.01	0.02
Sunflower seed	0.46	302.00

Risk assessment (Finland) Kymäläinen & Sjöberg (2006) <https://doi.org/10.2137/14596060677245533>

- Cd concentration in seeds available in Finland, 24 g or 30 g daily intake (optimal for utilisation of functional components), consumption of the seeds by people weighing 50, 70 or 90 kg (in addition to the regular diet)
- Evaluated whether the added flaxseeds causes the estimated daily Cd intake to approach or exceed the Provisional Tolerable Daily Intake (PTDI) of 1 µg/kg bw (WHO/FAO, 1993)
- Risk is highest for people with an already high Cd dietary exposure, and lower body weight, consuming linseed with higher concentrations of Cd.

Summary:

- Work to quantify and to reduce dietary cadmium exposure continues
- Flaxseed for human consumption could contain elevated Cd levels (now ML in EU)
- Consumption of flaxseed as seeds or ingredients in other foods increasing (?)
- Messaging from independent consumer advocacy groups is powerful
- Low Cd accumulating cultivars offer a good risk management option

EMERGING
RISK
IDENTIFICATION
SYSTEM
Enhancing Food Safety in New Zealand

Allergens: Some observations

Nicola King

Senior Scientist, Institute of Environmental Science
and Research (ESR) <https://www.esr.cri.nz/>

Project lead, Emerging Risk Identification System
(ERIS) <https://www.nzfssrc.org.nz/resources/eris>

Supported by: Kate Thomas (New Zealand Food
Safety), Abhishek Gautam (ESR)

New Zealand
FOOD SAFETY SCIENCE
& RESEARCH CENTRE

E/S/R
Science for Communities
He Pūtaiao, He Tāngata

ERIS funders:

MINISTRY OF BUSINESS,
INNOVATION & EMPLOYMENT
HĪKINA WHAKATUTUKI

Ministry for Primary Industries
Manatū Ahu Matua

mia
Meat Industry Association

 PIANZ

 Fonterra

Dairy for life

 Westland Milk Products
Hokitika · New Zealand

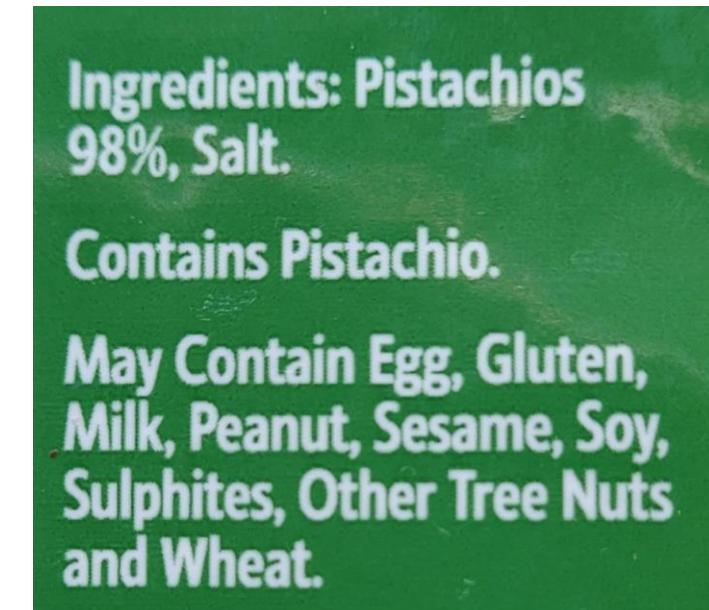
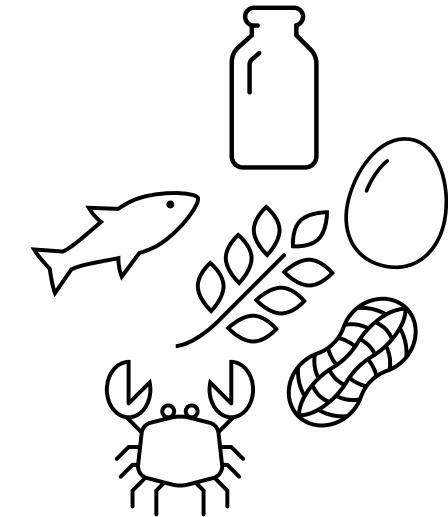
 United Fresh
New Zealand Incorporated

 Horticulture
New Zealand
Ahumāra Kai Aotearoa

 Zespri
KIWIFRUIT

 AsureQuality
Kaitiaki Kai

Awareness of four areas

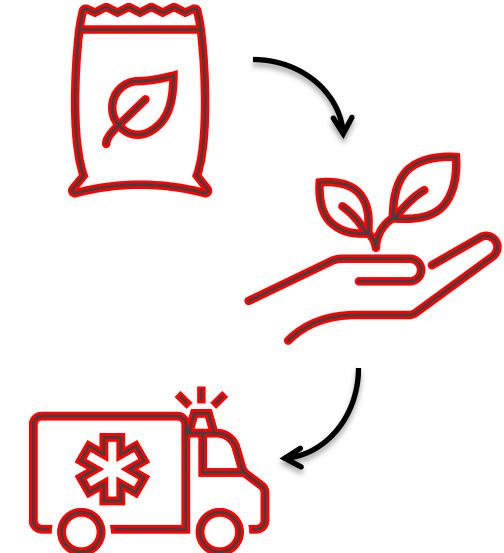


1. Allergens in alternative food packaging
2. Allergens in trending foods
3. Allergens in alternative proteins
4. Increasingly recognised allergenic conditions

Food allergy	Food intolerance
Immune system reaction (production of antibodies)	Adverse reaction (e.g. rash, asthma, irritated bowel, headache)
Symptoms within minutes or few hours	Symptoms within minutes or hours
Mild to life-threatening	Usually not life threatening

Labelling requirements

Annex II of Regulation (EU) No 1169/2011

1. Cereals containing gluten: wheat, rye, barley, oats, spelt, kamut
2. Crustaceans
3. Eggs
4. Fish
5. Peanuts
6. Soybeans
7. Milk
8. Nuts: almond, hazelnut, walnut, cashew, pecan, Brazil, pistachio, macadamia
9. Celery
10. Mustard
11. Sesame seeds
12. Sulphur dioxide and sulphites: certain concentrations
13. Lupin
14. Molluscs



1. Allergens in alternative food packaging

- Drivers for new food packaging: Consumer demands, sustainability
- Desire for packaging to be sustainably manufactured, functional (including keeping food safe) and biodegradable
- Food production by-products are a potential packaging materials

Allergen risk?

- Are allergenic proteins present in the final packaging material?
- If yes, could these transfer onto food or hands?
- If yes, could this lead to an allergenic response in sensitive people?

2. Allergens in trending foods

Chia seeds

- 2015 report: 54-year-old man hospitalised (also had hayfever, asthma, pollen and cat sensitivities)
- 2023 case-series report: Seven patients allergic to chia, 2 anaphylactic

García Jiménez et al. (2015) <https://www.jaci.org/summary/vol25-issue1-num1186>

Regula et al. (2023) <https://doi.org/10.1016/j.jaci.2022.12.542>

Hemp seeds

- 2015 case-series report: Five patients allergic to hemp seeds, all anaphylactic

Bertolin et al. (2015) <https://doi.org/10.1016/j.jaci.2015.12.969>

- **Cross-reactivity**
e.g. chia/sesame, hemp/hazelnut
- **Pre-sensitisation**
Hemp (also via smoking)
increasing sensitivity to other food allergens

3. Allergens in alternative proteins

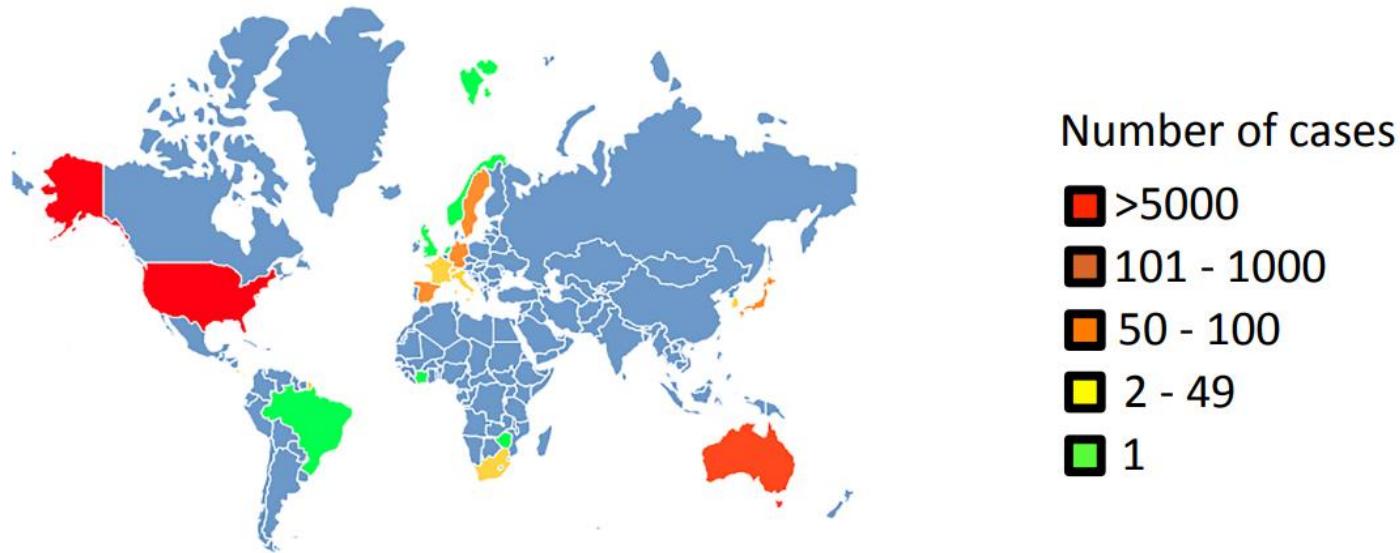
Potential sensitivities (cross-reactivity)

- Silk moth larvae (crustaceans, mites, molluscs)
- Pea protein (soy, peanuts)

De novo sensitisation

- Mealworms

Kopko et al. (2022) <https://doi.org/10.1016/j.tifs.2022.09.008>

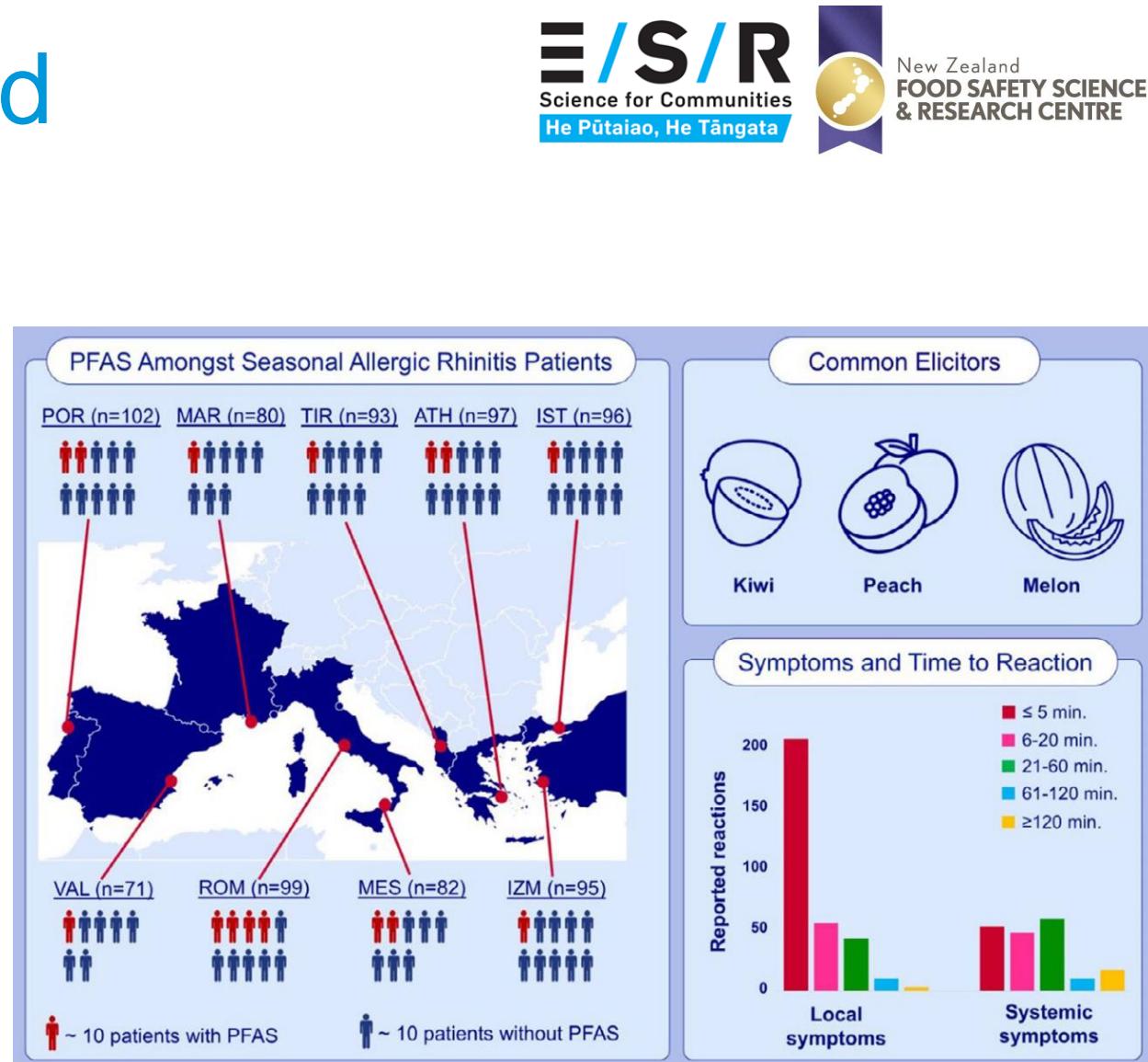

European Food Information Council “ 5 trending alternative protein sources to meat in Europe”

4. Increasingly recognised allergenic conditions

Alpha-gal syndrome

- Alpha-gal sugar found in red meat animals and tick saliva
- Tick bites stimulate human sensitivity (mechanism being investigated)
- Subsequent meat consumption can trigger reaction, including anaphylaxis (>2h after eating)
- Syndrome can be temporary

NB: Vectorborne, not foodborne



de la Fuente Jiménez et al. (2015)
[https://parasitesandvectors.biomedcentral.com/
articles/10.1186/s13071-019-3413-z](https://parasitesandvectors.biomedcentral.com/articles/10.1186/s13071-019-3413-z)

4. Increasingly recognised allergenic conditions

Pollen food allergy syndrome (PFAS)

- At risk: People who suffer from seasonal allergic rhinitis (hayfever)
- Hypersensitivity to foods containing proteins similar in structure to pollen
- Oral Allergy Syndrome (OAS; swelling, itching, burning in mouth/throat), also skin reactions, systemic symptoms (respiratory, digestive, life-threatening anaphylaxis)

Lipp et al. (2021) <https://doi.org/10.1111/all.14742>