

Technical insights into bioprocess design for cultivated meat

Marianne Ellis

Professor of BioProcess & Tissue Engineering

Department of Chemical Engineering

0000

University of Bath, UK

1. An introduction to cellular agriculture

Yeast for oils/fats, proteins and vitamins

Mycelium* for protein

*the root-like structure of fungus

Cellular Agriculture

A collection of technologies seeking to produce consumables that are traditionally produced in livestock-based agriculture systems through other means such as precision fermentation or tissue engineering.

Cultured meat is a cellular agriculture product

Other names include cultivated meat, lab-grown meat

In its basic form, cultured meat is a protein ingredient made up of muscle cells only.

Muscle cells begin as stem cells, and need to mature to form skeletal muscle

A longer term goal is to grow 'full cut' cultured meat, with the complex structure that results from combining the difference cells in muscle.

How is cultured meat grown? The process

Our **Vision** is to **transform** food production, **transitioning** to an environmentally, economically, and socially sustainable model in which **novel** cellular agriculture manufacturing systems **complement** traditional food production.

Mission

Solve the challenge of how to produce affordable cultured meat at scale in a **triple bottom line** bioprocess.

Technology Crossover

Granu Technologies 2. The manufacturing challenges Challenge 2 Challenge 1 Challenge 1 Challenge 1 ..act. Grand Challenge 1 Grand Chain Integration Feedstock Cost and Sourcing: cells***, media**, scaffold* Serum Replacement** **Bioreactor Technology** \rightarrow Product generation at scale*** Cell Ag as part of agricultural plans Ethical and • Yield*** Sustainable and policy*** **Downstream Separation** Life Cycle Assessment (LCA)** Intercellular**; Extracellular* Understanding Public Perception*** Social Product purification** Product Manufacturing Systems** Product formulation and formation* Supply Chain** Additives* Operational Nutritional profile, bioavailability, digestibility* Waste Valourisation Value added from waste to media source*** Combined heat and power*

Stephens et al. 2018, Trends in Food Science & Technology

Water recycling**

Current availability

- Research cell suppliers
- Specialist cell suppliers
- Own animals

Future opportunities

- \succ \uparrow Specialist cell suppliers
- Farms/abattoirs
- Supermarkets
- Own animals

- Research media suppliers £££
- In-house formulations
- Sourced from:
- Research suppliers

- Cultured meat media suppliers £
- In-house formulations
- Sourced from:
- Cultured meat suppliers
- Local farms
- Precision fermentation companies

Current availability

- Research suppliers
- In-house from research consumables

In-house from local sources

Future opportunities

- Specialist cultivated meat suppliers
- Waste valorisation
- Precision fermentation companies
- Farms/abattoirs
- Supermarkets/delis/restaurants

Supply chain: reliable, consistent, transparent, safe

Scaffold material, fabrication, and destination

Reusable (e.g. polystyrene) hollow fibres

Outer diameter: ~1,100 μm Wall thickness: ~90 μm Pore size: 1 - 5 μm

Edible grass strips (cellulose)

Grass, before and after decellularisation

Silk microcarriers

Luetchford et al. 2018, J. Mem Sci. Allan et al. 2021. J. Biomed Mat. Res Tom Davies – PhD student

3. Bioprocess design

