

EFSA OPINION ON WELFARE OF CALVES ON FARM

Christoph Winckler

Chair of the working group on the welfare of calves

SCOPE OF THIS WORK

The **European Commission** requested EFSA to give an independent view on the protection of calves related to the *welfare of calves*:

Scope:

Bovine animals up to 6 months
Born on dairy farms – not in suckler herds

Ţ

Calves kept on dairy farms for replacement (females)

Calves for white veal (unweaned calves for meat, mostly males)

GENERAL TERMS OF REFERENCE (TOR)

Describe the current **husbandry systems** ToR1 Describe the relevant welfare consequences ToR 2 Define qualitative or quantitative measures to assess the welfare ToR 3 consequences (animal based measures (ABMs)) Identify the **hazards** leading to these welfare consequences ToR 4 Provide **recommendations** to **prevent**, **mitigate** or **correct** the **welfare** ToR 5 consequences

SPECIFIC SCENARIOS

Specific scenario 1. The welfare of male dairy calves raised for producing "white" veal meat and the risks associated with individual housing, insufficient space, and feed restriction (such as deprivation of iron and fibres)

Specific scenario 3. The welfare of dairy calves and the risks associated with limited cow-calf bond.

EFSA to propose

Detailed, qualitative and quantitative ABMs and **preventive and corrective measures**

Specific scenario 2. The assessment of ABMs collected in slaughterhouses to monitor the level of on-farm welfare of male dairy calves raised for producing "white" veal meat

DATA AND METHODOLOGY

Literature review

Expert Knowledge Elicitation (EKE)

"Farm to fork" model

Specific scenarios: space allowance, fibre, iron, group size and age at grouping

Uncertainty analysis

O	Certainty range			
Quantitative assessment	> 50– 100%	66–100%	90–100%	
Qualitative translation	More likely than not	From likely to almost certain	From very likely to almost certain	

RESULTS: MAIN HOUSING SYSTEMS DESCRIPTION (TOR 1)

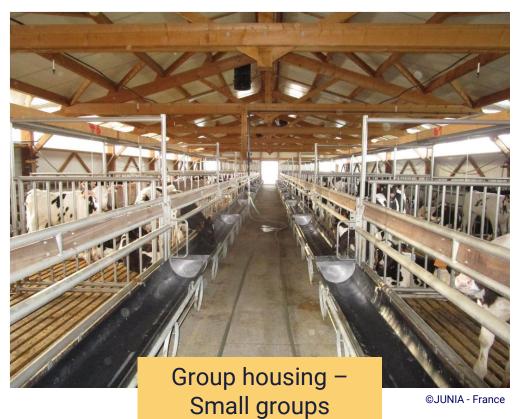
DAIRY FARMS - BEFORE WEANING

© S. Waiblinger

RESULTS: MAIN HOUSING SYSTEMS DESCRIPTION (TOR 1)

DAIRY FARMS – AFTER WEANING TILL 6 MONTHS

bedding


© S. Waibilinger

HUSBANDRY SYSTEMS VEAL CALVES

VEAL FARMS

HUSBANDRY SYSTEMS VEAL CALVES

VEAL FARMS

© M. Brščić

Group housing – large groups

RESULTS: WELFARE CONSEQUENCES (TOR 2)

Welfare consequences
Respiratory disorders
Inability to perform exploratory or foraging behaviour
Gastro-enteric disorders
Inability to perform sucking behaviour
Group stress
Inability to chew and ruminate
Resting problems
Inability to perform play behaviour
Restriction of movement
Prolonged hunger
solation stress
Metabolic disorders
Separation stress
Heat stress
Handling stress

15 welfare consequences were identified as highly relevant

- → ABMs (e.g., play behaviour)
- → Hazards (e.g., insufficient space allowance per calf)
- Preventive measures (e.g., avoid individual housing systems)

HUSBANDRY SYSTEMS

RECOMMENDATIONS

- Adequate colostrum management
- Provision of large milk amounts (~ 20% body weight per day until at least 4 weeks of life)
- Keeping calves from an early age onwards in stable groups
- Long roughage in racks
- Water through an open surface
- Access to shade or insulated shelters
- Provision of brushes
- Good ventilation
- Transport events, commingling and regrouping should be avoided

SPECIFIC SCENARIO 1: VEAL CALVES - LIMITED SPACE

WELFARE CONSEQUENCES

Restriction of movement
Resting problems
Inability to perform play behaviour

RELATIONSHIP BETWEEN SPACE AND BEHAVIOUR

SPACE ALLOWANCE	IMPACT ON BEHAVIOUR	
1.8 m ²	Higher probability of respiratory disease	
2 m ²	Reduced lying times	
3 m ²	Resting in a relaxed position	
20 m ²	Locomotor play behaviour*	

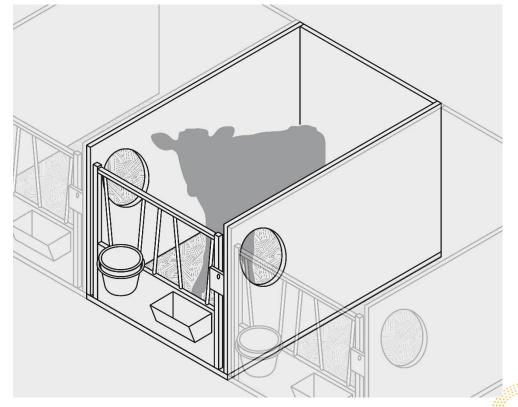
^{*}estimated by Expert Knowledge Elicitation (EKE)

SPECIFIC SCENARIO 1: VEAL CALVES - LIMITED SPACE

RECOMMENDATIONS – SPACE ALLOWANCE

Space allowance

- Current minimum space allowance (i.e. 1.8 m² per animal) should be increased to at least 3 m² per animal
- 3 m² per animal to increase time spent lying in a relaxed posture and likely an increase in general activity
- At least 20 m² per animal to allow for full locomotor play behaviour

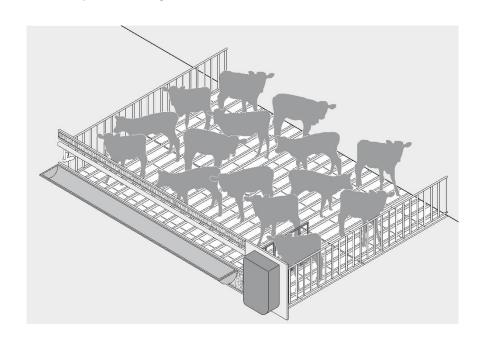


SPECIFIC SCENARIO 1: VEAL CALVES - GROUPING

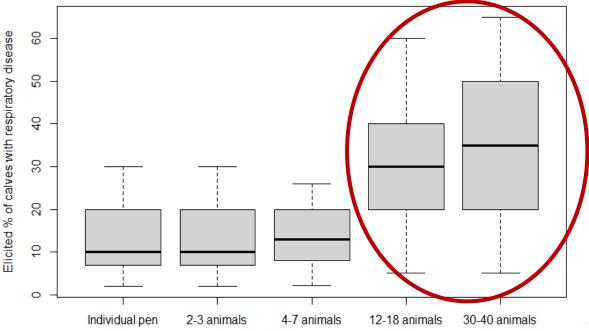
INDIVIDUAL HOUSING

WELFARE CONSEQUENCES

Isolation stress
Impaired social behaviour development
Impaired learning ability



SPECIFIC SCENARIO 1: VEAL CALVES - GROUPING


HOUSING IN LARGE GROUPS

WELFARE CONSEQUENCES

Group stress
Respiratory disorders

Elicited respiratory disease prevalence per group size

SPECIFIC SCENARIO 1: VEAL CALVES - GROUPING

RECOMMENDATIONS

- Unless they have contact with the dam, calves should be moved to and kept in pairs or small groups (2-7 animals) within the first week of life (i.e., before day 7)
- Calves should not be kept individually at the veal unit. Veal calves should be housed in groups of
 7 animals at least until the age of 6 weeks
- Calves should be kept with a familiar pen mate(s) from the dairy farm of origin after arrival at the veal unit and groups should be kept stable as much as possible
- Aspects such as ventilation and pen air volume should be well managed, but further research is needed for specific recommendations on these parameters

SPECIFIC SCENARIO 1: VEAL CALVES - IRON

Natural variation in haemoglobin levels during first weeks of life

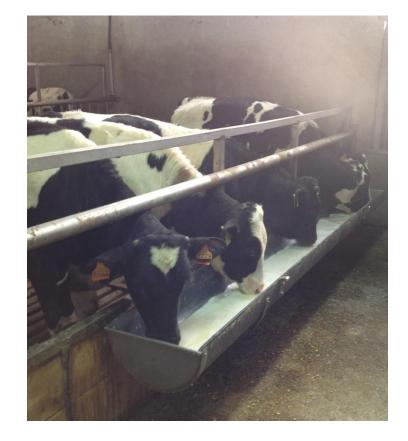
Heamoglobin concentration (mmol/L)	4.34	Higher infection rates
	4.5 Current minimum haemoglobin val	
	4.6	Impaired weight gain
	5.3	Increased cardiovascular and respiratory responses to physical effort
	> 6	No welfare effects observed

RECOMMENDATIONS

- Avoid Hb < 5.3 mmol/L in veal calves
- Collection, record keeping and accessibility of haemoglobin data from white veal production for assessment of welfare effects of Hb values between 4.5 and 5.6 mmol/L
- Diet of veal calves should be composed of feedstuff high in iron such as roughage (e.g., hay)

SPECIFIC SCENARIO 1: VEAL CALVES - FIBRE

Standard diet of white veal calf
Milk + mostly corn
Limited fibre intake

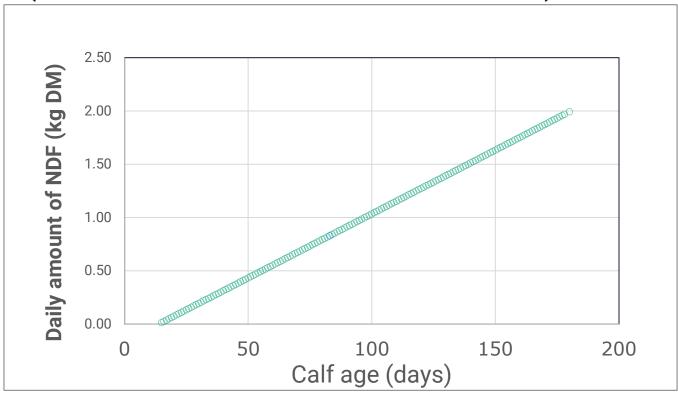


WELFARE CONSEQUENCES

Inability to chew and ruminate Gastro-enteric disorders (e.g. abomasal ulcers)

Current feeding plans (0.19 kg NDF/ day): White veal calves only show 1/3 of expected rumination times

RECOMMENDATION Ingestion of 1 kg of NDF (DM) per day for calves to show full extent of rumination



SPECIFIC SCENARIO 1: VEAL CALVES - FIBRE

RECOMMENDATION

AMOUNT OF FIBRE (NDF) TO BE DISTRIBUTED OVER TIME (BETWEEN 2 WEEKS AND 6 MONTHS OF AGE)

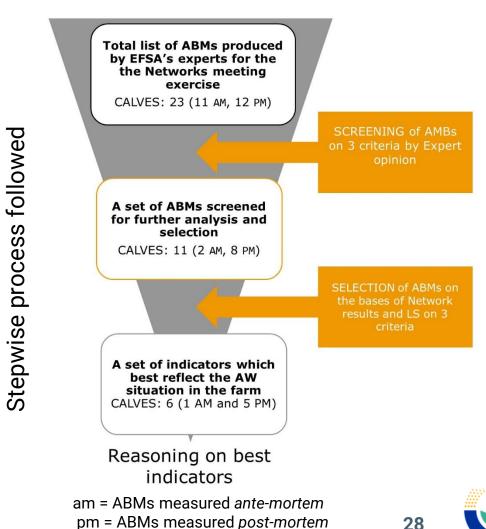
Age //	2 - 8	9 – 18	19 - 25	Total
weight	weeks /	weeks /	weeks /	
(LW)	40 kg	80 kg	130-300 kg	
Kg NDF DM	11	65	90	<mark>166</mark>

SPECIFIC SCENARIO 2. The assessment of ABMs collected in slaughterhouses to monitor the level of on-farm welfare of male dairy calves raised for producing "white" veal meat

IDENTIFICATION OF COMMON WELFARE PROBLEMS IN VEAL OBSERVED ON FARM

Approach

EVALUATION AND SELECTION OF ABMs FOR COLLECTION IN ABATTOIRS


© Shutterstoc

RESULTS & RECOMMENDATIONS

CRITERIA FOR SELECTION

- Relevance to animal welfare
- Relationship with the farm (and not transport or lairage)
- Existing data in the scientific literature
- Feasibility for large scale collection

Common welfare issues in veal:

Anaemia

General health disorders (gastro-enteric and respiratory problems)

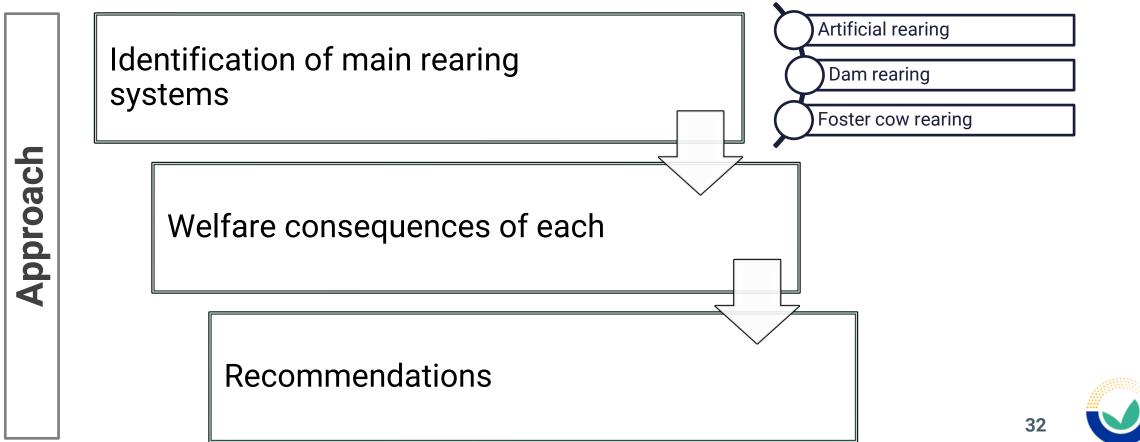
Resting problems

There are **no abattoir ABMs** to detect behavioural welfare consequences

SUGGESTED ABMS

- 3. Carcass colour
- 4. Abomasal lesions
- 5. Lung lesions
- 6. Bursa swelling

RECOMMENDATIONS


- Collection of data on body condition score, carcass condemnations, carcass colour, abomasal lesions, lung lesions, and bursa swelling
- To be complemented with behaviour data collected on farm
- Data already collected for commercial purposes such as carcass colour should be made available
- Harmonised systems and systems for automatic and continuous assessment should be developed

SPECIFIC SCENARIO 3 – RISKS OF LIMITED COW CALF BOND

SPECIFIC SCENARIO 3. The welfare of dairy calves and the risks associated with limited cow-calf bond

SPECIFIC SCENARIO 3 - RISKS OF LIMITED COW CALF BOND

CALF REARING SYSTEMS

Artificial rearing

- Conventional system
- Separation at birth

Dam or foster cow rearing

- Not common
- Duration of contact varies
- Foster cow rearing: 2-3 calves/cow

© S. Waiblinger

3

SPECIFIC SCENARIO 3 - RISKS OF LIMITED COW CALF BOND

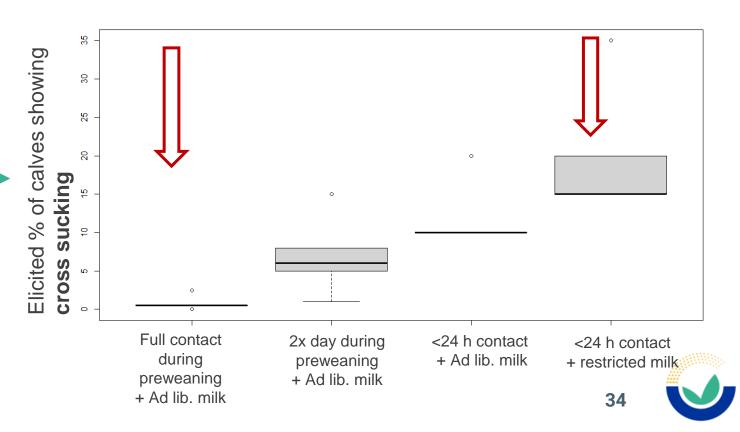
DAM REARING COMPARED TO INDIVIDUAL HOUSING

POSITIVE WELFARE EFFECTS

Reduced transmission of disease

Higher calf vitality

More developed social behaviour

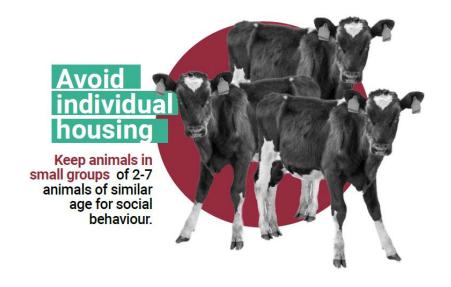

Higher weight gain

Reduced cross-sucking behaviour

NEGATIVE WELFARE EFFECTS

Separation stress

% of calves showing cross sucking depending on contact with the dam


SPECIFIC SCENARIO 3 – RISKS OF LIMITED COW CALF BOND

RECOMMENDATIONS

- The calf should be kept with the dam for a minimum of ~24 hours and be housed with another calf after that.
- Prolonged cow-calf contact should increasingly be implemented due to the welfare benefits for calf and cow. In the future, calves should have contact with the dam during the whole pre-weaning period.
- Further research is needed to:
 - better understand how to implement cow-calf contact in a larger scale
 - identify the best options in practice
 - define best practices for foster-cow rearing

SUMMARY

More details in the Scientific Opinion Welfare of calves on farm | EFSA (europa.eu)

Publication Info [i]

SCIENTIFIC OPINION

ADOPTED: 22 February 2023

doi: 10.2903/j.efsa.2023.7896

Welfare of calves

EFSA Panel on Animal Health and Animal Welfare (AHAW),
Søren Saxmose Nielsen, Julio Alvarez, Dominique Joseph Bicout, Paolo Calistri,
Elisabetta Canali, Julian Ashley Drewe, Bruno Garin-Bastuji, Jose Luis Gonzales Rojas,
Christian Gortazar Schmidt, Mette Herskin, Virginie Michel, Miguel Angel Miranda Chueca,
Barbara Padalino, Paolo Pasquali, Helen Clare Roberts, Hans Spoolder, Karl Stahl, Antonio
Velarde, Arvo Viltrop, Margit Bak Jensen, Susanne Waiblinger, Denise Candiani, Eliana Lima,
Olaf Mosbach-Schulz, Yves Van der Stede, Marika Vitali and Christoph Winckler

Abstract

This Scientific Opinion addresses a European Commission request on the welfare of calves as part of the Farm to Fork strategy. EFSA was asked to provide a description of common husbandry systems and related welfare consequences, as well as measures to prevent or mitigate the hazards leading to them. In addition, recommendations on three specific issues were requested: welfare of calves reared for white veal (space, group housing, requirements of iron and fibre); risk of limited cow–calf contact; and animal-based measures (ABMs) to monitor on-farm welfare in slaughterhouses. The methodology developed by EFSA to address similar requests was followed. Fifteen highly relevant welfare consequences were identified, with respiratory disorders, inability to perform exploratory or foraging

ACKNOWLEDGEMENTS

EFSA AHAW Panel

Søren Saxmose Nielsen, Julio Alvarez, Dominique Joseph Bicout, Paolo Calistri, Elisabetta Canali, Julian Ashley Drewe, Bruno Garin-Bastuji, Jose Luis Gonzales Rojas, Christian Gortázar Schmidt, Mette Herskin, Virginie Michel, Miguel Ángel Miranda Chueca, Barbara Padalino, Paolo Pasquali, Helen Clare Roberts, Hans Spoolder, Karl Stahl, Antonio Velarde, Arvo Viltrop, Christoph Winckler

Working group welfare of calves

Margit Jensen, Susanne Waiblinger, Elisabetta Canali, Christoph Winckler (chair)

Hearing experts

Marta Brscic, George Stilwell, Joop Lensink, Laura Webb

EFSA staff

Mariana Aires, Denise Candiani, Mariana Geffroy, Eliana Lima, Olaf Mosbach- Schulz, Yves Van der Stede, Marika Vitali

EKE support

Karen Laing, Hans-Hermann Thulke

EFSA OPINION ON WELFARE OF DAIRY COWS ON FARM

Christoph Winckler

Chair of the working group on the welfare of dairy cows

SCOPE OF THIS WORK

The **European Commission** requested EFSA to give an independent view on the welfare of dairy cows (*Bos taurus*), which include:

Cows which have had a calf

Pregnant heifers in the last third of gestation

Dairy as well as dual purpose breeds

ASSESSMENTS

Assessment 1. The description of housing systems and their strengths, weaknesses as well as specific hazards for the welfare of dairy cows

Assessment 2. The assessment of selected welfare consequences in terms of ABMs and their prevalence in different housing systems

EFSA to propose

Detailed, qualitative and quantitative ABMs and **preventive and corrective measures**

Assessment 3. The analysis of farm characteristics suitable to identify farms at risk of poor dairy cow welfare

DATA AND METHODOLOGY

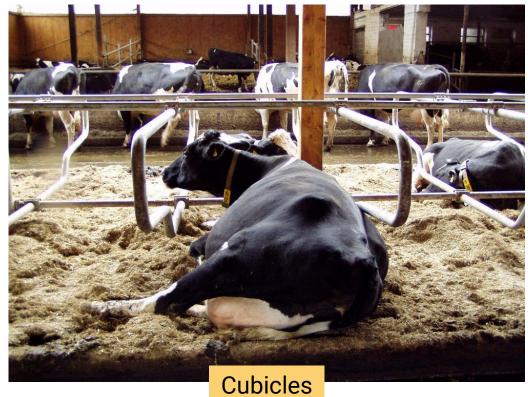
Literature review

Statistic analysis from EU (Eurostat), national statistics

Expert Knowledge Elicitation (EKE)

Uncertainty analysis

Quantitative assessment	Certainty range		
	> 50– 100%	66–100%	90–100%
Qualitative translation	More likely than not	From likely to almost certain	From very likely to almost certain



RESULTS: MAIN HOUSING SYSTEMS DESCRIPTION (TOR 1)

Dairy Farms

RESULTS: MAIN HOUSING SYSTEMS DESCRIPTION (TOR 1)

Dairy Farms

Locomotory disorders: conclusions

Description

Lameness is a significant welfare issue in dairy cows associated with pain and reduced ability to perform natural behaviours.

ABMs

- Gait scoring
- Foot lesion scoring

System Comparison

- Multifactorial (environment, management, animal)
- No clear evidence that one housing system is consistently better

VS

Cubicles

High risk of claw disorders and lameness in cubicles with shallow beds or mats

Access to pasture (temporary)

Lower prevalence of integument damage compared to zerograzing systems

Locomotory disorders: recommendations

Preventing lameness includes **regular gait scoring** followed by early treatment of lame cows.

Dimensions and design of the lying area(s) and cubicle furniture should match the size of cows ensuring that comfort is optimised, freedom of lying behaviour (natural postural changes) is allowed and risk of injury is minimised.

Dairy cows should be provided with **dry, soft and deformable lying surfaces**.

The walking and standing surface should be clean, dry, non-slip and avoiding sharp edges.

Tracks for pasture access should be suitable for long-distance walking (e.g. even surfaced, free from stones and debris).

Mastitis: conclusions

Description

Inflammation of the mammary gland. Can be distinguished in clinical and subclinical.

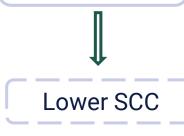
Clinical: pain and behavioural changes

Subclinical: unknown effects on welfare

ABMs

- Clinical cases
- Individual Somatic Cell Count (SCC)

System Comparison


No major differences between systems

Only one housing-related hazard: bedding

Sand-bedded cubicles

VS

Organic bedding materials

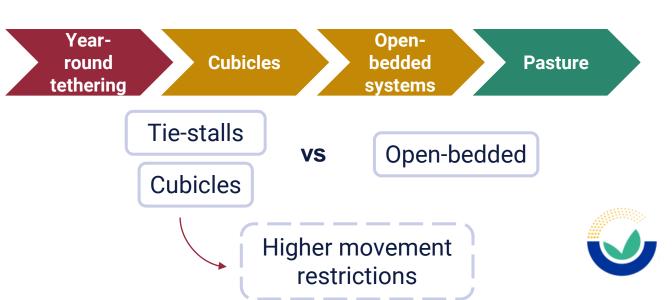
Mastitis: recommendations

Assessment of key mastitis hazards, which are mostly cow and management related, should be undertaken regularly and a farm-specific plan for the control, including treatment and prevention of mastitis, should be formulated based on disease patterns and risks present onfarm.

Udder health should be **routinely monitored** on farm using both the **incidence rate** of clinical mastitis and individual cow **somatic cell counts** in order to timely take appropriate management decisions.

Restriction of movement/resting problems: conclusions

Description


- Inability of an animal to move freely or comfortably due to factors such as limited space or inadequate flooring.
- Closely related, resting problems due to inadequate design and properties of the lying area

ABMs

- Gait, hygiene and lesion score
- Natural postures (lying down & rising up)

System Comparison

- Housing system itself
- Design and features of particular housing systems
- Stocking densities
- Extent of outdoor access

Restriction of movement/resting problems: recommendations

Dairy cows should **not be permanently housed in tie-stalls** because of the continuous and severe restriction of movement and social behaviour, and the risk of thwarting of lying down and rising up movements as well as prevention of comfortable resting postures.

In a transition period, housing in tie-stalls with **regular access to a loafing area, or access to summer pasture**, could be used to reduce the impact on restriction of movement, resting and social behaviour.

In cubicle housing systems, at least one cubicle per cow should be provided.

Restriction of movement/resting problems: recommendations

Dry, soft and deformable lying surfaces, preferably **deep bedding**, should be provided. For deep-bedded cubicles, a **minimum depth of 30 cm** should be provided if bedding is placed on concrete, or a minimum depth of **5 cm** of compressed material if on the top of mats or mattresses.

Access to **well-managed pasture** (i.e., well-drained, provision of shade) should be provided because it offers opportunity to walk freely, ease of changing posture, and a comfortable lying area.

A total indoor area – including lying area - of at least 9 m²/cow should be provided.

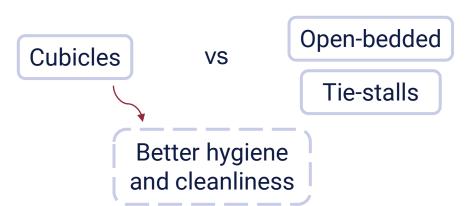
Minimum width and length of cubicles as well as other features that should be provided for cubicles are recommended (see specific recommendations in the opinion).

Inability to perform comfort behaviour: conclusions

Description

Self-grooming (by use of tongue, hooves, horns or tail, or objects)

allo-grooming (licking a conspecific)


Social behaviour

ABMs

Observations of:

- self-grooming
- allo-grooming
- brush use

System Comparison

Inability to perform comfort behaviour: Recommendations

Tethering should not be practised except for limited time periods for events such as veterinary treatments or milking, because it severely restricts the ability to perform comfort behaviour.

In cubicles, **flooring should be slip-resistant** to allow postures associated with self-grooming to be adopted.

Brushes should be available in all loose-housing systems, but further research on the appropriate number per cow and location of brushes is needed.

Metabolic disorders: conclusions

Description

- Imbalance in the cow's metabolism, which can lead to a variety of health issues
- Ketosis, subacute ruminal acidosis, displaced abomasum and hypocalcaemia (milk fever) commonly occur during the peripartum period or in early lactation

ABMs

- Incidence rate of clinical cases
- Subclinical ketosis
- (Body condition scoring)

beta-hydroxybutyrate (in blood)

ketones level (milk and urine)

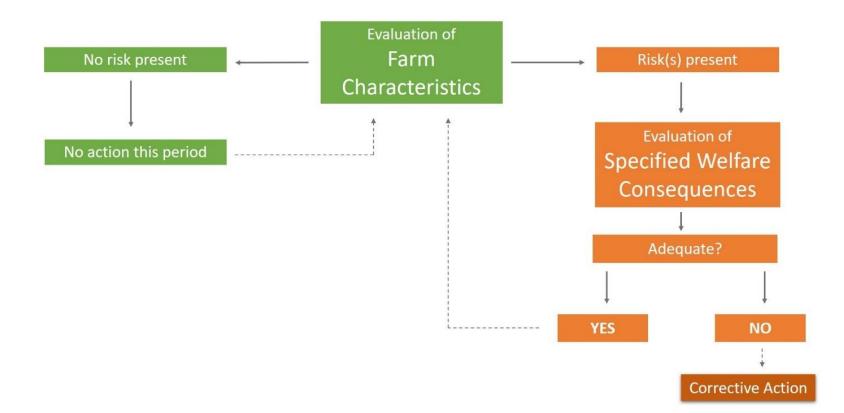
System Comparison

no major difference

Diet & feeding management

Metabolic disorders: Recommendations

Preventive strategies based on key risks arising from feeding and management practices should be in place to minimise the occurrence of metabolic disease.


For metabolic conditions associated with clinical signs, **clinical cases should be recorded** accurately and incidence rates calculated to provide the basis for monitoring clinical metabolic disease.

Aim: Identification of farm characteristics that could be used to categorise farms at risk of poor welfare

Method: expert knowledge elicitation (EKE) to identify these farm characteristics

Framework for a risk-based assessment of dairy cow welfare for EU farms:

Results: Five farm characteristics identified that characterise farms at risk of poor welfare (in order of importance attributed by the experts)

- 1. Farms with more than one cow per cubicle at maximum stocking rate
- 2. Farms with a limited total space (including outdoor loafing areas) for housed cows (<7 m²/cow)
- 3. Farms on which cubicle dimensions are inappropriate for the size of the cows
- 4. Farms with high annual on-farm mortality (i.e. more than 8% including emergency slaughter) rates
- 5. Farms on which cows have less than 2 months per year access to pasture

Recommendations: If one or more of these farm characteristics are present, it is recommended to conduct an assessment of cow welfare on the farm in question.

Assessment of cow welfare on the farm in question

For farms with one or more of the five characteristics, welfare consequences can be assessed using specific farm-level assessments (based on animal-based measures).

Example: Farm characteristic 1
Association 'farm characteristic – welfare consequences – ABMs'

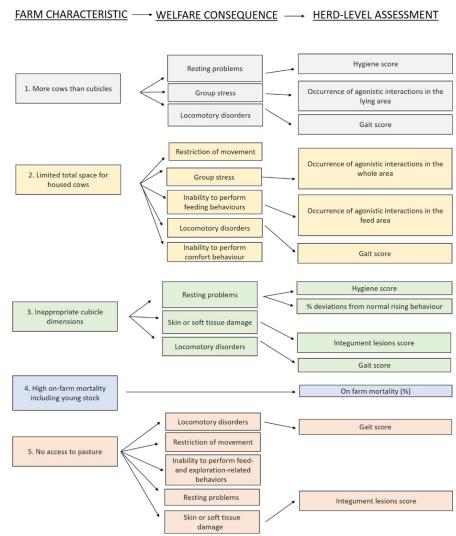
(thresholds for the ABMs reported in the opinion)

1. More cows than cubicles

Group stress

Coccurrence of agonistic interactions in the lying area

Locomotory disorders


Gait score

Complete assessment for the 5 characteristics can be found in the Scientific Opinion.

Recommendations

It is recommended that the risk-based scheme developed from the EKE is piloted to validate its usefulness in practice prior to implementation.

More details in the Scientific Opinion Welfare of dairy cows on farm | EFSA (europa.eu)

SCIENTIFIC OPINION

ADOPTED: 29 March 2023

doi: 10.2903/j.efsa.2023.7993

Welfare of dairy cows

EFSA Panel on Animal Health and Animal Welfare (AHAW),
Søren Saxmose Nielsen, Julio Alvarez, Dominique Joseph Bicout, Paolo Calistri,
Elisabetta Canali, Julian Ashley Drewe, Bruno Garin-Bastuji, Jose Luis Gonzales Rojas,
Christian Gortázar Schmidt, Mette Herskin, Virginie Michel, Miguel Ángel Miranda Chueca,
Barbara Padalino, Helen Clare Roberts, Hans Spoolder, Karl Stahl, Antonio Velarde,
Arvo Viltrop, Alice De Boyer des Roches, Margit Bak Jensen, John Mee, Martin Green,
Hans-Hermann Thulke, Elea Bailly-Caumette, Denise Candiani, Eliana Lima,
Yves Van der Stede and Christoph Winckler

Abstract

This Scientific Opinion addresses a European Commission's mandate on the welfare of dairy cows as part of the Farm to Fork strategy. It includes three assessments carried out based on literature reviews and complemented by expert opinion. Assessment 1 describes the most prevalent housing systems for dairy cows in Europe: tie-stalls, cubicle housing, open-bedded systems and systems with access to an outdoor area. Per each system, the scientific opinion describes the distribution in the EU and assesses the main strengths, weaknesses and hazards potentially reducing the welfare of dairy cows. Assessment 2 addresses five welfare consequences as requested in the mandate: locomotory disorders (including lameness), mastitis, restriction of movement and resting problems, inability to perform

ACKNOWLEDGEMENT DAIRY COWS

EFSA AHAW Panel

Søren Saxmose Nielsen, Julio Alvarez, Dominique Joseph Bicout, Paolo Calistri, Elisabetta Canali, Julian Ashley Drewe, Bruno Garin-Bastuji, Jose Luis Gonzales Rojas, Christian Gortázar Schmidt, Mette Herskin, Virginie Michel, Miguel Ángel Miranda Chueca, Barbara Padalino, Helen Clare Roberts, Hans Spoolder, Karl Stahl, Antonio Velarde, Arvo Viltrop, Alice De Boyer des Roches, Margit Bak Jensen, John Mee, Martin Green, Hans-Hermann Thulke, Elea Bailly-Caumette, Denise Candiani, Eliana Lima, Yves Van der Stede and Christoph Winckler

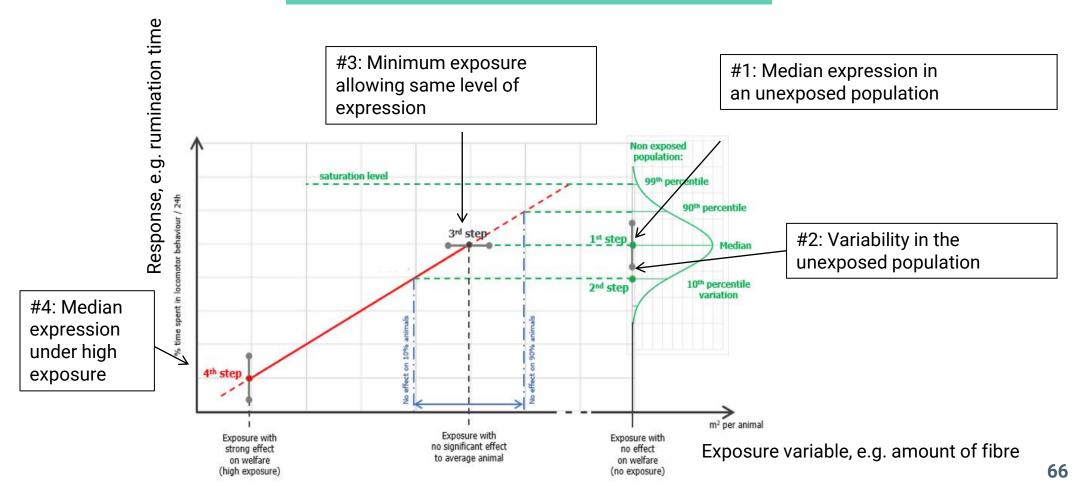
Working group welfare of Dairy Cows

Alice De Boyer des Roches, Margit Bak Jensen, John Mee, Martin Green, Hans-Hermann Thulke, Søren Saxmose Nielsen, Marie Haskell, George Stilwell and Christoph Winckler

EKE experts

Eliana Lima, Denise Candiani, Mariana Aires, Hans-Hermann Thulke, Christoph Winckler, Alice de Boyer des Roches, George Stilwell, John Mee, Søren Nielsen, Marie Haskell, Margit Bak Jensen, Martin Green

EFSA staff


Eliana Lima, Denise Candiani, Mariana Aires, Maria Mountricha, Elea Bailly-Caumette

DATA AND METHODOLOGY - F2F MODEL

MODEL TO ASSESS EFFECTS OF AN EXPOSURE VARIABLE ON ANIMAL WELFARE

