

SCIENTIFIC PANEL ON PLANT HEALTH

114th Plenary meeting

26 & 27 June 2023
14:00-18:00 & 09:00-18:00
MINUTES - Agreed on 17 July 2023

Location: EFSA - Parma - Onsite

Attendees:

○ PLH Panel Members:

Claude BRAGARD (Chair), Paula BAPTISTA, Elisavet CHATZIVASSILIOU, Francesco DI SERIO, Paolo GONTIER, Josep JAQUES, Alan MACLEOD, MAGNUSSON Christer, Panagiotis MILONAS, Juan NAVAS-CORTES, PARNELL Stephen, REIGNAULT Philippe, Roel POTTING, Emilio STEFANI, Hans-Hermann THULKE, Antonio VICENT CIVERA, Wopke VAN DER WERF, Jonathan YUEN, Lucia ZAPPALÀ

○ European Commission and/or Member States representatives:

EC: Panagiota MYLONA, Leonard SHUMBE, Wolfgang REINERT (SANTE)

○ EFSA PLANTS Unit:

Alexia ANTONIOU; Melanie CAMILLERI; João Filipe CAVALHEIRO; Matteo CROTTA; Ewelina CZWIENCZEK; Alice DELBIANCO; Spyridoula DIMITROPOULOU; Ciro GARDI; Alex GOBBI; Ignazio GRAZIOSI; Agata KACZMAREK; Tomasz KALUSKI; Paraskevi KARIAMPA; Virág KERTÉSZ; Roumiana KRUSTEVA; Julia LOPEZ MERCADAL; Andrea MAIORANO; Marina MARTINO; Alzbeta MIKULOVA; Panagiotis MILONAS; Marco PAUTASSO; Eugenio ROSSI; Giuseppe STANCANELLI; Franz STREISSL; Emanuela TACCI; Sara TRAMONTINI; Sybren VOS.

○ Others:

MESE Unit: Olaf MOSBACH-SCHULZ

EFSA Procurement

○ Oresteia SFYRA (Greece)

I. Welcome and apologies for absence

The Chair welcomed the participants.

II. Adoption of the agenda

The agenda was adopted without changes.

III. Declarations of Interest of Working Groups members

In accordance with EFSA's Policy on Independence¹ and the Decision of the Executive Director on Competing Interest Management², EFSA screened the Annual Declarations of Interest filled out by the Working Group members invited to the present meeting. No Conflicts of Interest related to the issues discussed in this meeting have been identified during the screening

¹ http://www.efsa.europa.eu/sites/default/files/corporate_publications/files/policy_independence.pdf

² http://www.efsa.europa.eu/sites/default/files/corporate_publications/files/competing_interest_management_17.pdf

process, and no interests were declared orally by the members at the beginning of this meeting.

IV. Report on written procedures

Minutes were published on EFSA website.

V. Scientific topic(s) for discussion

5.1. Scientific opinion on Pest categorisation on *Euzophera semifuneralis* (EFSA-Q-2023-00312) SO: Virag Kertesz

The EFSA Panel on Plant Health performed a pest categorisation of *Euzophera semifuneralis* (Lepidoptera: Pyralidae), the American plum borer for the EU. This insect is native to North America, reported from the United States, Canada and Mexico. Out of its native range it is only present in Türkiye. It has not been reported in the EU and is not listed in Annex II of Commission Implementing Regulation (EU) 2019/2072. It can complete from one up to three generations per year in its native range and is polyphagous, feeding on 22 genera in 16 plant families. Host plant species commonly found in the EU include black walnut (*Juglans nigra*), mulberry (*Morus alba*, *M. nigra*), olive (*Olea europaea*), almond (*Prunus dulcis*), apricot (*P. armeniaca*), peach (*P. persica*), plum (*P. domestica*), sweet cherry (*P. avium*), apple (*Malus domestica*), pear (*Pyrus communis*) and pomegranate (*Punica granatum*). *E. semifuneralis* is generally known as pest of trees affected by mechanical injuries, frost or canker diseases. The pest is also known to vector the fungus *Ceratocystis fimbriata* which is not known to occur in the EU. Climatic conditions and availability of host plants in some EU countries would allow this species to establish and spread. Impact in cultivated hosts including apples, plums, mulberries, almond, olive and ornamental broadleaf trees is anticipated. Phytosanitary measures are available to reduce the likelihood of entry and spread. *E. semifuneralis* meets the criteria that are within the remit of EFSA to assess for this species to be regarded as a potential Union quarantine pest.

The opinion was adopted on 27 Jun 2023.

5.2. Scientific opinion on Pest categorisation on *Setoptus parviflorae* (EFSA-Q-2023-00311) SO: Virag Kertesz

The EFSA Plant Health Panel performed a pest categorisation of *Setoptus parviflorae* (Acari: Eriophyoidea: Phytoptidae) for the European Union (EU). This mite is not listed in Annex II of Commission Implementing Regulation (EU) 2019/2072. It is known to occur in the Nanjing Botanical Garden (China) on *Pinus parviflora*. This is its only known host plant and location. The mite occurs on the needles and in the needle sheaths. Details about its life cycle are mostly unknown. Plants for planting, including dwarfed plants, of *P. parviflora* are the main potential pathway for entry into the EU. However, plants of the genus *Pinus* other than fruit and seeds are mostly prohibited from entering the EU (Commission Implementing Regulation (EU) 2019/2072). The host, *P. parviflora*, can be found in temperate-zone gardens and arboreta, and is a popular tree for bonsai in the EU. Although the Köppen-Geiger climate type Cfa (humid subtropical), which occurs in Nanjing, can be found in the EU, the growing conditions of *P. parviflora* at the Nanjing Botanical Garden were not reported. This adds uncertainty about where in the EU this mite could establish, most probably on ornamental *P. parviflora*. There is no evidence of impact of *S. parviflorae*. Measures to prevent entry and spread are available. *S. parviflorae* does not satisfy all the criteria that are within the remit

of EFSA to assess for it to be regarded as a potential Union quarantine pest, as there is no evidence of impact.

The opinion was adopted on 27 Jun 2023.

5.3. Scientific opinion on Pest categorisation on *Blissus insularis* (EFSA-Q-2023-00394)
SO: Virag Kertesz

The EFSA Panel on Plant Health performed a pest categorisation of *Blissus insularis* (Hemiptera: Heteroptera: Blissidae) for the European Union (EU) territory. *B. insularis*, known in the US as the southern chinch bug, primarily feeds on St. Augustine grass (*Stenotaphrum secundatum*, Poaceae, subfamily Panicoideae). This is a lawn grass grown in warm, tropical, and subtropical regions of the world and which is widely grown in the southern US and also used in southern EU as a lawn and amenity grass. Adults and nymphs aggregate to feed at the base of the grass. *B. insularis* occurs in the southern continental US, Hawaii, Guam, Mexico, Central and South America, and across the Caribbean. In the EU, *B. insularis* was first detected in Portugal in 2019, where following a national survey, it has now been found in ten municipalities across the central and southern parts of the country. The pathway for entry into Portugal is unknown. *B. insularis* is not a regulated pest in the EU. It could further enter and spread within the EU via the import and movement of host plants for planting. *S. secundatum* is vegetatively propagated because seed is largely sterile. Many Poaceae plants for planting are prohibited from entering the EU, other than some ornamental perennial grasses. Whether *S. secundatum* is considered an ornamental grass within phytosanitary legislation is not clear. Host availability and climate suitability suggest that southern EU regions extending from the Atlantic coast of Portugal through the Mediterranean would be suitable for *B. insularis* establishment. The introduction of *B. insularis* to such areas of the EU would likely cause impacts to St. Augustine grass, as already seen in Portugal. Measures to prevent further entry and spread are available. Options to reduce the impact of established populations are also available. *B. insularis* satisfies all the criteria that are within the remit of EFSA to assess for it to be regarded as a potential Union quarantine pest.

The opinion was adopted on 27 Jun 2023.

5.4. Scientific opinion on Pest categorisation on Avocado sunblotch viroid (EFSA-Q-2022-00395) SO: Marco Pautasso

The EFSA Panel on Plant Health conducted a pest categorisation of the avocado sunblotch viroid (ASBVd) for the EU. The identity of ASBVd, a member of the genus *Avsunviroid* (family *Avsunviroidae*) is clearly defined and detection and identification methods are available. The pathogen is not included in the EU Commission Implementing Regulation 2019/2072. ASBVd has been reported in Australia, Ghana, Guatemala, Israel, Mexico, South Africa, USA (California, Florida), and Venezuela. In the EU, it has been reported in Greece (Crete Island) and Spain. The pathogen could establish in the EU wherever avocado (*Persea americana*) is grown. The only known natural host of ASBVd is avocado to which it causes the severe "avocado sunblotch" disease, characterized by white, yellow or red or necrotic depressed areas or scars on the fruit surface, bleached veins and petioles of the leaf, and rectangular cracking patterns in the bark of the old branches. Fruit yield and quality are severely diminished. ASBVd infects under experimental conditions a few more species in the family

Lauraceae. The viroid is naturally transmitted at an extremely high rate by seeds (up to 100% in asymptotically infected trees), but with a low efficiency by pollen (only to the produced seeds), and possibly through root grafts. Plants for planting, including seeds, and fresh avocado fruits were identified as the most relevant pathways for further entry of ASBVd into the EU. Avocado crops are cultivated in southern EU countries. Should the pest further enter and establish in the EU, impact on the production of avocado is expected. Phytosanitary measures are available to prevent entry and spread of the viroid in the EU. ASBVd fulfils the criteria that are within the remit of EFSA to assess for it to be regarded as a potential Union quarantine pest.

The opinion was adopted on 27 Jun 2023.

5.5. Scientific opinion on Pest categorisation on *Hoplolaimus galeatus* (EFSA-Q-2023-00345) SO: Marco Pautasso

The EFSA Panel on Plant Health performed a pest categorisation of *Hoplolaimus galeatus* (Nematoda: Hoplolaimidae) for the EU. *H. galeatus* belongs to the order Rhabditida, subfamily Hoplolaiminae. This nematode is not reported from the EU and is not included in the EU Commission Implementing Regulation 2019/2072. It is widely distributed in the USA, and is also reported from South America, Africa, Asia and Australia. The identity of *H. galeatus* is clearly defined and methods for its identification are available. *H. galeatus* is polyphagous and natural hosts include barley, wheat, red and white clover, alfalfa, beans, peas, cabbage, pine, spruce, oak, apple, grapevine, as well as various ornamental plants and turf grasses. These hosts are grown over vast areas of the EU. The climate of the EU is suitable for the establishment of *H. galeatus*. Pathways of entry are host plants for planting except seeds, but also soil as a contaminant. Soil import to the EU is prohibited and special requirements apply to import of machinery for agricultural/forestry purposes from third countries. Impact of the nematode is best known for North American plant species. The nematode has been reported to damage cotton, maize, soybean, pine, oak and turfgrass. Many of the hosts represent a considerable economic and environmental value to the EU. Therefore, the Panel concludes that *H. galeatus* satisfies all the criteria that are within the remit of EFSA to assess for it to be regarded as a potential Union quarantine pest.

The opinion was adopted on 27 June 2023.

5.6. Scientific opinion on commodity risk assessment on *Fagus sylvatica* (EFSA-Q-2023-00459) SO: Franz Streissl

The European Commission requested the EFSA Panel on Plant Health to prepare and deliver risk assessments for commodities listed in Commission Implementing Regulation (EU) 2018/2019 as "High risk plants, plant products and other objects". This Scientific Opinion covers plant health risks posed by plants of *Fagus sylvatica* imported from the United Kingdom (UK) as: (a) 1- to 7-year-old bare root plants for planting, (b) <1- to 15-year-old plants in pots, and (c) bundles of 1- to 2-year-old whips and seedlings, taking into account the available scientific information, including the technical information provided by the UK. All pests associated with the commodity were evaluated against specific criteria for their relevance for this opinion. Two EU quarantine pests, *Phytophthora ramorum* (non-EU isolates) and *Thaumetopoea processionea*, and two pests not regulated in the EU, *Meloidogyne mali* and

Phytophthora kernoviae, fulfilled all relevant criteria and were selected for further evaluation. For the selected pests, the risk mitigation measures implemented in the technical dossier from the UK were evaluated taking into account the possible limiting factors. For these pests an expert judgement is given on the likelihood of pest freedom taking into consideration the risk mitigation measures acting on the pest, including uncertainties associated with the assessment. In the assessment of risk, the age of the plants was considered, reasoning that older trees are more likely to be infested mainly due to longer exposure time and larger size. The degree of pest freedom varies among the pests evaluated, with *M. mali* being the pest most frequently expected on the imported plants. The Expert Knowledge Elicitation indicated with 95% certainty that between 9,792 and 10,000 bare root plants/trees up to 7 years old per 10,000 will be free from *M. mali*.

The opinion was adopted on 27 June 2023.

VI. Feedback from EFSA, SC and EC

6.1 Update from Pest categorisation WG SO: Virag Kertesz, Marco Pautasso

The chairs of the two pest categorisation working groups updated the Panel about the progress of the WGs and the plan for the upcoming plenary meetings.

6.2 Distribution of aubergine in the European Union: a feasibility study for Quantitative Pest Risk Assessment SO: Olaf Mosbach Schulz

Olaf Mosbach Schulz presented a case study related to the distribution of aubergines in the European Union. It was highlighted that the methodology used in this particular study could be valuable in other studies focusing in Quantitative Pest Risk Assessment.

6.3 Update on priority pests: environmental impact indicators SO: Sara Tramontini

Sara Tramontini provided an update about the ongoing activities regarding environmental impact indicators. It was emphasized the need to address environmental impacts, including the effects of pests on ecosystem services, biodiversity losses, and the undesired effects of control measures. It was acknowledged that access to comprehensive knowledge is currently limited. Additionally, it was mentioned the advantage of utilizing resources such as Corine Land Cover, CICES, and Natura 2000.

6.4 Update on Pest surveillance mandate Team Leader PLH Monitoring: Sybren Vos; SO: Tomasz Kaluski

PLH Monitoring Team Leader updated the Panel about the progress of Pest surveillance mandates.

Tomasz Kaluski delivered a live presentation of Risk-based Pest Survey Tool (RiPEST), highlighting the step-by-step process of utilizing the application for risk-based and statistically sound plant pest survey design. The following are the key points covered during the presentation:

An overview of the development of different tools to support MSs in designing and optimisation of plant pest surveys was presented.

The tool's features, demonstrating how it enables users to design pest survey activities efficiently were highlighted. The RiPEST offers a range of tools to design diverse types of surveys: detection, delimiting and buffer zone. The presentation focused on the detection survey. Step by step procedure of using the tool was presented, from general introduction to target population, epidemiological units and inspection units characteristics.

The presenter discussed the possibility to use RiPEST in design of risk-based survey. The application includes module to characterise different risks with different relative risks for assessed proportion of target population for each epidemiological unit separately. This helps prioritize survey efforts and allocate resources effectively.

The presentation concluded with a demonstration of the tool's report generation capabilities. Users can generate comprehensive reports based on the European Commission's predefined template, ready for import into Europhyt tool. This feature ensures compliance with European standards and facilitates seamless data exchange.

Overall, the live presentation provided valuable insights into the functionalities of the plant pest survey designing tool. The tool's integration of statistical methods, relative risk modules, and the ability to generate Europhyt-compatible reports make it a comprehensive solution for effective pest surveillance.

6.5 Update on Pest Survey Cards on non-EU Tephritidae SO: Ignazio Graziosi

Ignazio Graziosi updated the panel about the development of Pest Survey Cards and established relevance of these documents are for the national agencies and other stakeholders.

It was provided a detailed explanation of the development of Pest Survey Cards with statistically sound and risk-based surveillance of regulated Tephritidae within the context of EFSA Plant Pest Survey Toolkit.

6.6 Update from Working Groups on Commodity Risk Assessment SO: Ciro Gardi, Agata Kaczmarek, Franz Streissl

The panel was updated on the work progress of the High Risk Plants Working Groups I, and a summary of updates on HRP II and HRP III was also orally presented.

6.7 Update from Working Groups on Quantitative Pest Risk Assessment SO: Ewelina Czwienczek, Matteo Crotta

The Scientific Officers of the two pest risk assessment working groups updated the Panel about the progress of the WGs.

6.8 Progress updates on the EFSA Art. 36 Grant project “Plantibio Project - Reduce risk assessment uncertainties: data collection on antibiotics for control of plant pathogenic bacteria” Panel Chair: Claude Bragard

Claude Bragard introduced the Plantbio project. An overview of the impacts of bacteria on plants was presented, emphasizing the importance of antibiotic resistance and its consequences. The discussion also covered the problems arising from antibiotic resistance in both humans and plants, particularly the transfer of resistant genes.

Although the research primarily focuses on using antibiotics for controlling plant pathogenic bacteria (PPB) and exploring alternative treatments, there was an additional emphasis on communication and raising awareness about the issue.

The methodology used to investigate the use of antibiotics in plant health was explained, along with its limitations. A map illustrating the worldwide authorizations for antibiotic use was presented. Claude highlighted that there have been reports of antibiotic resistance, with the majority of cases involving streptomycin (98 reports). Although resistance reports are not widespread, they tend to be concentrated in countries where streptomycin is commonly used.

The key take-home message from the meeting was to emphasize the importance of considering the methodology, countries involved, and plant protection products when addressing antibiotic resistance. Furthermore, Claude presented the PLANTBIO communications strategy, including participation in various conferences and high-level meetings. Notably, the interaction with the Food and Agriculture Organization (FAO) was highlighted as a significant aspect of the project.

6.9 Progress updates on the EFSA Art. 36 Grant project on “Reduce risk assessment uncertainty: suitability of Mediterranean citrus production areas for *Phyllosticta citricarpa*” Panel Member : Antonio Vincent Civera

Antonio Vincent provided an overview of *Phyllosticta citricarpa* in terms of spread and the major impacts of this pest on citrus. It was established the importance of this pest as being part of quarantine pathogen, which belongs to the list of the 20 priority pests. Additionally, the primary and secondary cycle of infection was explained. It was highlighted that it is particularly important to understand the infection cycle to understand the output of this project.

The Outbreaks in Tunisia were explained, and a timeline of the reports of this pest by the Tunisian EPPO was provided. Additionally, a map was presented with the detected areas and with the severity of the symptoms.

Antonio introduced the different partner institutions working on the project and their activities and explained in detail the 3 objectives of the project. It was also highlighted the important role of EFSA in providing support and assistance with travel arrangements in times of COVID restrictions.

The infection model applied in Tunisia was explained, and it was highlighted that this model was already used by EFSA in other scientific opinions, however, with some modifications. Within the project context, the model was run worldwide in different regions where the pathogen is present. The network members were informed that the scientific report was published and completely open to the scientific community.

6.10 Feedback from EFSA Scientific Committees Panel Chair: Claude Bragard

The panel members were reminded about the upcoming open plenary, and the agenda includes various items. Additionally, updates will be provided on the activities related to the risk assessment of combined exposure to multiple chemicals. Another significant presentation will focus on the development of a new risk assessment platform. Furthermore, it was

highlighted that the programme of the Plant Health Panel will be presented at open plenary. Gratitude was expressed to all that contributed to the presentation.

6.11 Feedback from EC DG SANTE

Feedback was provided on acts taken following the publication of scientific opinions adopted in the last months. This feedback pertains to commodity risk assessments and the evaluation of certain pests and risks. The panel was updated on acts that have already been adopted and published, specifically related to the commodity risk assessment of High-Risk Plants following the opinions on *Crataegus monogyna* and *Malus domestica*. Additionally, an act for the prevention of the spread of *Spodoptera frugiperda* has recently been adopted. It was emphasized that these adoptions were based on the panel's work and gratitude to the panel for their exceptional efforts was expressed.

6.12 Feedback from EFSA: update on grants and procurements, plenary meeting dates, onboarding needs for new Panel members Team Leader PLH Risk Assessment : Giuseppe STANCANELLI

During the grants & procurement update, the focus was on an open call aimed at reducing risk assessment uncertainties, which is divided into three lots. The first lot concentrates on improving knowledge about the distribution of plant pathogenic species of the genus *Colletotrichum*. The second lot addresses the epidemiology and control of citrus black spot caused by *Phyllosticta citricarpa* in Tunisia, while the third lot investigates the biology and transmission capabilities of the sharpshooter *Draeculacephala robinsoni* in relation to *Xylella fastidiosa*. Additionally, the panel members were informed about ongoing calls for commodity risk assessment of high-risk plants, with an application deadline of July 7th. The meeting also discussed EFSA's mandate to support urgent authorizations on Plant Health and Pesticides, as well as an open call for the development of pest survey cards for Union quarantine pests.

In anticipation of the upcoming Panel renewal, the panel members were requested to provide feedback regarding their onboarding experience. The previous onboarding agenda has been uploaded to the DMS, and the members were encouraged to share their thoughts on the overall experience and offer suggestions for improvement and send it per mail to Plants Unit.

VII. Any Other Business

The dates for Plenary Meetings until June 2024 were agreed upon.

The next PLH Panel meeting will be held on 18+19 September 2023 Portugal.