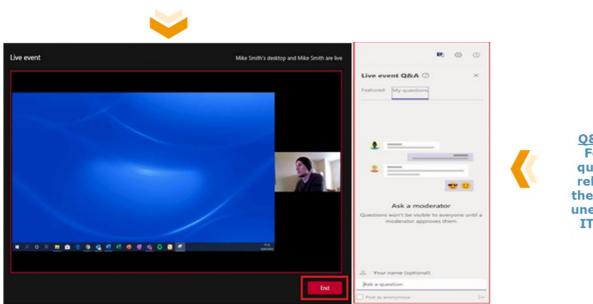


INFO SESSION ON THE EFSA BEE GUIDANCE DOCUMENT 2023



HOUSE KEEPING RULES

- You are automatically connected to the audio broadcast. One-way audio (<u>listen only</u> mode).
- The event is in English. Questions should be submitted in English via the Q&A chat;

Presentation window

- This event is being recorded and recordings will be published on EFSA's website
- After the event, attendees will receive a link to a survey to evaluate the EFSA's event & services

Q&A box: For any questions related to the topic or unexpected IT issues

AGENDA

First session

- Presentation on the specific protection goal
- Overview of the guidance document
- Chapter 5: Exposure

1st Q&A

Second session

- Chapter 6: Lower tier Hazard
- Chapter 7: Lower tier risk assessment
- Chapter 8: Time reinforce Toxicity (TRT)

Coffee break (11.30)

2nd Q&A

Third session

- · Chapter 9: Scheme for sublethal effects
- Chapter 10: Higher tier studies

3rd Q&A

End of the info session

During the Q&A, we will answer to

- Some questions received with the registration
- Selected questions from the chat

Please submit your (short) questions in the Q&A CHAT at the end of each presentation!!

If possible, please tag, the speaker

NOTE: Questions will be only answered during the event

Bee guidance document: setting of Specific Protection Goals and next steps.

European Commission DG SANTE, Unit E4 Sofie Hofkens

EFSA, 13 June 2023

Current status

- Status quo regarding the risk assessment for honeybees and other non-target arthropods is the 2002 Guidance Document on Terrestrial Ecotoxicology
- The 2013 Bee Guidance Document from EFSA was never fully endorsed by the majority of Member States in the Standing Committee on Plants, Animals, Food and Feed despite repeated efforts over several years.
- Commission mandated EFSA in March 2019 to review the 2013 Bee Guidance Document, taking into account scientific knowledge that has emerged since 2013. EFSA published a revised guidance for bees on 11 May 2023.

Setting of SPG for honeybees

- Definition of Specific Protection Goals are key for a good Environmental Risk Assessment.
 Discussions with Member States started in 2020. Two information sessions with stakeholders were held in January and November 2021.
- Discussion was based on the EFSA technical report regarding the analysis of background variability of honeybee colony sizes.
- A majority of EU agriculture ministers supported a new specific protection goal for honeybees of 10% at the Agriculture and Fisheries Council meeting of 28 June 2021.
- This value of 10% should be understood as the <u>maximum</u> permitted level of honeybee colony size reduction following pesticide exposure and will be applied for the entire EU.
- This value is very ambitious compared to what is acceptable under the Guidance from 2002 and compared to the natural variability of colony size found by EFSA but verification via field studies is still technically feasible.

Setting of SPGs for wild bees

- Discussion was based on the EFSA technical report regarding the analysis of the evidence to support the definition of SPGs for bumblebees and solitary bees.
- Absence of sufficiently robust evidence to set a specific protection goal for bumblebees and solitary bees.
- A majority of Member States indicated support for an undefined threshold approach for setting specific protection goals (SPGs) for both bumblebees and solitary bees
- The Commission therefore informed EFSA to continue the update of the Bee Guidance Document on the basis of an undefined threshold approach for bumble bees and solitary bees.

Setting of SPGs for wild bees (II)

In practice, until further data becomes available and in case of potential exposure of bees, by default field studies on bumblebees and solitary bees will be required unless:

- the lower tier risk assessments for honeybees <u>and</u> nontarget arthropods other than bees show no effects for the active substance, or
- semi-field (cage or tunnel studies) with bumblebees and solitary bees show absence of effects.

Furthermore, semi-field or field testing with bumblebees would also not be needed if laboratory studies according to OECD test methods No 246 and 247, show an $LD_{50} > 100 \,\mu g$ active substance/bumblebee.

How will the Bee Guidance Document be endorsed?

Two-step procedure involving Standing Committee PAFF:

- 1. Check and if needed update implementing regulations, in particular
 - Commission Regulation (EU) No 546/2011 as regards uniform principles for evaluation and authorisation of plant protection products
 - Commission Regulations (EU) No 283 and 284/2013 setting out the data requirements for active substances and plant protection products respectively
- 2. Endorse the guidance on the risk assessment of plant protection products on bees (*Apis mellifera*, *Bombus* spp. and solitary bees)

Develop additional test guidelines: workplan

What ?

Protocols for testing pesticides (chemicals and microbials) on pollinators - looking for concrete ways to support:

- Development,
- Validation and ringtesting,
- And international agreement at OECD.

How ?

Commission, together with the Member States, is currently establishing an inventory of available, under development and needed protocols to test the effects of pesticides on pollinators. This inventory will be used in a next step as a basis for a workplan.

Latest news

Latest news is always available via the website of the European Commission

https://food.ec.europa.eu/plants/pesticides/protection-bees_en

Thank you

© European Union 2020

Unless otherwise noted the reuse of this presentation is authorised under the <u>CC BY 4.0</u> license. For any use or reproduction of elements that are not owned by the EU, permission may need to be sought directly from the respective right holders.

OVERVIEW OF THE EFSA'S BEE GUIDANCE DOCUMENT

Domenica Auteri

BACKGROUND

GUIDANCE

APPROVED: 30 March 2023 doi: 10.2903/j.efsa.2023.7989

Revised guidance on the risk assessment of plant protection products on bees (*Apis mellifera*, *Bombus* spp. and solitary bees)

European Food Safety Authority (EFSA).

Appendices of the guidance document:

Appendix A List of crop attractiveness (Excel spread sheet)

Appendix B Parameters for contact and dietary exposure (Excel spread sheet)

Appendix C Additional information for metabolite risk assessment

Annexes of the guidance document:

 Annex A Guidance for refinement of residues dissipation – developed in common with the revised guidance document on risk assessment for birds and mammals (EFSA, 2023a)

Annex B Recommendations for field studies to refine exposure at higher tiers

Annex C Recommendations for higher tier effect studies.

Technical Report

APPROVED: 28 March 2023 doi: 10.2903/sp.efsa.2023.EN-7982

Supplementary information to the revised guidance on the risk assessment of plant protection products on bees (*Apis mellifera, Bombus* spp. and solitary bees)

In order to transparently document the science behind the revision of EFSA (2013a,b), the guidance is complemented by a stand-alone document referred to as <u>supplementary document (EFSA, 2023b)</u>, which includes all the background information, data collection and analysis. This supplementary document includes an extended Appendix (i.e. Appendix A) on attractiveness of agricultural crops to bees, an Appendix on Selection of shortcut values for Tier 1 (i.e. Appendix B), and different annexes which were necessary in order to report highly complex topics.

The annexes of the supplementary document are:

Annex A	Preliminary considerations and planned methods for the revision of Tier 1 risl
	assessment schemes of EFSA's 2013 guidance

Annex B Outcome of the systematic literature review on food consumption

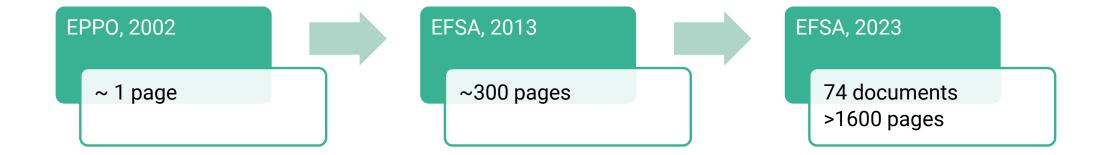
 Annex C Outcome of the systematic literature review on the crop-specific sugar content in nectar

Annex D Relevance of the weeds in flower scenario for the treated field

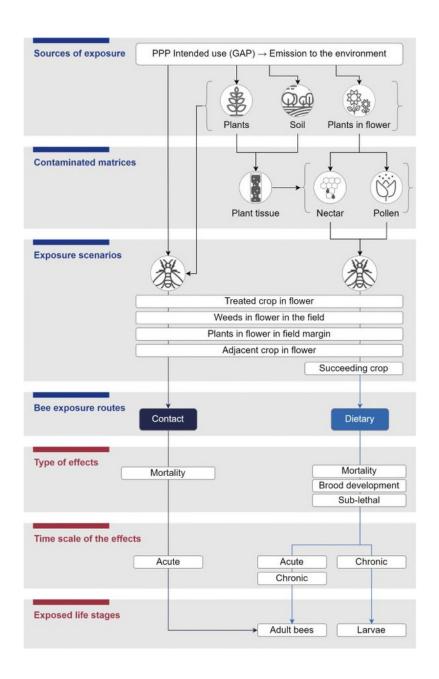
Annex E Relevance of water scenario

 Annex F Expert Knowledge Elicitation (EKE) to assess the attractiveness of crops for pollen collection of bees

Annex G Time-reinforced toxicity: concept and revised risk assessment scheme

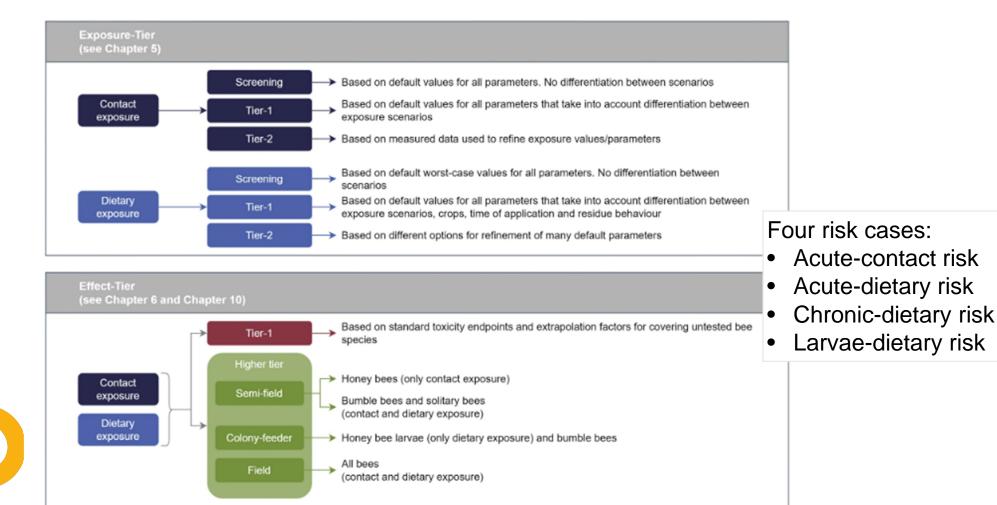

Annex H Residue database data (Excel spread sheets)

Annex I Succeeding crops

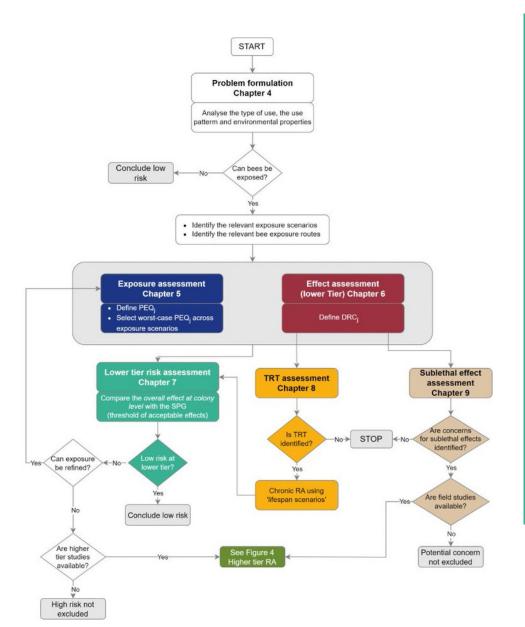

Annex J Inter-species extrapolation data (Excel spread sheets)

Annex K Overview of sublethal effect testing on bees.

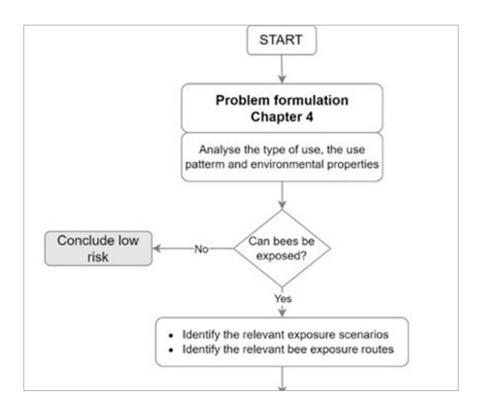
LOOKING BACK AND FORTH


Chapter 1 - Introduction

CHAPTER 2 - SCOPE OF THE GD

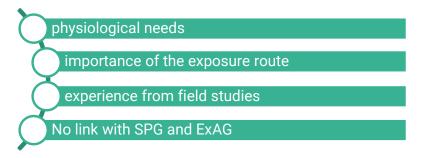

- Provide guidance in the context of the evaluation of PPPs and their active substances under Regulation (EC) 1107/2009
- The focus is on **direct effects**; indirect effects are out of scope
- The focus is on **chemicals**, the Guidance does not cover the risk assessment for micro-organism and semio-chemicals
- The focus is technical mixture undergo authorisation under the 1107

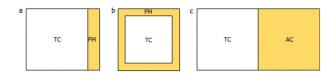
CHAPTER 3 - OVERVIEW: TIERED APPROACH



Chapter 3 - Overview: risk assessment scheme

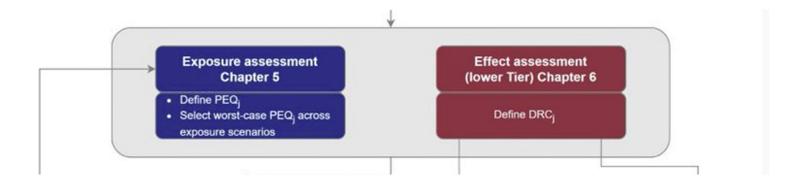
CHAPTER 4 - DEFINITION OF PROBLEM FORMULATION


- Better definition of the Problem formulation
- Consideration of exposure for several methods of application
- Consideration of relevance of the scenarios



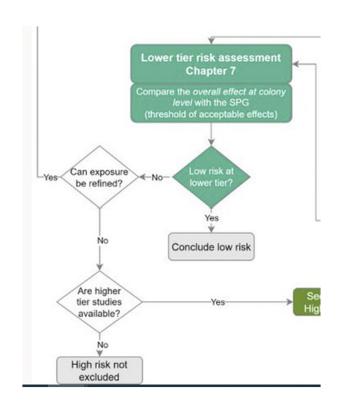
CHAPTER 4 - EXPOSURE SCENARIOS

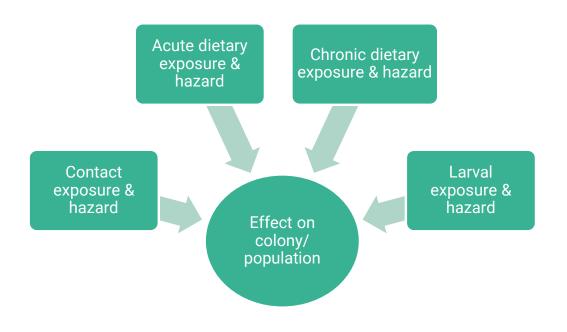
➤ No water scenarios


- ➤ Crop attractivity revised (EKE)
- >Amendments for the off-field scenarios

- > Weed abundance taken into consideration
- ➤ Triggering the succeeding crop scenario

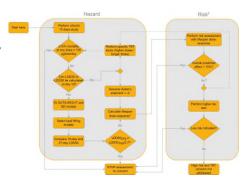
EXPOSURE/HAZARD DEFINITION



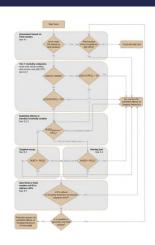

- Identify the more suitable exposure model
- Identify the worst-case PEQ for each of the 4 risk cases

- Identify the hazard endpoints for the 3 bee groups
- Identify dose response curves for each of the 4 risk cases

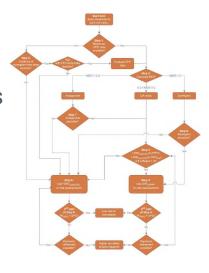
CHAPTER 7 - LOWER TIER RISK ASSESSMENT



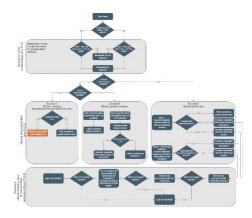
SPECIFIC CONSIDERATIONS


New scheme for Time Reinforced Toxicity

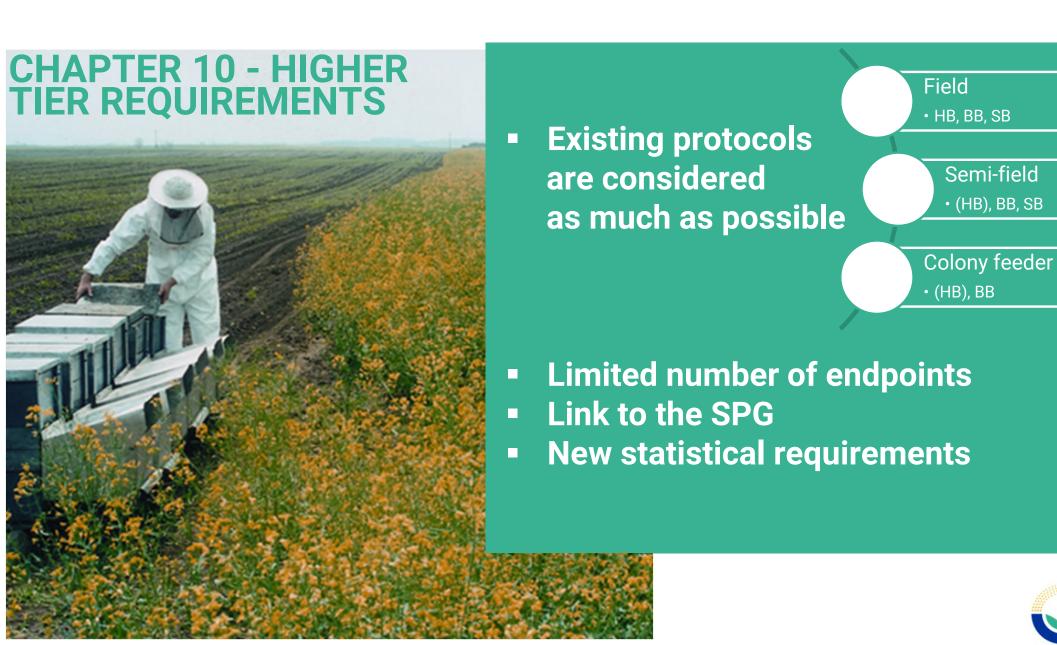
Chapter 8


New scheme for sublethal effects

Chapter 9

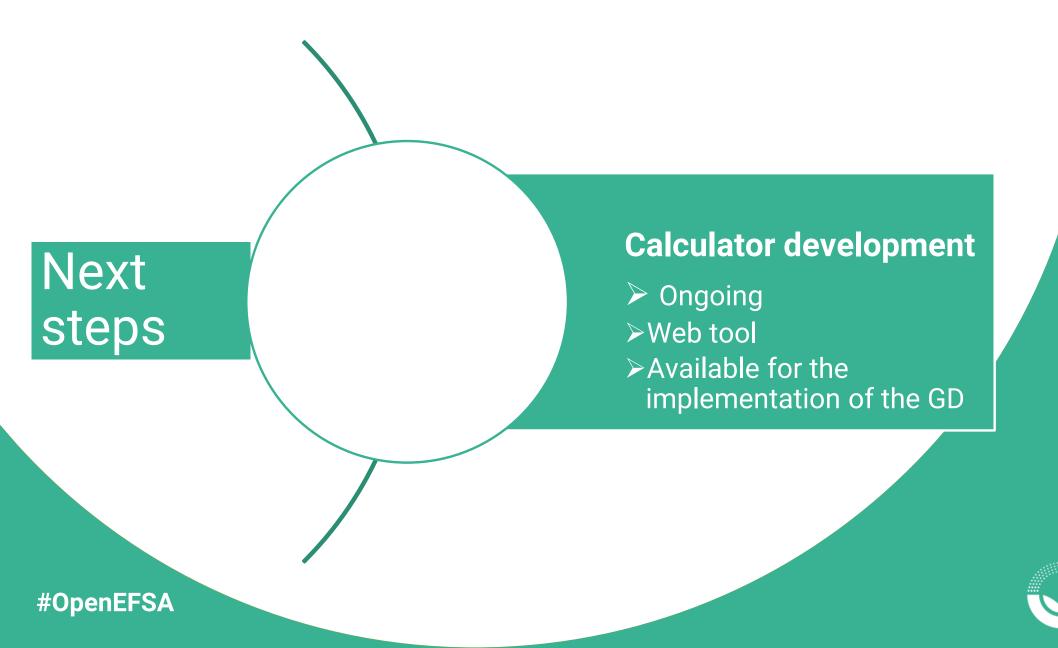

New scheme for technical mixtures

Chapter 12



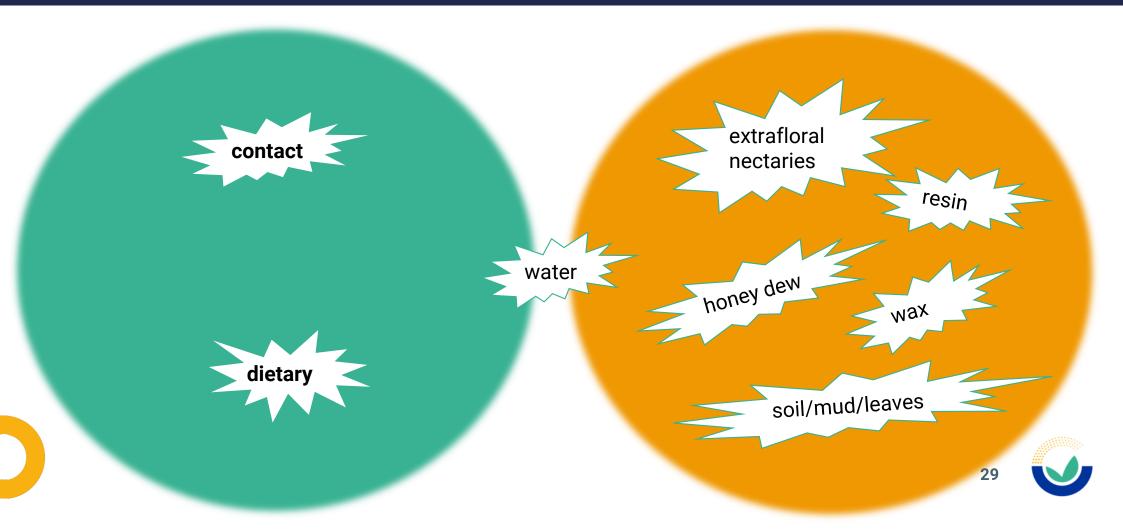
New scheme for metabolites

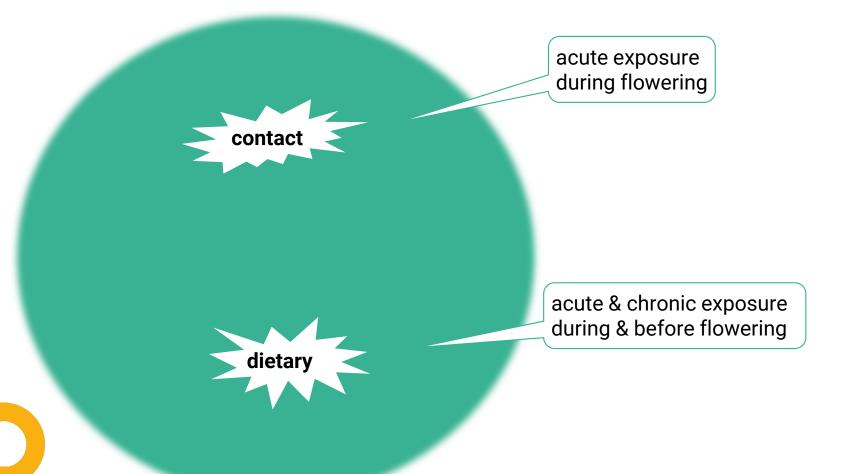
Chapter 11



OTHERS

- Chapter 13 Risk mitigation measures
- Chapter 14 Conclusion (in relation to the terms of reference)
- Chapter 15 Recommendations




CHAPTER 5: EXPOSURE

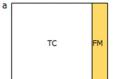
EXPOSURE ROUTES

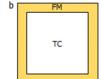
EXPOSURE ROUTES

APPLICATION METHODS & SCENARIOS

Scenario		Contact exposure	Dietary exposure
Treated crop	In-field	~	\
Weeds		~	*
Field margin	Off-field	~	\
Adjacent crop		-	~
Succeeding crop	In-field, but later in time	-	~

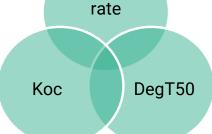
Spray application





* Except seed treatment

CHANGES FROM 2013


Amendments for the off-field scenarios

Triggering the succeeding crop scenario
Application

CONTACT EXPOSURE

$$PEQ_{co} = AR EF_{co} BSF$$

Where:

PEQ_{co}: Predicted Exposure Quantity for contact exposure - μg/bee

AR: application rate – g/ha

EF_{co}: exposure factor for contact exposure (-)

BSF: body surface factor - dm²/bee

For Tier 1, PEQ_{co} can routinely be estimated for the 5th% small bumble bee and solitary bee species.

Category for the risk assessment	Representative species	Bsf (dm ² /bee) 0.0114
Honey bee	Apis mellifera	
Bumble bee	5th percentile (by body surface) bumble bee species	0.0146
Solitary bee	5th percentile (by body surface) solitary bee species	0.00184

THE MATHEMATICAL MODELS (DIETARY EXPOSURE)

Through soil contamination

$$\begin{split} \text{PEQ}_{\text{di}} &= \text{SV}_{\text{po,soil}} + \text{SV}_{\text{ne,soil}} \\ \text{SV}_{\text{po,soil}} &= \frac{1}{1000} \text{LF}_{\text{po}} \, \text{PEC}_{\text{pw}} \, \text{CMP}_{\text{po}} \\ \text{SV}_{\text{ne,soil}} &= \frac{1}{1000} \text{LF}_{\text{ne}} \, \text{PEC}_{\text{pw}} \frac{\text{CMP}_{\text{su}}}{\text{SN}} \end{split}$$

Pre-flowering contamination

$$PEQ_{di} = \frac{AR}{1000} EF_{di} PFF (SV_{po,be} + SV_{ne,be})$$

$$\mathsf{SV}_{\mathsf{po,be}} = \frac{1}{1000} \mathsf{LF}_{\mathsf{po}} \; \mathsf{PCUD}_{\mathsf{po,be}} \; \mathsf{CMP}_{\mathsf{po}}$$

$$\text{SV}_{\text{ne,be}} = \frac{1}{1000} \text{LF}_{\text{ne}} \; \text{PCUD}_{\text{ne,be}} \frac{\text{CMP}_{\text{su}}}{\text{SN}}$$

$$PCUD_{po,be} = function(RUD_{po}, n_{be}, i_{be}, DT50_{pl})$$

$$PCUD_{ne,be} = function(RUD_{ne}, n_{be}, i_{be}, DT50_{pl})$$

During flowering contamination

$$\mathsf{PEQ}_{\mathsf{di}} = \frac{\mathsf{AR}}{\mathsf{1000}} \; \mathsf{EF}_{\mathsf{di}} \; \big(\mathsf{SV}_{\mathsf{po},\mathsf{du}} + \mathsf{SV}_{\mathsf{ne},\mathsf{du}} \big)$$

$$\mathsf{SV}_{\mathsf{po},\mathsf{du}} = \frac{1}{1000} \mathsf{LF}_{\mathsf{po}} \; \mathsf{PCUD}_{\mathsf{po},\mathsf{du}} \; \mathsf{CMP}_{\mathsf{po}}$$

$$SV_{ne,du} = \frac{1}{1000} LF_{ne} PCUD_{ne,du} \frac{CMP_{su}}{SN}$$

$$PCUD_{po,du} = function(RUD_{po}, n_{du}, i_{du}, DT50_{po}, w)$$

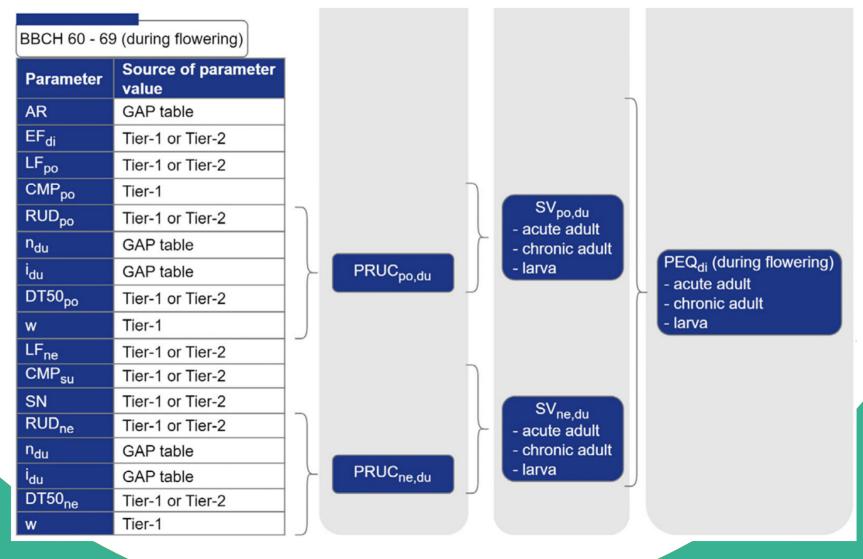
$$PCUD_{ne,du} = function(RUD_{ne}, n_{du}, i_{du}, DT50_{ne}, w)$$

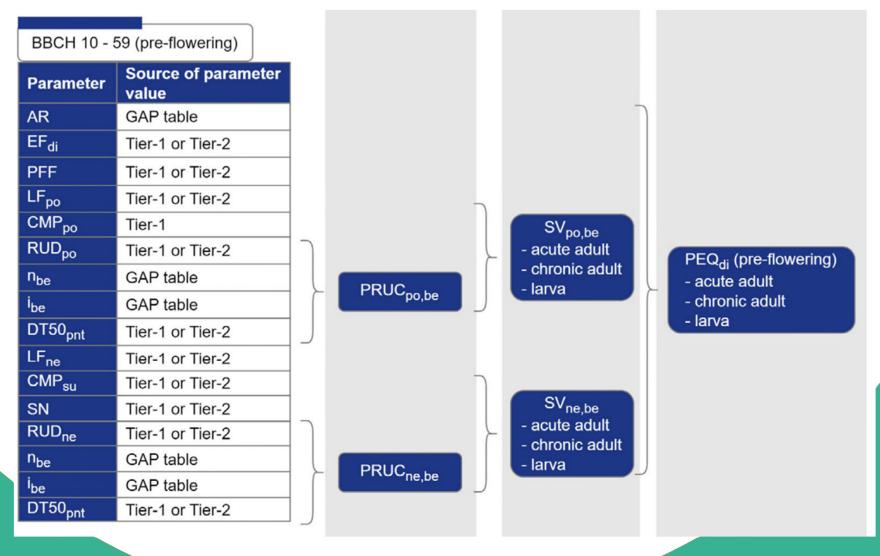
19 parameters make up the 3 mathematical models

Parameter	Definition	Unit
AR	Application rate	g/ha
EF _{di}	Exposure factor for dietary exposure	- (unitless)
PFF	Pre-Flowering Factor	- (unitless)
SV _{po,be}	Shortcut value for pollen for before flowering situations	μg/bee or μg/bee/day or μg/larva/developmental period
SV _{ne,be}	shortcut value for nectar for before flowering situations	μg/bee or μg/bee/day or μg/larva/developmental period
SV _{po,du}	shortcut value for pollen for during-flowering situations	μg/bee or μg/bee/day or μg/larva/developmental period
SV _{ne,du}	shortcut value for nectar for during-flowering situations	μg/bee or μg/bee/day or μg/larva/developmental period
SV _{po,so}	Shortcut value for pollen for situations for contamination from soil	μg/bee or μg/bee/day or μg/larva/developmental period
SV _{ne,so}	Shortcut value for nectar for situations for contamination from soil	μg/bee or μg/bee/day or μg/larva/developmental period
CMP _{po}	pollen consumption	mg/bee or mg/bee/day or mg/larva/developmental period
CMP _{su}	sugar consumption	mg/bee or mg/bee/day or mg/larva/developmental period
SN	sugar content of the nectar	kg/kg (i.e., -)
LF _{po}	landscape factor for pollen	- (unitless)
LFne	landscape factor for nectar	- (unitless)
PCUD _{po,be}	Predicted Concentration per Unit Dose in pollen from before flowering application	mg/kg
PCUD _{ne,be}	Predicted Concentration per Unit Dose in nectar from before flowering application	mg/kg
PCUD _{po,du}	Predicted Concentration per Unit Dose in pollen from during-flowering application	mg/kg
PCUD ne,du	Predicted Concentration per Unit Dose in nectar from during-flowering application	mg/kg
RUD _{po}	Residue per Unit Dose in pollen	mg/kg
RUD _{ne}	Residue per Unit Dose in nectar	mg/kg
DT50 _{po}	half-life in pollen; the time within which the concentration in pollen is reduced by 50 percent	day
DT50 _{ne}	half-life in nectar; time within which the concentration in nectar is reduced by 50 percent	day
DT50 _{pl}	half-life in plant matrices; the time within which the concentration in crop/plant matrixes is reduced by 50 percent	day
n _{be}	number of applications before flowering	- (unitless)
n _{du}	number of applications during flowering	- (unitless)
İbe	interval between multiple applications performed before flowering	day
i _{du}	interval between multiple applications performed during flowering	day
w	time window for deriving time-weighted average concentrations for chronic exposure	day
PECpw		
r L Cpw	Predicted Environmental Concentration in pore water	mg/L = mg/kg

Unit

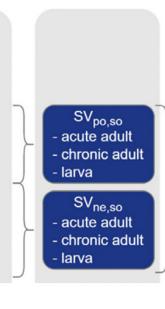
Parameter


Definition



THE RELEVANCE OF THE DIETARY MODELS

	Exposure scenario				
PPP application	treated crop	weeds in the field	field margin	adjacent crop	succeeding crop
BBCH < 10, 'bare soil' situation	through-soil contamination	through-soil contamination			
BBCH < 10, presence of emerged weeds not excluded	through-soil contamination	during-flowering contamination	during-flowering contamination	during-flowering contamination	through-soil contamination
BBCH 10-59	pre-flowering contamination				
BBCH 60-69	during-flowering contamination				
BBCH ≥ 70	Not relevant				37



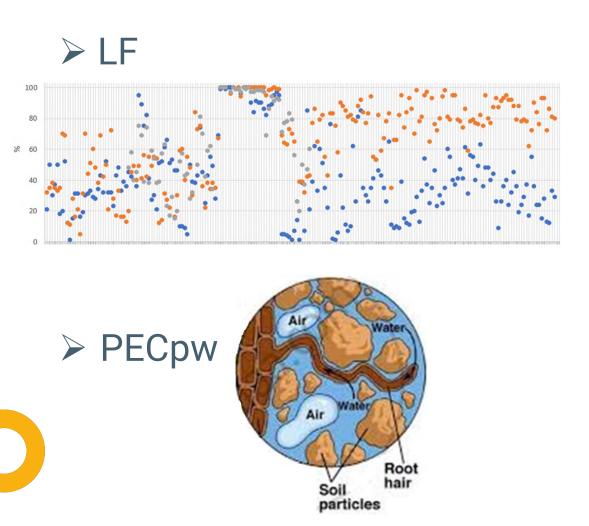
BBCH < 10 (through soil)

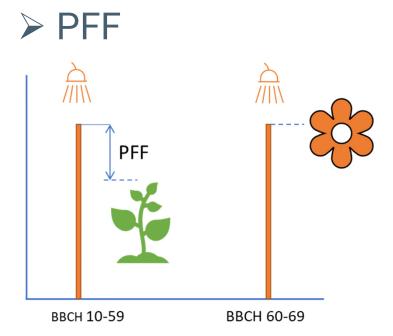
Parameter	Source of parameter value
LF _{po}	Tier-1 or Tier-2
PEC _{pw}	Tier-1 or Tier-2
CMP _{po}	Tier-1
LF _{ne}	Tier-1 or Tier-2
PEC _{pw}	Tier-1 or Tier-2
CMP _{su}	Tier-1
SN	Tier-1 or Tier-2

PEQ_{di} to be calculated for each relevant scenario

PEQ_{di} = 0 if no application is intended in the BBCH interval

PEQ_{di} (through soil)


- acute adult
- chronic adult


- larva

Select GAPspecific PEQ_{di} as the highest obtained across scenarios

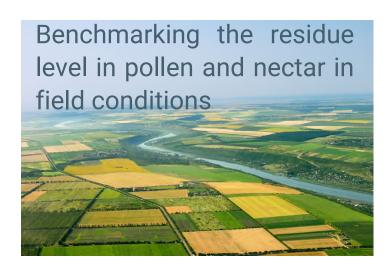
BRAND NEW PARAMETERS

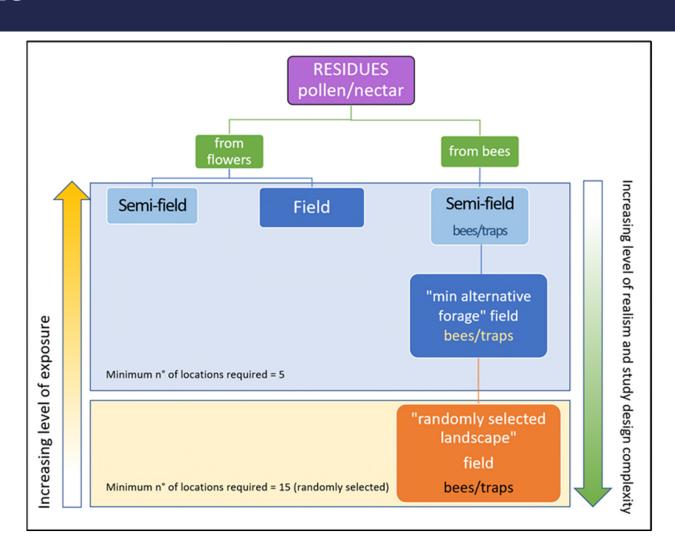
Refinement options (Tier 2)

CONTACT EXPOSURE

- EF_{co} parameter might be refined with crops/situations specific data
- PEQco itself might be refined in exposure field studies; the chemical washed-off from the surface of the bees has to be analytically determined (see Annex B).

DIETARY EXPOSURE


- Pore water concentration (PECpw)
- EFdi parameter
- Residue levels in pollen/nectar measured in exposure field studies (RUD)
- Residue decline in pollen/nectar or plant matrixes measured in exposure field studies (DT50)
- Landscape effect on the food collection (LF)
- Sugar content of the nectar (SN)



EXPOSURE FIELD STUDIES

Aim: encompass the 90%tile worst case residue level in pollen and nectar (realistic worst-case concentrations)

FIRST Q&A

COFFEE - TEA BREAK

THE SESSION WILL START AGAIN AT 11.45

Thank you for attending our event!

- The recording of today's event will be available on the EFSA website in few days
- Please take few minutes to fill out the evaluation survey that you will receive after the event. Your feedback is essential to improve our future events