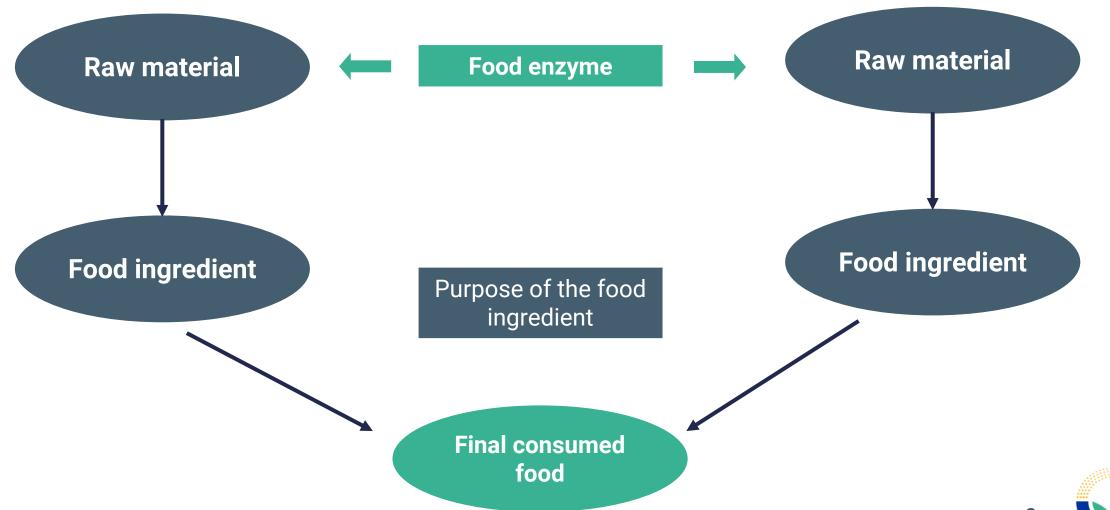


MITIGATION OF DOUBLE COUNTING

Daniele Cavanna and Giulio Di Piazza, EFSA

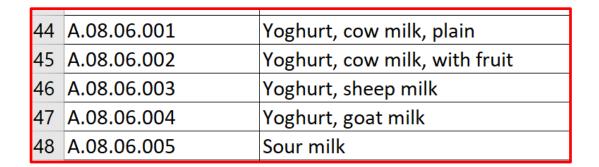

CONCEPT OF DOUBLE COUNTING

Food enzyme intake via a certain food is counted multiple times

DOUBLE COUNTING OF ENZYME EXPOSURE
WHEN AN ENZYME IS USED IN SEVERAL
PROCESSES FOR THE SAME ACTIVITY AND IS
ENDING UP IN THE SAME FINAL FOOD

DOUBLE COUNTING IN TWO FOOD MANUFACTURING PROCESSES

TYPES OF DOUBLE COUNTING AND MITIGATION ACTIVITY


FoodEX category deleted from one of the two food manufacturing processes

EXAMPLES OF DOUBLE COUNTING MITIGATION

Call for Data 7th Call

Lactose degradation in milk and dairy products

Milk processing to improve fermented milk products properties

11	A.08.06.001	Yoghurt, cow milk, plain
12	A.08.06.002	Yoghurt, cow milk, with fruit
13	A.08.06.003	Yoghurt, sheep milk
14	A.08.06.004	Yoghurt, goat milk
15	A.08.06.005	Sour milk

EXAMPLES OF DOUBLE COUNTING MITIGATION - ACTION

Call for Data 7th Call

Lactose degradation in milk and dairy products

Production of lactose-reduced milk

Milk processing to improve fermented milk products properties

11	A.08.06.001	Yoghurt, cow milk, plain
12	A.08.06.002	Yoghurt, cow milk, with fruit
13	A.08.06.003	Yoghurt, sheep milk
14	A.08.06.004	Yoghurt, goat milk
15	A.08.06.005	Sour milk

Production of fermented dairy products

TYPES OF DOUBLE COUNTING AND MITIGATION ACTIVITY

DIFFERENT raw material **SIMILAR** food ingredient **SAME** purpose

Factor f3 reduced in all the involved food manufacturing processes

EXAMPLES OF DOUBLE COUNTING MITIGATION

Call for Data 22nd Call

Protein extracts processing

Hydrolysed proteins from different sources (i.e., animal, plant, dairy) could be used alternately for the same purpose in the same food products

One single food manufacturing process for animal and vegetable protein hydrolysates could lead to double counting (with other processes) and to a high overestimation of the dietary exposure

EXAMPLES OF DOUBLE COUNTING MITIGATION - ACTION

Call for Data 22nd Call

Protein extracts processing

Production of protein hydrolysates from meat and fish protein isolates

Production of protein hydrolysates from plants

REDUCTION OF THE F3 FACTOR IN ALL THE INVOLVED FOOD MANUFACTURING PROCESSES

Production of whey protein hydrolysates

FoodEx1 Code	Name	f3
A.18.01	Food for weight reduction	0.40

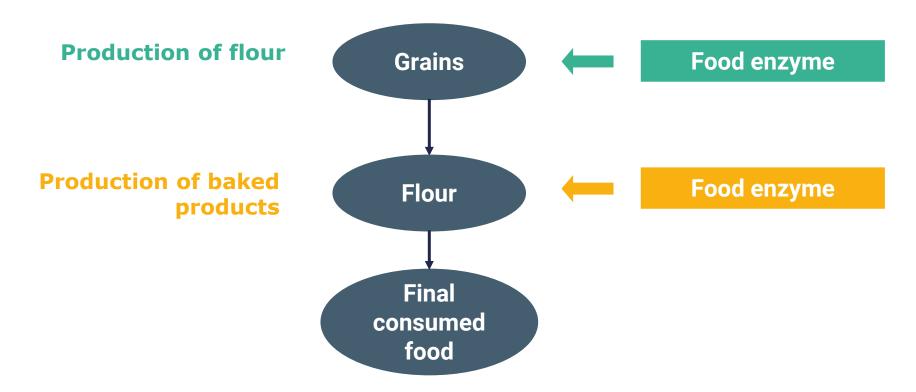
Production of protein hydrolysates from meat and fish protein isolates

FoodEx1 Code	Name	f3
A.18.01	Food for weight reduction	0.36

Production of protein hydrolysates from plants

FoodEx1 Code	Name	f3
A.18.01	Food for weight reduction	0.18

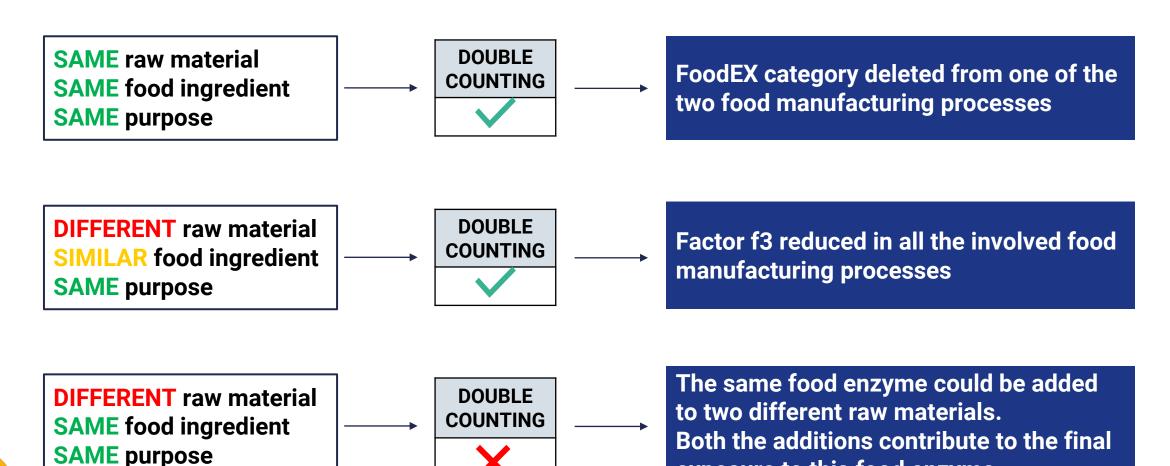
EXAMPLE OF WHAT IS NOT A DOUBLE COUNTING


DIFFERENT raw material SAME food ingredient SAME purpose

The same food enzyme could be added to two different raw materials.

Both the additions contribute to the final exposure to this food enzyme

EXAMPLE OF WHAT IS NOT A DOUBLE COUNTING



The same food enzyme could be added to two different raw materials. Both the additions contribute to the final exposure to this food enzyme

Sum of the f3 factors > 1

TYPES OF DOUBLE COUNTING AND MITIGATION ACTIVITY

exposure to this food enzyme

- Some FoodEx categories have been moved from one food manufacturing process to another
- 2. F3 factors have been reduced:
 - 2A. When two food ingredients could be added alternatively to the same final food.
 - 2B. After a refined Mintel's search.
- 3. For an enzyme intended for multiple food processes, the f2 factor is further mathematically corrected. Detailed are provided in slides 19-20

Call for Data 1st Call

Baking processes

A.01.03.001.001	Wheat flour, brown
A.01.03.001.002	Wheat flour, Durum
A.01.03.001.003	Wheat flour, white
A.01.03.001.004	Wheat flour, wholemeal
A.01.03.001.005	Graham flour
A.01.03.001.006	Wheat flour, gluten free

Flour is the raw material of this food manufacturing process

Call for Data 1st Call

Baking processes

Call for Data 25th Call

Processing of grains for the production of flour

A.01.03.001.001	Wheat flour, brown
A.01.03.001.002	Wheat flour, Durum
A.01.03.001.003	Wheat flour, white
A.01.03.001.004	Wheat flour, wholemeal
A.01.03.001.005	Graham flour
A.01.03.001.006	Wheat flour, gluten free

Flour is the raw material of this food manufacturing process

Flour is the final product of this food manufacturing process

Call for Data 1st Call

Baking processes

Call for Data 25th Call

Processing of grains for the production of flour

A.01.03.001.001	Wheat flour, brown
A.01.03.001.002	Wheat flour, Durum
A.01.03.001.003	Wheat flour, white
A.01.03.001.004	Wheat flour, wholemeal
A.01.03.001.005	Graham flour
A.01.03.001.006	Wheat flour, gluten free

Flour is the raw material of this food manufacturing process

Flour is the final product of this food manufacturing process

Call for Data 1st Call

Baking processes

Call for Data 25th Call

Processing of grains for the production of flour

A.01.03.001.001	Wheat flour, brown
A.01.03.001.002	Wheat flour, Durum
A.01.03.001.003	Wheat flour, white
A.01.03.001.004	Wheat flour, wholemeal
A.01.03.001.005	Graham flour
A.01.03.001.006	Wheat flour, gluten free

Production of baked products

Production of flour

f3 factors have been reduced for some foods in some food manufacturing processes

Production of wine and wine vinegar

FoodEX1 Code	Name	f3
A.19.11.005	Prepared rice salad	1

	OV

Call-for-data

FoodEX1 Code	Name	f3
A.19.11.005	Prepared rice salad	0.75

Production of non-wine vinegar

FoodEX1 Code	Name	f3				
A.19.11.005	Prepared rice salad	1				
FoodEX1 Code	Name	f3				
A.19.11.005	Prepared rice salad	0.25				

Some f3 factors have been reduced after a refined search

Production of wine and wine vinegar

Name	f3	
Fish soup	1	

	12W
	I GI V

Call-for-data

FoodEX1 Code	Name	f3	
A.19.10.005	Fish soup	0.30	

Processing of eggs and egg products

FoodEX1 Code	Name	f3
A.01.07.001.038	Apple strudel	1
FoodEX1 Code	Name	f3
A.01.07.001.038	Apple strudel	0.50

When the food enzyme is used in multiple food manufacturing processes, to address the overestimating F2 factor for each single process, an adjusted F2 factor is used.

- It allows the sum of F2 factors to be always less than 1 (representing the 100% of ingredients composition of the food).
- Also, it has neglectable impact for small amount ingredients.

The F2 factors have been adjusted by this factor:

$$\frac{1 - \prod_{i} (1 - F2_{process_{i}})}{\sum_{i} F2_{process_{i}}}$$

Here some example: \rightarrow

F2 process1	F2 process2	Sum	F2 process1 adjusted	F2 process2 adjusted	Sum adjusted
0.01	0.01	0.02	0.00995	0.00995	0.0199
0.1	0.1	0.2	0.09500	0.09500	0.19
0.2	0.4	0.6	0.17333	0.34667	0.52
0.5	0.1	0.6	0.45833	0.09167	0.55
0.5	0.5	1	0.37500	0.37500	0.75
0.6	0.7	1.3	0.40615	0.47385	0.88
0.9	0.9	1.8	0.49500	0.49500	0.99

Here some real case examples:

FoodEX1 Code	Name	Process	F1	F2	F2 adjusted	F3
A.08.08.004	Cheese, processed spreadable	Whey processing	10	0.03	0.029126	0.17
A.08.08.004	Cheese, processed spreadable	Milk processing for the hydrolysis of lactose	2	1	0.970874	0.1
A.01.07.001.004	Cheese cream cake	Milk processing for the hydrolysis of lactose	8	0.3	0.261858	0.01
A.01.07.001.004	Cheese cream cake	Milk processing for production of fermented milk products	5	0.17	0.148386	0.23
A.01.07.001.004	Cheese cream cake	Whey processing	10	0.03	0.026186	1
A.16.08.003	Cream sauce	Milk processing for production of fermented milk products	1.25	0.08	0.079289	0.36
A.16.08.003	Cream sauce	Whey processing	10	0.01	0.009911	0.05

FINAL REMARKS

 The presence of the same foods in more than one food manufacturing processes does not bring automatically to a double counting.

 The F3 has been reduced to be smaller than 1 in sum at the input level when needed.

The sum of F2 is always less than 1, by mathematical adjustment.

THANK YOU VERY MUCH FOR YOUR ATTENTION

Daniele Cavanna and Giulio Di Piazza, EFSA

